summaryrefslogtreecommitdiff
path: root/net/rds/af_rds.c
blob: 1a5bf3fa4578b85dc6a5ed4f3cdb1a0ca95a5447 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/*
 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/poll.h>
#include <net/sock.h>

#include "rds.h"

/* this is just used for stats gathering :/ */
static DEFINE_SPINLOCK(rds_sock_lock);
static unsigned long rds_sock_count;
static LIST_HEAD(rds_sock_list);
DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);

/*
 * This is called as the final descriptor referencing this socket is closed.
 * We have to unbind the socket so that another socket can be bound to the
 * address it was using.
 *
 * We have to be careful about racing with the incoming path.  sock_orphan()
 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 * messages shouldn't be queued.
 */
static int rds_release(struct socket *sock)
{
	struct sock *sk = sock->sk;
	struct rds_sock *rs;

	if (!sk)
		goto out;

	rs = rds_sk_to_rs(sk);

	sock_orphan(sk);
	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
	 * that ensures the recv path has completed messing
	 * with the socket. */
	rds_clear_recv_queue(rs);
	rds_cong_remove_socket(rs);

	rds_remove_bound(rs);

	rds_send_drop_to(rs, NULL);
	rds_rdma_drop_keys(rs);
	rds_notify_queue_get(rs, NULL);
	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);

	spin_lock_bh(&rds_sock_lock);
	list_del_init(&rs->rs_item);
	rds_sock_count--;
	spin_unlock_bh(&rds_sock_lock);

	rds_trans_put(rs->rs_transport);

	sock->sk = NULL;
	sock_put(sk);
out:
	return 0;
}

/*
 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
 * this seems more conservative.
 * NB - normally, one would use sk_callback_lock for this, but we can
 * get here from interrupts, whereas the network code grabs sk_callback_lock
 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
 */
void rds_wake_sk_sleep(struct rds_sock *rs)
{
	unsigned long flags;

	read_lock_irqsave(&rs->rs_recv_lock, flags);
	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
}

static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
		       int peer)
{
	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
	struct sockaddr_in6 *sin6;
	struct sockaddr_in *sin;
	int uaddr_len;

	/* racey, don't care */
	if (peer) {
		if (ipv6_addr_any(&rs->rs_conn_addr))
			return -ENOTCONN;

		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
			sin = (struct sockaddr_in *)uaddr;
			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
			sin->sin_family = AF_INET;
			sin->sin_port = rs->rs_conn_port;
			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
			uaddr_len = sizeof(*sin);
		} else {
			sin6 = (struct sockaddr_in6 *)uaddr;
			sin6->sin6_family = AF_INET6;
			sin6->sin6_port = rs->rs_conn_port;
			sin6->sin6_addr = rs->rs_conn_addr;
			sin6->sin6_flowinfo = 0;
			/* scope_id is the same as in the bound address. */
			sin6->sin6_scope_id = rs->rs_bound_scope_id;
			uaddr_len = sizeof(*sin6);
		}
	} else {
		/* If socket is not yet bound and the socket is connected,
		 * set the return address family to be the same as the
		 * connected address, but with 0 address value.  If it is not
		 * connected, set the family to be AF_UNSPEC (value 0) and
		 * the address size to be that of an IPv4 address.
		 */
		if (ipv6_addr_any(&rs->rs_bound_addr)) {
			if (ipv6_addr_any(&rs->rs_conn_addr)) {
				sin = (struct sockaddr_in *)uaddr;
				memset(sin, 0, sizeof(*sin));
				sin->sin_family = AF_UNSPEC;
				return sizeof(*sin);
			}

