summaryrefslogtreecommitdiff
path: root/net/ipv4/udp.c
blob: aa9f2ec3dc4681f767e8be9d580096ba8b439327 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		The User Datagram Protocol (UDP).
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
 *		Hirokazu Takahashi, <taka@valinux.co.jp>
 *
 * Fixes:
 *		Alan Cox	:	verify_area() calls
 *		Alan Cox	: 	stopped close while in use off icmp
 *					messages. Not a fix but a botch that
 *					for udp at least is 'valid'.
 *		Alan Cox	:	Fixed icmp handling properly
 *		Alan Cox	: 	Correct error for oversized datagrams
 *		Alan Cox	:	Tidied select() semantics.
 *		Alan Cox	:	udp_err() fixed properly, also now
 *					select and read wake correctly on errors
 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
 *		Alan Cox	:	UDP can count its memory
 *		Alan Cox	:	send to an unknown connection causes
 *					an ECONNREFUSED off the icmp, but
 *					does NOT close.
 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
 *					bug no longer crashes it.
 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
 *		Alan Cox	:	Uses skb_free_datagram
 *		Alan Cox	:	Added get/set sockopt support.
 *		Alan Cox	:	Broadcasting without option set returns EACCES.
 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
 *		Alan Cox	:	Use ip_tos and ip_ttl
 *		Alan Cox	:	SNMP Mibs
 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
 *		Matt Dillon	:	UDP length checks.
 *		Alan Cox	:	Smarter af_inet used properly.
 *		Alan Cox	:	Use new kernel side addressing.
 *		Alan Cox	:	Incorrect return on truncated datagram receive.
 *	Arnt Gulbrandsen 	:	New udp_send and stuff
 *		Alan Cox	:	Cache last socket
 *		Alan Cox	:	Route cache
 *		Jon Peatfield	:	Minor efficiency fix to sendto().
 *		Mike Shaver	:	RFC1122 checks.
 *		Alan Cox	:	Nonblocking error fix.
 *	Willy Konynenberg	:	Transparent proxying support.
 *		Mike McLagan	:	Routing by source
 *		David S. Miller	:	New socket lookup architecture.
 *					Last socket cache retained as it
 *					does have a high hit rate.
 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
 *		Andi Kleen	:	Some cleanups, cache destination entry
 *					for connect.
 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
 *					return ENOTCONN for unconnected sockets (POSIX)
 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
 *					bound-to-device socket
 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
 *					datagrams.
 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
 *					a single port at the same time.
 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
 *	James Chapman		:	Add L2TP encapsulation type.
 */

#define pr_fmt(fmt) "UDP: " fmt

#include <linux/bpf-cgroup.h>
#include <linux/uaccess.h>
#include <asm/ioctls.h>
#include <linux/memblock.h>
#include <linux/highmem.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/module.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/igmp.h>
#include <linux/inetdevice.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <net/tcp_states.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <net/net_namespace.h>
#include <net/icmp.h>
#include <net/inet_hashtables.h>
#include <net/ip_tunnels.h>
#include <net/route.h>
#include <net/checksum.h>
#include <net/xfrm.h>
#include <trace/events/udp.h>
#include <linux/static_key.h>
#include <linux/btf_ids.h>
#include <trace/events/skb.h>
#include <net/busy_poll.h>
#include "udp_impl.h"
#include <net/sock_reuseport.h>
#include <net/addrconf.h>
#include <net/udp_tunnel.h>
#if IS_ENABLED(CONFIG_IPV6)
#include <net/ipv6_stubs.h>
#endif

struct udp_table udp_table __read_mostly;
EXPORT_SYMBOL(udp_table);

long sysctl_udp_mem[3] __read_mostly;
EXPORT_SYMBOL(sysctl_udp_mem);

atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
EXPORT_SYMBOL(udp_memory_allocated);

#define MAX_UDP_PORTS 65536
#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)

static int udp_lib_lport_inuse(struct net *net, __u16 num,
			       const struct udp_hslot *hslot,
			       unsigned long *bitmap,
			       struct sock *sk, unsigned int log)
{
	struct sock *sk2;
	kuid_t uid = sock_i_uid(sk);

	sk_for_each(sk2, &hslot->head) {
		if (net_eq(sock_net(sk2), net) &&
		    sk2 != sk &&
		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
		    (!sk2->sk_reuse || !sk->sk_reuse) &&
		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
		    inet_rcv_saddr_equal(sk, sk2, true)) {
			if (sk2->sk_reuseport && sk->sk_reuseport &&
			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
			    uid_eq(uid, sock_i_uid(sk2))) {
				if (!bitmap)
					return 0;
			} else {
				if (!bitmap)
					return 1;
				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
					  bitmap);
			}
		}
	}
	return 0;
}

/*
 * Note: we still hold spinlock of primary hash chain, so no other writer
 * can insert/delete a socket with local_port == num
 */
static int udp_lib_lport_inuse2(struct net *net, __u16 num,
				struct udp_hslot *hslot2,
				struct sock *sk)
{
	struct sock *sk2;
	kuid_t uid = sock_i_uid(sk);
	int res = 0;

	spin_lock(&hslot2->lock);
	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
		if (net_eq(sock_net(sk2), net) &&
		    sk2 != sk &&
		    (udp_sk(sk2)->udp_port_hash == num) &&
		    (!sk2->sk_reuse || !sk->sk_reuse) &&
		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
		    inet_rcv_saddr_equal(sk, sk2, true)) {
			if (sk2->sk_reuseport && sk->sk_reuseport &&
			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
			    uid_eq(uid, sock_i_uid(sk2))) {
				res = 0;
			} else {
				res = 1;
			}
			break;
		}
	}
	spin_unlock(&hslot2->lock);
	return res;
}

static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
{
	struct net *net = sock_net(sk);
	kuid_t uid = sock_i_uid(sk);
	struct sock *sk2;

	sk_for_each(sk2, &hslot->head) {
		if (net_eq(sock_net(sk2), net) &&
		    sk2 != sk &&
		    sk2->sk_family == sk->sk_family &&
		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
		    inet_rcv_saddr_equal(sk, sk2, false)) {
			return reuseport_add_sock(sk, sk2,
						  inet_rcv_saddr_any(sk));
		}
	}

	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
}

/**
 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 *
 *  @sk:          socket struct in question
 *  @snum:        port number to look up
 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 *                   with NULL address
 */
int udp_lib_get_port(struct sock *sk, unsigned short snum,
		     unsigned int hash2_nulladdr)
{
	struct udp_hslot *hslot, *hslot2;
	struct udp_table *udptable = sk->sk_prot->h.udp_table;
	int    error = 1;
	struct net *net = sock_net(sk);

	if (!snum) {
		int low, high, remaining;
		unsigned int rand;
		unsigned short first, last;
		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);

		inet_get_local_port_range(net, &low, &high);
		remaining = (high - low) + 1;

		rand = prandom_u32();
		first = reciprocal_scale(rand, remaining) + low;
		/*
		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
		 */
		rand = (rand | 1) * (udptable->mask + 1);
		last = first + udptable->mask + 1;
		do {
			hslot = udp_hashslot(udptable, net, first);
			bitmap_zero(bitmap, PORTS_PER_CHAIN);
			spin_lock_bh(&hslot->lock);
			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
					    udptable->log);

			snum = first;
			/*
			 * Iterate on all possible values of snum for this hash.
			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
			 * give us randomization and full range coverage.
			 */
			do {
				if (low <= snum && snum <= high &&
				    !test_bit(snum >> udptable->log, bitmap) &&
				    !inet_is_local_reserved_port(net, snum))
					goto found;
				snum += rand;
			} while (snum != first);
			spin_unlock_bh(&hslot->lock);
			cond_resched();
		} while (++first != last);
		goto fail;
	} else {
		hslot = udp_hashslot(udptable, net, snum);
		spin_lock_bh(&hslot->lock);
		if (hslot->count > 10) {
			int exist;
			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;

			slot2          &= udptable->mask;
			hash2_nulladdr &= udptable->mask;

			hslot2 = udp_hashslot2(udptable, slot2);
			if (hslot->count < hslot2->count)
				goto scan_primary_hash;