#if IS_ENABLED(CONFIG_IPV6)
			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
			      IPV6_ADDR_MAPPED)) {
				sin6 = (struct sockaddr_in6 *)uaddr;
				memset(sin6, 0, sizeof(*sin6));
				sin6->sin6_family = AF_INET6;
				return sizeof(*sin6);
			}
#endif

			sin = (struct sockaddr_in *)uaddr;
			memset(sin, 0, sizeof(*sin));
			sin->sin_family = AF_INET;
			return sizeof(*sin);
		}
		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
			sin = (struct sockaddr_in *)uaddr;
			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
			sin->sin_family = AF_INET;
			sin->sin_port = rs->rs_bound_port;
			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
			uaddr_len = sizeof(*sin);
		} else {
			sin6 = (struct sockaddr_in6 *)uaddr;
			sin6->sin6_family = AF_INET6;
			sin6->sin6_port = rs->rs_bound_port;
			sin6->sin6_addr = rs->rs_bound_addr;
			sin6->sin6_flowinfo = 0;
			sin6->sin6_scope_id = rs->rs_bound_scope_id;
			uaddr_len = sizeof(*sin6);
		}
	}

	return uaddr_len;
}

/*
 * RDS' poll is without a doubt the least intuitive part of the interface,
 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
 * a network protocol.
 *
 * EPOLLIN is asserted if
 *  -	there is data on the receive queue.
 *  -	to signal that a previously congested destination may have become
 *	uncongested
 *  -	A notification has been queued to the socket (this can be a congestion
 *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
 *
 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
 * however, that the next sendmsg() call will succeed. If the application tries
 * to send to a congested destination, the system call may still fail (and
 * return ENOBUFS).
 */
static __poll_t rds_poll(struct file *file, struct socket *sock,
			     poll_table *wait)
{
	struct sock *sk = sock->sk;
	struct rds_sock *rs = rds_sk_to_rs(sk);
	__poll_t mask = 0;
	unsigned long flags;

	poll_wait(file, sk_sleep(sk), wait);

	if (rs->rs_seen_congestion)
		poll_wait(file, &rds_poll_waitq, wait);

	read_lock_irqsave(&rs->rs_recv_lock, flags);
	if (!rs->rs_cong_monitor) {
		/* When a congestion map was updated, we signal EPOLLIN for
		 * "historical" reasons. Applications can also poll for
		 * WRBAND instead. */
		if (rds_cong_updated_since(&rs->rs_cong_track))
			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
	} else {
		spin_lock(&rs->rs_lock);
		if (rs->rs_cong_notify)
			mask |= (EPOLLIN | EPOLLRDNORM);
		spin_unlock(&rs->rs_lock);
	}
	if (!list_empty(&rs->rs_recv_queue) ||
	    !list_empty(&rs->rs_notify_queue) ||
	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
		mask |= (EPOLLIN | EPOLLRDNORM);
	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
		mask |= (EPOLLOUT | EPOLLWRNORM);
	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
		mask |= POLLERR;
	read_unlock_irqrestore(&rs->rs_recv_lock, flags);

	/* clear state any time we wake a seen-congested socket */
	if (mask)
		rs->rs_seen_congestion = 0;

	return mask;
}

static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
	rds_tos_t utos, tos = 0;

	switch (cmd) {
	case SIOCRDSSETTOS:
		if (get_user(utos, (rds_tos_t __user *)arg))
			return -EFAULT;

		if (rs->rs_transport &&
		    rs->rs_transport->get_tos_map)
			tos = rs->rs_transport->get_tos_map(utos);
		else
			return -ENOIOCTLCMD;

		spin_lock_bh(&rds_sock_lock);
		if (rs->rs_tos || rs->rs_conn) {
			spin_unlock_bh(&rds_sock_lock);
			return -EINVAL;
		}
		rs->rs_tos = tos;
		spin_unlock_bh(&rds_sock_lock);
		break;
	case SIOCRDSGETTOS:
		spin_lock_bh(&rds_sock_lock);
		tos = rs->rs_tos;
		spin_unlock_bh(&rds_sock_lock);
		if (put_user(tos, (rds_tos_t __user *)arg))
			return -EFAULT;
		break;
	default:
		return -ENOIOCTLCMD;
	}

	return 0;
}

static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
			      int len)
{
	struct sockaddr_in6 sin6;
	struct sockaddr_in sin;
	int ret = 0;

	/* racing with another thread binding seems ok here */
	if (ipv6_addr_any(&rs->rs_bound_addr)) {
		ret = -ENOTCONN; /* XXX not a great errno */
		goto out;
	}

	if (len < sizeof(struct sockaddr_in)) {
		ret = -EINVAL;
		goto out;
	} else if (len < sizeof(struct sockaddr_in6)) {
		/* Assume IPv4 */
		if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
			ret = -EFAULT;
			goto out;
		}
		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
		sin6.sin6_port = sin.sin_port;
	} else {
		if (copy_from_user(&sin6, optval,
				   sizeof(struct sockaddr_in6))) {
			ret = -EFAULT;
			goto out;
		}
	}

	rds_send_drop_to(rs, &sin6);
out:
	return ret;
}

static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
			       int optlen)
{
	int value;

	if (optlen < sizeof(int))
		return -EINVAL;
	if (get_user(value, (int __user *) optval))
		return -EFAULT;
	*optvar = !!value;
	return 0;
}

static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
			    int optlen)
{
	int ret;

	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
	if (ret == 0) {
		if (rs->rs_cong_monitor) {
			rds_cong_add_socket(rs);
		} else {
			rds_cong_remove_socket(rs);
			rs->rs_cong_mask = 0;
			rs->rs_cong_notify = 0;
		}
	}
	return ret;
}

static int rds_set_transport(struct rds_sock *rs, char __user *optval,
			     int optlen)
{
	int t_type;

	if (rs->rs_transport)
		return -EOPNOTSUPP; /* previously attached to transport */

	if (optlen != sizeof(int))
		return -EINVAL;

	if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
		return -EFAULT;

	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
		return -EINVAL;

	rs->rs_transport = rds_trans_get(t_type);

	return rs->rs_transport ? 0 : -ENOPROTOOPT;
}

static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
				 int optlen, int optname)
{
	int val, valbool;

	if (optlen != sizeof(int))
		return -EFAULT;

	if (get_user(val, (int __user *)optval))
		return -EFAULT;

	valbool = val ? 1 : 0;

	if (optname == SO_TIMESTAMP_NEW)
		sock_set_flag(sk, SOCK_TSTAMP_NEW);

	if (valbool)
		sock_set_flag(sk, SOCK_RCVTSTAMP);
	else
		sock_reset_flag(sk, SOCK_RCVTSTAMP);

	return 0;
}

static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
				  int optlen)
{
	struct rds_rx_trace_so trace;
	int i;

	if (optlen != sizeof(struct rds_rx_trace_so))
		return -EFAULT;

	if (copy_from_user(&trace, optval, sizeof(trace)))
		return -EFAULT;

	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
		return -EFAULT;

	rs->rs_rx_traces = trace.rx_traces;
	for (i = 0; i < rs->rs_rx_traces; i++) {
		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
			rs->rs_rx_traces = 0;
			return -EFAULT;
		}
		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
	}

	return 0;
}

static int rds_setsockopt(struct socket *sock, int level, int optname,
			  char __user *optval, unsigned int optlen)
{
	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
	int ret;

	if (level != SOL_RDS) {
		ret = -ENOPROTOOPT;
		goto out;
	}

	switch (optname) {
	case RDS_CANCEL_SENT_TO:
		ret = rds_cancel_sent_to(rs, optval, optlen);
		break;
	case RDS_GET_MR:
		ret = rds_get_mr(rs, optval, optlen);
		break;
	case RDS_GET_MR_FOR_DEST:
		ret = rds_get_mr_for_dest(rs, optval, optlen);
		break;
	case RDS_FREE_MR:
		ret = rds_free_mr(rs, optval, optlen);
		break;
	case RDS_RECVERR:
		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
		break;
	case RDS_CONG_MONITOR:
		ret = rds_cong_monitor(rs, optval, optlen);
		break;
	case SO_RDS_TRANSPORT:
		lock_sock(sock->sk);
		ret = rds_set_transport(rs, optval, optlen);
		release_sock(sock->sk);
		break;
	case SO_TIMESTAMP_OLD:
	case SO_TIMESTAMP_NEW:
		lock_sock(sock->sk);
		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
		release_sock(sock->sk);
		break;
	case SO_RDS_MSG_RXPATH_LATENCY:
		ret = rds_recv_track_latency(rs, optval, optlen);
		break;
	default:
		ret = -ENOPROTOOPT;
	}
out:
	return ret;
}

static int rds_getsockopt(struct socket *sock, int level, int optname,
			  char __user *optval, int __user *optlen)
{
	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
	int ret = -ENOPROTOOPT, len;
	int trans;