			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
			if (!exist && (hash2_nulladdr != slot2)) {
				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
				exist = udp_lib_lport_inuse2(net, snum, hslot2,
							     sk);
			}
			if (exist)
				goto fail_unlock;
			else
				goto found;
		}
scan_primary_hash:
		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
			goto fail_unlock;
	}
found:
	inet_sk(sk)->inet_num = snum;
	udp_sk(sk)->udp_port_hash = snum;
	udp_sk(sk)->udp_portaddr_hash ^= snum;
	if (sk_unhashed(sk)) {
		if (sk->sk_reuseport &&
		    udp_reuseport_add_sock(sk, hslot)) {
			inet_sk(sk)->inet_num = 0;
			udp_sk(sk)->udp_port_hash = 0;
			udp_sk(sk)->udp_portaddr_hash ^= snum;
			goto fail_unlock;
		}

		sk_add_node_rcu(sk, &hslot->head);
		hslot->count++;
		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);

		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
		spin_lock(&hslot2->lock);
		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
		    sk->sk_family == AF_INET6)
			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
					   &hslot2->head);
		else
			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
					   &hslot2->head);
		hslot2->count++;
		spin_unlock(&hslot2->lock);
	}
	sock_set_flag(sk, SOCK_RCU_FREE);
	error = 0;
fail_unlock:
	spin_unlock_bh(&hslot->lock);
fail:
	return error;
}
EXPORT_SYMBOL(udp_lib_get_port);

int udp_v4_get_port(struct sock *sk, unsigned short snum)
{
	unsigned int hash2_nulladdr =
		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
	unsigned int hash2_partial =
		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);

	/* precompute partial secondary hash */
	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
	return udp_lib_get_port(sk, snum, hash2_nulladdr);
}

static int compute_score(struct sock *sk, struct net *net,
			 __be32 saddr, __be16 sport,
			 __be32 daddr, unsigned short hnum,
			 int dif, int sdif)
{
	int score;
	struct inet_sock *inet;
	bool dev_match;

	if (!net_eq(sock_net(sk), net) ||
	    udp_sk(sk)->udp_port_hash != hnum ||
	    ipv6_only_sock(sk))
		return -1;

	if (sk->sk_rcv_saddr != daddr)
		return -1;

	score = (sk->sk_family == PF_INET) ? 2 : 1;

	inet = inet_sk(sk);
	if (inet->inet_daddr) {
		if (inet->inet_daddr != saddr)
			return -1;
		score += 4;
	}

	if (inet->inet_dport) {
		if (inet->inet_dport != sport)
			return -1;
		score += 4;
	}

	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
					dif, sdif);
	if (!dev_match)
		return -1;
	if (sk->sk_bound_dev_if)
		score += 4;

	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
		score++;
	return score;
}

static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
		       const __u16 lport, const __be32 faddr,
		       const __be16 fport)
{
	static u32 udp_ehash_secret __read_mostly;

	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));

	return __inet_ehashfn(laddr, lport, faddr, fport,
			      udp_ehash_secret + net_hash_mix(net));
}

static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
				     struct sk_buff *skb,
				     __be32 saddr, __be16 sport,
				     __be32 daddr, unsigned short hnum)
{
	struct sock *reuse_sk = NULL;
	u32 hash;

	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
		reuse_sk = reuseport_select_sock(sk, hash, skb,
						 sizeof(struct udphdr));
	}
	return reuse_sk;
}

/* called with rcu_read_lock() */
static struct sock *udp4_lib_lookup2(struct net *net,
				     __be32 saddr, __be16 sport,
				     __be32 daddr, unsigned int hnum,
				     int dif, int sdif,
				     struct udp_hslot *hslot2,
				     struct sk_buff *skb)
{
	struct sock *sk, *result;
	int score, badness;

	result = NULL;
	badness = 0;
	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
		score = compute_score(sk, net, saddr, sport,
				      daddr, hnum, dif, sdif);
		if (score > badness) {
			result = lookup_reuseport(net, sk, skb,
						  saddr, sport, daddr, hnum);
			/* Fall back to scoring if group has connections */
			if (result && !reuseport_has_conns(sk, false))
				return result;

			result = result ? : sk;
			badness = score;
		}
	}
	return result;
}

static struct sock *udp4_lookup_run_bpf(struct net *net,
					struct udp_table *udptable,
					struct sk_buff *skb,
					__be32 saddr, __be16 sport,
					__be32 daddr, u16 hnum, const int dif)
{
	struct sock *sk, *reuse_sk;
	bool no_reuseport;

	if (udptable != &udp_table)
		return NULL; /* only UDP is supported */

	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
					    daddr, hnum, dif, &sk);
	if (no_reuseport || IS_ERR_OR_NULL(sk))
		return sk;