	if (level != SOL_RDS)
		goto out;

	if (get_user(len, optlen)) {
		ret = -EFAULT;
		goto out;
	}

	switch (optname) {
	case RDS_INFO_FIRST ... RDS_INFO_LAST:
		ret = rds_info_getsockopt(sock, optname, optval,
					  optlen);
		break;

	case RDS_RECVERR:
		if (len < sizeof(int))
			ret = -EINVAL;
		else
		if (put_user(rs->rs_recverr, (int __user *) optval) ||
		    put_user(sizeof(int), optlen))
			ret = -EFAULT;
		else
			ret = 0;
		break;
	case SO_RDS_TRANSPORT:
		if (len < sizeof(int)) {
			ret = -EINVAL;
			break;
		}
		trans = (rs->rs_transport ? rs->rs_transport->t_type :
			 RDS_TRANS_NONE); /* unbound */
		if (put_user(trans, (int __user *)optval) ||
		    put_user(sizeof(int), optlen))
			ret = -EFAULT;
		else
			ret = 0;
		break;
	default:
		break;
	}

out:
	return ret;

}

static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
		       int addr_len, int flags)
{
	struct sock *sk = sock->sk;
	struct sockaddr_in *sin;
	struct rds_sock *rs = rds_sk_to_rs(sk);
	int ret = 0;

	if (addr_len < offsetofend(struct sockaddr, sa_family))
		return -EINVAL;

	lock_sock(sk);

	switch (uaddr->sa_family) {
	case AF_INET:
		sin = (struct sockaddr_in *)uaddr;
		if (addr_len < sizeof(struct sockaddr_in)) {
			ret = -EINVAL;
			break;
		}
		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
			ret = -EDESTADDRREQ;
			break;
		}
		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
			ret = -EINVAL;
			break;
		}
		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
		rs->rs_conn_port = sin->sin_port;
		break;

#if IS_ENABLED(CONFIG_IPV6)
	case AF_INET6: {
		struct sockaddr_in6 *sin6;
		int addr_type;

		sin6 = (struct sockaddr_in6 *)uaddr;
		if (addr_len < sizeof(struct sockaddr_in6)) {
			ret = -EINVAL;
			break;
		}
		addr_type = ipv6_addr_type(&sin6->sin6_addr);
		if (!(addr_type & IPV6_ADDR_UNICAST)) {
			__be32 addr4;

			if (!(addr_type & IPV6_ADDR_MAPPED)) {
				ret = -EPROTOTYPE;
				break;
			}

			/* It is a mapped address.  Need to do some sanity
			 * checks.
			 */
			addr4 = sin6->sin6_addr.s6_addr32[3];
			if (addr4 == htonl(INADDR_ANY) ||
			    addr4 == htonl(INADDR_BROADCAST) ||
			    ipv4_is_multicast(addr4)) {
				ret = -EPROTOTYPE;
				break;
			}
		}

		if (addr_type & IPV6_ADDR_LINKLOCAL) {
			/* If socket is arleady bound to a link local address,
			 * the peer address must be on the same link.
			 */
			if (sin6->sin6_scope_id == 0 ||
			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
			     rs->rs_bound_scope_id &&
			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
				ret = -EINVAL;
				break;
			}
			/* Remember the connected address scope ID.  It will
			 * be checked against the binding local address when
			 * the socket is bound.
			 */
			rs->rs_bound_scope_id = sin6->sin6_scope_id;
		}
		rs->rs_conn_addr = sin6->sin6_addr;
		rs->rs_conn_port = sin6->sin6_port;
		break;
	}
#endif

	default:
		ret = -EAFNOSUPPORT;
		break;
	}

	release_sock(sk);
	return ret;
}

static struct proto rds_proto = {
	.name	  = "RDS",
	.owner	  = THIS_MODULE,
	.obj_size = sizeof(struct rds_sock),
};

static const struct proto_ops rds_proto_ops = {
	.family =	AF_RDS,
	.owner =	THIS_MODULE,
	.release =	rds_release,
	.bind =		rds_bind,
	.connect =	rds_connect,
	.socketpair =	sock_no_socketpair,
	.accept =	sock_no_accept,
	.getname =	rds_getname,
	.poll =		rds_poll,
	.ioctl =	rds_ioctl,
	.listen =	sock_no_listen,
	.shutdown =	sock_no_shutdown,
	.setsockopt =	rds_setsockopt,
	.getsockopt =	rds_getsockopt,
	.sendmsg =	rds_sendmsg,
	.recvmsg =	rds_recvmsg,
	.mmap =		sock_no_mmap,
	.sendpage =	sock_no_sendpage,
};

static void rds_sock_destruct(struct sock *sk)
{
	struct rds_sock *rs = rds_sk_to_rs(sk);