	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
	if (reuse_sk)
		sk = reuse_sk;
	return sk;
}

/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 * harder than this. -DaveM
 */
struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
		__be16 sport, __be32 daddr, __be16 dport, int dif,
		int sdif, struct udp_table *udptable, struct sk_buff *skb)
{
	unsigned short hnum = ntohs(dport);
	unsigned int hash2, slot2;
	struct udp_hslot *hslot2;
	struct sock *result, *sk;

	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
	slot2 = hash2 & udptable->mask;
	hslot2 = &udptable->hash2[slot2];

	/* Lookup connected or non-wildcard socket */
	result = udp4_lib_lookup2(net, saddr, sport,
				  daddr, hnum, dif, sdif,
				  hslot2, skb);
	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
		goto done;

	/* Lookup redirect from BPF */
	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
		sk = udp4_lookup_run_bpf(net, udptable, skb,
					 saddr, sport, daddr, hnum, dif);
		if (sk) {
			result = sk;
			goto done;
		}
	}

	/* Got non-wildcard socket or error on first lookup */
	if (result)
		goto done;

	/* Lookup wildcard sockets */
	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
	slot2 = hash2 & udptable->mask;
	hslot2 = &udptable->hash2[slot2];

	result = udp4_lib_lookup2(net, saddr, sport,
				  htonl(INADDR_ANY), hnum, dif, sdif,
				  hslot2, skb);
done:
	if (IS_ERR(result))
		return NULL;
	return result;
}
EXPORT_SYMBOL_GPL(__udp4_lib_lookup);

static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
						 __be16 sport, __be16 dport,
						 struct udp_table *udptable)
{
	const struct iphdr *iph = ip_hdr(skb);

	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
				 iph->daddr, dport, inet_iif(skb),
				 inet_sdif(skb), udptable, skb);
}

struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
				 __be16 sport, __be16 dport)
{
	const struct iphdr *iph = ip_hdr(skb);

	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
				 iph->daddr, dport, inet_iif(skb),
				 inet_sdif(skb), &udp_table, NULL);
}

/* Must be called under rcu_read_lock().
 * Does increment socket refcount.
 */
#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
			     __be32 daddr, __be16 dport, int dif)
{
	struct sock *sk;

	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
			       dif, 0, &udp_table, NULL);
	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
		sk = NULL;
	return sk;
}
EXPORT_SYMBOL_GPL(udp4_lib_lookup);
#endif

static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
				       __be16 loc_port, __be32 loc_addr,
				       __be16 rmt_port, __be32 rmt_addr,
				       int dif, int sdif, unsigned short hnum)
{
	struct inet_sock *inet = inet_sk(sk);

	if (!net_eq(sock_net(sk), net) ||
	    udp_sk(sk)->udp_port_hash != hnum ||
	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
	    ipv6_only_sock(sk) ||
	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
		return false;
	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
		return false;
	return true;
}

DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
void udp_encap_enable(void)
{
	static_branch_inc(&udp_encap_needed_key);
}
EXPORT_SYMBOL(udp_encap_enable);

void udp_encap_disable(void)
{
	static_branch_dec(&udp_encap_needed_key);
}
EXPORT_SYMBOL(udp_encap_disable);

/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 * through error handlers in encapsulations looking for a match.
 */
static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
{
	int i;

	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
		int (*handler)(struct sk_buff *skb, u32 info);
		const struct ip_tunnel_encap_ops *encap;

		encap = rcu_dereference(iptun_encaps[i]);
		if (!encap)
			continue;
		handler = encap->err_handler;
		if (handler && !handler(skb, info))
			return 0;
	}

	return -ENOENT;
}

/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 * reversing source and destination port: this will match tunnels that force the
 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 * lwtunnels might actually break this assumption by being configured with
 * different destination ports on endpoints, in this case we won't be able to
 * trace ICMP messages back to them.
 *
 * If this doesn't match any socket, probe tunnels with arbitrary destination
 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 * we've sent packets to won't necessarily match the local destination port.
 *
 * Then ask the tunnel implementation to match the error against a valid
 * association.
 *
 * Return an error if we can't find a match, the socket if we need further
 * processing, zero otherwise.
 */
static struct sock *__udp4_lib_err_encap(struct net *net,
					 const struct iphdr *iph,
					 struct udphdr *uh,
					 struct udp_table *udptable,
					 struct sock *sk,
					 struct sk_buff *skb, u32 info)
{
	int (*lookup)(struct sock *sk, struct sk_buff *skb);
	int network_offset, transport_offset;
	struct udp_sock *up;

	network_offset = skb_network_offset(skb);
	transport_offset = skb_transport_offset(skb);

	/* Network header needs to point to the outer IPv4 header inside ICMP */
	skb_reset_network_header(skb);

	/* Transport header needs to point to the UDP header */
	skb_set_transport_header(skb, iph->ihl << 2);

	if (sk) {
		up = udp_sk(sk);

		lookup = READ_ONCE(up->encap_err_lookup);
		if (lookup && lookup(sk, skb))
			sk = NULL;

		goto out;
	}

	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
			       udptable, NULL);
	if (sk) {
		up = udp_sk(sk);

		lookup = READ_ONCE(up->encap_err_lookup);
		if (!lookup || lookup(sk, skb))
			sk = NULL;
	}

out:
	if (!sk)
		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));

	skb_set_transport_header(skb, transport_offset);
	skb_set_network_header(skb, network_offset);

	return sk;
}

/*
 * This routine is called by the ICMP module when it gets some
 * sort of error condition.  If err < 0 then the socket should
 * be closed and the error returned to the user.  If err > 0
 * it's just the icmp type << 8 | icmp code.
 * Header points to the ip header of the error packet. We move
 * on past this. Then (as it used to claim before adjustment)
 * header points to the first 8 bytes of the udp header.  We need
 * to find the appropriate port.
 */

int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
{
	struct inet_sock *inet;
	const struct iphdr *iph = (const struct iphdr *)skb->data;
	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
	const int type = icmp_hdr(skb)->type;
	const int code = icmp_hdr(skb)->code;
	bool tunnel = false;
	struct sock *sk;
	int harderr;
	int err;
	struct net *net = dev_net(skb->dev);

	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
			       iph->saddr, uh->source, skb->dev->ifindex,
			       inet_sdif(skb), udptable, NULL);

	if (!sk || udp_sk(sk)->encap_type) {
		/* No socket for error: try tunnels before discarding */
		if (static_branch_unlikely(&udp_encap_needed_key)) {
			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
						  info);
			if (!sk)
				return 0;
		} else
			sk = ERR_PTR(-ENOENT);

		if (IS_ERR(sk)) {
			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
			return PTR_ERR(sk);
		}

		tunnel = true;
	}

	err = 0;
	harderr = 0;
	inet = inet_sk(sk);

	switch (type) {
	default:
	case ICMP_TIME_EXCEEDED:
		err = EHOSTUNREACH;
		break;
	case ICMP_SOURCE_QUENCH:
		goto out;
	case ICMP_PARAMETERPROB:
		err = EPROTO;
		harderr = 1;
		break;
	case ICMP_DEST_UNREACH:
		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
			ipv4_sk_update_pmtu(skb, sk, info);
			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
				err = EMSGSIZE;
				harderr = 1;
				break;
			}
			goto out;
		}
		err = EHOSTUNREACH;
		if (code <= NR_ICMP_UNREACH) {
			harderr = icmp_err_convert[code].fatal;
			err = icmp_err_convert[code].errno;
		}
		break;
	case ICMP_REDIRECT:
		ipv4_sk_redirect(skb, sk);
		goto out;
	}

	/*
	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
	 *	4.1.3.3.
	 */
	if (tunnel) {
		/* ...not for tunnels though: we don't have a sending socket */
		goto out;
	}
	if (!inet->recverr) {
		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
			goto out;
	} else
		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));

	sk->sk_err = err;
	sk_error_report(sk);
out:
	return 0;
}

int udp_err(struct sk_buff *skb, u32 info)
{
	return __udp4_lib_err(skb, info, &udp_table);
}