	WARN_ON((&rs->rs_item != rs->rs_item.next ||
		 &rs->rs_item != rs->rs_item.prev));
}

static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
{
	struct rds_sock *rs;

	sock_init_data(sock, sk);
	sock->ops		= &rds_proto_ops;
	sk->sk_protocol		= protocol;
	sk->sk_destruct		= rds_sock_destruct;

	rs = rds_sk_to_rs(sk);
	spin_lock_init(&rs->rs_lock);
	rwlock_init(&rs->rs_recv_lock);
	INIT_LIST_HEAD(&rs->rs_send_queue);
	INIT_LIST_HEAD(&rs->rs_recv_queue);
	INIT_LIST_HEAD(&rs->rs_notify_queue);
	INIT_LIST_HEAD(&rs->rs_cong_list);
	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
	spin_lock_init(&rs->rs_rdma_lock);
	rs->rs_rdma_keys = RB_ROOT;
	rs->rs_rx_traces = 0;
	rs->rs_tos = 0;
	rs->rs_conn = NULL;

	spin_lock_bh(&rds_sock_lock);
	list_add_tail(&rs->rs_item, &rds_sock_list);
	rds_sock_count++;
	spin_unlock_bh(&rds_sock_lock);

	return 0;
}

static int rds_create(struct net *net, struct socket *sock, int protocol,
		      int kern)
{
	struct sock *sk;

	if (sock->type != SOCK_SEQPACKET || protocol)
		return -ESOCKTNOSUPPORT;

	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
	if (!sk)
		return -ENOMEM;

	return __rds_create(sock, sk, protocol);
}

void rds_sock_addref(struct rds_sock *rs)
{
	sock_hold(rds_rs_to_sk(rs));
}

void rds_sock_put(struct rds_sock *rs)
{
	sock_put(rds_rs_to_sk(rs));
}

static const struct net_proto_family rds_family_ops = {
	.family =	AF_RDS,
	.create =	rds_create,
	.owner	=	THIS_MODULE,
};

static void rds_sock_inc_info(struct socket *sock, unsigned int len,
			      struct rds_info_iterator *iter,
			      struct rds_info_lengths *lens)
{
	struct rds_sock *rs;
	struct rds_incoming *inc;
	unsigned int total = 0;

	len /= sizeof(struct rds_info_message);

	spin_lock_bh(&rds_sock_lock);

	list_for_each_entry(rs, &rds_sock_list, rs_item) {
		/* This option only supports IPv4 sockets. */
		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
			continue;

		read_lock(&rs->rs_recv_lock);

		/* XXX too lazy to maintain counts.. */
		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
			total++;
			if (total <= len)
				rds_inc_info_copy(inc, iter,
						  inc->i_saddr.s6_addr32[3],
						  rs->rs_bound_addr_v4,
						  1);
		}

		read_unlock(&rs->rs_recv_lock);
	}

	spin_unlock_bh(&rds_sock_lock);

	lens->nr = total;
	lens->each = sizeof(struct rds_info_message);
}

#if IS_ENABLED(CONFIG_IPV6)
static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
			       struct rds_info_iterator *iter,
			       struct rds_info_lengths *lens)
{
	struct rds_incoming *inc;
	unsigned int total = 0;
	struct rds_sock *rs;

	len /= sizeof(struct rds6_info_message);

	spin_lock_bh(&rds_sock_lock);

	list_for_each_entry(rs, &rds_sock_list, rs_item) {
		read_lock(&rs->rs_recv_lock);