/*
 * Throw away all pending data and cancel the corking. Socket is locked.
 */
void udp_flush_pending_frames(struct sock *sk)
{
	struct udp_sock *up = udp_sk(sk);

	if (up->pending) {
		up->len = 0;
		up->pending = 0;
		ip_flush_pending_frames(sk);
	}
}
EXPORT_SYMBOL(udp_flush_pending_frames);

/**
 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 * 	@skb: 	sk_buff containing the filled-in UDP header
 * 	        (checksum field must be zeroed out)
 *	@src:	source IP address
 *	@dst:	destination IP address
 */
void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
{
	struct udphdr *uh = udp_hdr(skb);
	int offset = skb_transport_offset(skb);
	int len = skb->len - offset;
	int hlen = len;
	__wsum csum = 0;

	if (!skb_has_frag_list(skb)) {
		/*
		 * Only one fragment on the socket.
		 */
		skb->csum_start = skb_transport_header(skb) - skb->head;
		skb->csum_offset = offsetof(struct udphdr, check);
		uh->check = ~csum_tcpudp_magic(src, dst, len,
					       IPPROTO_UDP, 0);
	} else {
		struct sk_buff *frags;

		/*
		 * HW-checksum won't work as there are two or more
		 * fragments on the socket so that all csums of sk_buffs
		 * should be together
		 */
		skb_walk_frags(skb, frags) {
			csum = csum_add(csum, frags->csum);
			hlen -= frags->len;
		}

		csum = skb_checksum(skb, offset, hlen, csum);
		skb->ip_summed = CHECKSUM_NONE;

		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;
	}
}
EXPORT_SYMBOL_GPL(udp4_hwcsum);

/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 * for the simple case like when setting the checksum for a UDP tunnel.
 */
void udp_set_csum(bool nocheck, struct sk_buff *skb,
		  __be32 saddr, __be32 daddr, int len)
{
	struct udphdr *uh = udp_hdr(skb);

	if (nocheck) {
		uh->check = 0;
	} else if (skb_is_gso(skb)) {
		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
		uh->check = 0;
		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;
	} else {
		skb->ip_summed = CHECKSUM_PARTIAL;
		skb->csum_start = skb_transport_header(skb) - skb->head;
		skb->csum_offset = offsetof(struct udphdr, check);
		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
	}
}
EXPORT_SYMBOL(udp_set_csum);

static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
			struct inet_cork *cork)
{
	struct sock *sk = skb->sk;
	struct inet_sock *inet = inet_sk(sk);
	struct udphdr *uh;
	int err;
	int is_udplite = IS_UDPLITE(sk);
	int offset = skb_transport_offset(skb);
	int len = skb->len - offset;
	int datalen = len - sizeof(*uh);
	__wsum csum = 0;

	/*
	 * Create a UDP header
	 */
	uh = udp_hdr(skb);
	uh->source = inet->inet_sport;
	uh->dest = fl4->fl4_dport;
	uh->len = htons(len);
	uh->check = 0;

	if (cork->gso_size) {
		const int hlen = skb_network_header_len(skb) +
				 sizeof(struct udphdr);

		if (hlen + cork->gso_size > cork->fragsize) {
			kfree_skb(skb);
			return -EINVAL;
		}
		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
			kfree_skb(skb);
			return -EINVAL;
		}
		if (sk->sk_no_check_tx) {
			kfree_skb(skb);
			return -EINVAL;
		}
		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
		    dst_xfrm(skb_dst(skb))) {
			kfree_skb(skb);
			return -EIO;
		}

		if (datalen > cork->gso_size) {
			skb_shinfo(skb)->gso_size = cork->gso_size;
			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
								 cork->gso_size);
		}
		goto csum_partial;
	}

	if (is_udplite)  				 /*     UDP-Lite      */
		csum = udplite_csum(skb);

	else if (sk->sk_no_check_tx) {			 /* UDP csum off */

		skb->ip_summed = CHECKSUM_NONE;
		goto send;

	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
csum_partial:

		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
		goto send;

	} else
		csum = udp_csum(skb);

	/* add protocol-dependent pseudo-header */
	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
				      sk->sk_protocol, csum);
	if (uh->check == 0)
		uh->check = CSUM_MANGLED_0;

send:
	err = ip_send_skb(sock_net(sk), skb);
	if (err) {
		if (err == -ENOBUFS && !inet->recverr) {
			UDP_INC_STATS(sock_net(sk),
				      UDP_MIB_SNDBUFERRORS, is_udplite);
			err = 0;
		}
	} else
		UDP_INC_STATS(sock_net(sk),
			      UDP_MIB_OUTDATAGRAMS, is_udplite);
	return err;
}

/*
 * Push out all pending data as one UDP datagram. Socket is locked.
 */
int udp_push_pending_frames(struct sock *sk)
{
	struct udp_sock  *up = udp_sk(sk);
	struct inet_sock *inet = inet_sk(sk);
	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
	struct sk_buff *skb;
	int err = 0;

	skb = ip_finish_skb(sk, fl4);
	if (!skb)
		goto out;

	err = udp_send_skb(skb, fl4, &inet->cork.base);

out:
	up->len = 0;
	up->pending = 0;
	return err;
}
EXPORT_SYMBOL(udp_push_pending_frames);

static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
{
	switch (cmsg->cmsg_type) {
	case UDP_SEGMENT:
		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
			return -EINVAL;
		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
		return 0;
	default:
		return -EINVAL;
	}
}

int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
{
	struct cmsghdr *cmsg;
	bool need_ip = false;
	int err;

	for_each_cmsghdr(cmsg, msg) {
		if (!CMSG_OK(msg, cmsg))
			return -EINVAL;

		if (cmsg->cmsg_level != SOL_UDP) {
			need_ip = true;
			continue;
		}

		err = __udp_cmsg_send(cmsg, gso_size);
		if (err)
			return err;
	}

	return need_ip;
}
EXPORT_SYMBOL_GPL(udp_cmsg_send);

int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
{
	struct inet_sock *inet = inet_sk(sk);
	struct udp_sock *up = udp_sk(sk);
	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
	struct flowi4 fl4_stack;
	struct flowi4 *fl4;
	int ulen = len;
	struct ipcm_cookie ipc;
	struct rtable *rt = NULL;
	int free = 0;
	int connected = 0;
	__be32 daddr, faddr, saddr;
	__be16 dport;
	u8  tos;
	int err, is_udplite = IS_UDPLITE(sk);
	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
	struct sk_buff *skb;
	struct ip_options_data opt_copy;

	if (len > 0xFFFF)
		return -EMSGSIZE;

	/*
	 *	Check the flags.
	 */

	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
		return -EOPNOTSUPP;

	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;

	fl4 = &inet->cork.fl.u.ip4;
	if (up->pending) {
		/*
		 * There are pending frames.
		 * The socket lock must be held while it's corked.
		 */
		lock_sock(sk);
		if (likely(up->pending)) {
			if (unlikely(up->pending != AF_INET)) {
				release_sock(sk);
				return -EINVAL;
			}
			goto do_append_data;
		}
		release_sock(sk);
	}
	ulen += sizeof(struct udphdr);

	/*
	 *	Get and verify the address.
	 */
	if (usin) {
		if (msg->msg_namelen < sizeof(*usin))
			return -EINVAL;
		if (usin->sin_family != AF_INET) {
			if (usin->sin_family != AF_UNSPEC)
				return -EAFNOSUPPORT;
		}

		daddr = usin->sin_addr.s_addr;
		dport = usin->sin_port;
		if (dport == 0)
			return -EINVAL;
	} else {
		if (sk->sk_state != TCP_ESTABLISHED)
			return -EDESTADDRREQ;
		daddr = inet->inet_daddr;
		dport = inet->inet_dport;
		/* Open fast path for connected socket.
		   Route will not be used, if at least one option is set.
		 */
		connected = 1;
	}

	ipcm_init_sk(&ipc, inet);
	ipc.gso_size = READ_ONCE(up->gso_size);

	if (msg->msg_controllen) {
		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
		if (err > 0)
			err = ip_cmsg_send(sk, msg, &ipc,
					   sk->sk_family == AF_INET6);
		if (unlikely(err < 0)) {
			kfree(ipc.opt);
			return err;
		}
		if (ipc.opt)
			free = 1;
		connected = 0;
	}
	if (!ipc.opt) {
		struct ip_options_rcu *inet_opt;

		rcu_read_lock();
		inet_opt = rcu_dereference(inet->inet_opt);
		if (inet_opt) {
			memcpy(&opt_copy, inet_opt,
			       sizeof(*inet_opt) + inet_opt->opt.optlen);
			ipc.opt = &opt_copy.opt;
		}
		rcu_read_unlock();
	}