		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
			total++;
			if (total <= len)
				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
						   &rs->rs_bound_addr, 1);
		}

		read_unlock(&rs->rs_recv_lock);
	}

	spin_unlock_bh(&rds_sock_lock);

	lens->nr = total;
	lens->each = sizeof(struct rds6_info_message);
}
#endif

static void rds_sock_info(struct socket *sock, unsigned int len,
			  struct rds_info_iterator *iter,
			  struct rds_info_lengths *lens)
{
	struct rds_info_socket sinfo;
	unsigned int cnt = 0;
	struct rds_sock *rs;

	len /= sizeof(struct rds_info_socket);

	spin_lock_bh(&rds_sock_lock);

	if (len < rds_sock_count) {
		cnt = rds_sock_count;
		goto out;
	}

	list_for_each_entry(rs, &rds_sock_list, rs_item) {
		/* This option only supports IPv4 sockets. */
		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
			continue;
		sinfo.sndbuf = rds_sk_sndbuf(rs);
		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
		sinfo.bound_addr = rs->rs_bound_addr_v4;
		sinfo.connected_addr = rs->rs_conn_addr_v4;
		sinfo.bound_port = rs->rs_bound_port;
		sinfo.connected_port = rs->rs_conn_port;
		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));

		rds_info_copy(iter, &sinfo, sizeof(sinfo));
		cnt++;
	}

out:
	lens->nr = cnt;
	lens->each = sizeof(struct rds_info_socket);

	spin_unlock_bh(&rds_sock_lock);
}

#if IS_ENABLED(CONFIG_IPV6)
static void rds6_sock_info(struct socket *sock, unsigned int len,
			   struct rds_info_iterator *iter,
			   struct rds_info_lengths *lens)
{
	struct rds6_info_socket sinfo6;
	struct rds_sock *rs;

	len /= sizeof(struct rds6_info_socket);

	spin_lock_bh(&rds_sock_lock);

	if (len < rds_sock_count)
		goto out;

	list_for_each_entry(rs, &rds_sock_list, rs_item) {
		sinfo6.sndbuf = rds_sk_sndbuf(rs);
		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
		sinfo6.bound_addr = rs->rs_bound_addr;
		sinfo6.connected_addr = rs->rs_conn_addr;
		sinfo6.bound_port = rs->rs_bound_port;
		sinfo6.connected_port = rs->rs_conn_port;
		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));

		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
	}

 out:
	lens->nr = rds_sock_count;
	lens->each = sizeof(struct rds6_info_socket);

	spin_unlock_bh(&rds_sock_lock);
}
#endif

static void rds_exit(void)
{
	sock_unregister(rds_family_ops.family);
	proto_unregister(&rds_proto);
	rds_conn_exit();
	rds_cong_exit();
	rds_sysctl_exit();
	rds_threads_exit();
	rds_stats_exit();
	rds_page_exit();
	rds_bind_lock_destroy();
	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
#if IS_ENABLED(CONFIG_IPV6)
	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
#endif
}
module_exit(rds_exit);

u32 rds_gen_num;

static int rds_init(void)
{
	int ret;

	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));

	ret = rds_bind_lock_init();
	if (ret)
		goto out;

	ret = rds_conn_init();
	if (ret)
		goto out_bind;

	ret = rds_threads_init();
	if (ret)
		goto out_conn;
	ret = rds_sysctl_init();
	if (ret)
		goto out_threads;
	ret = rds_stats_init();
	if (ret)
		goto out_sysctl;
	ret = proto_register(&rds_proto, 1);
	if (ret)
		goto out_stats;
	ret = sock_register(&rds_family_ops);
	if (ret)
		goto out_proto;

	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
#if IS_ENABLED(CONFIG_IPV6)
	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
#endif

	goto out;

out_proto:
	proto_unregister(&rds_proto);
out_stats:
	rds_stats_exit();
out_sysctl:
	rds_sysctl_exit();
out_threads:
	rds_threads_exit();
out_conn:
	rds_conn_exit();
	rds_cong_exit();
	rds_page_exit();
out_bind:
	rds_bind_lock_destroy();
out:
	return ret;
}
module_init(rds_init);

#define DRV_VERSION     "4.0"
#define DRV_RELDATE     "Feb 12, 2009"

MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
		   " v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_VERSION(DRV_VERSION);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS_NETPROTO(PF_RDS);