	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
					    (struct sockaddr *)usin, &ipc.addr);
		if (err)
			goto out_free;
		if (usin) {
			if (usin->sin_port == 0) {
				/* BPF program set invalid port. Reject it. */
				err = -EINVAL;
				goto out_free;
			}
			daddr = usin->sin_addr.s_addr;
			dport = usin->sin_port;
		}
	}

	saddr = ipc.addr;
	ipc.addr = faddr = daddr;

	if (ipc.opt && ipc.opt->opt.srr) {
		if (!daddr) {
			err = -EINVAL;
			goto out_free;
		}
		faddr = ipc.opt->opt.faddr;
		connected = 0;
	}
	tos = get_rttos(&ipc, inet);
	if (sock_flag(sk, SOCK_LOCALROUTE) ||
	    (msg->msg_flags & MSG_DONTROUTE) ||
	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
		tos |= RTO_ONLINK;
		connected = 0;
	}

	if (ipv4_is_multicast(daddr)) {
		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
			ipc.oif = inet->mc_index;
		if (!saddr)
			saddr = inet->mc_addr;
		connected = 0;
	} else if (!ipc.oif) {
		ipc.oif = inet->uc_index;
	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
		/* oif is set, packet is to local broadcast and
		 * uc_index is set. oif is most likely set
		 * by sk_bound_dev_if. If uc_index != oif check if the
		 * oif is an L3 master and uc_index is an L3 slave.
		 * If so, we want to allow the send using the uc_index.
		 */
		if (ipc.oif != inet->uc_index &&
		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
							      inet->uc_index)) {
			ipc.oif = inet->uc_index;
		}
	}

	if (connected)
		rt = (struct rtable *)sk_dst_check(sk, 0);

	if (!rt) {
		struct net *net = sock_net(sk);
		__u8 flow_flags = inet_sk_flowi_flags(sk);

		fl4 = &fl4_stack;

		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
				   flow_flags,
				   faddr, saddr, dport, inet->inet_sport,
				   sk->sk_uid);

		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
		rt = ip_route_output_flow(net, fl4, sk);
		if (IS_ERR(rt)) {
			err = PTR_ERR(rt);
			rt = NULL;
			if (err == -ENETUNREACH)
				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
			goto out;
		}

		err = -EACCES;
		if ((rt->rt_flags & RTCF_BROADCAST) &&
		    !sock_flag(sk, SOCK_BROADCAST))
			goto out;
		if (connected)
			sk_dst_set(sk, dst_clone(&rt->dst));
	}

	if (msg->msg_flags&MSG_CONFIRM)
		goto do_confirm;
back_from_confirm:

	saddr = fl4->saddr;
	if (!ipc.addr)
		daddr = ipc.addr = fl4->daddr;

	/* Lockless fast path for the non-corking case. */
	if (!corkreq) {
		struct inet_cork cork;

		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
				  sizeof(struct udphdr), &ipc, &rt,
				  &cork, msg->msg_flags);
		err = PTR_ERR(skb);
		if (!IS_ERR_OR_NULL(skb))
			err = udp_send_skb(skb, fl4, &cork);
		goto out;
	}

	lock_sock(sk);
	if (unlikely(up->pending)) {
		/* The socket is already corked while preparing it. */
		/* ... which is an evident application bug. --ANK */
		release_sock(sk);

		net_dbg_ratelimited("socket already corked\n");
		err = -EINVAL;
		goto out;
	}
	/*
	 *	Now cork the socket to pend data.
	 */
	fl4 = &inet->cork.fl.u.ip4;
	fl4->daddr = daddr;
	fl4->saddr = saddr;
	fl4->fl4_dport = dport;
	fl4->fl4_sport = inet->inet_sport;
	up->pending = AF_INET;

do_append_data:
	up->len += ulen;
	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
			     sizeof(struct udphdr), &ipc, &rt,
			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
	if (err)
		udp_flush_pending_frames(sk);
	else if (!corkreq)
		err = udp_push_pending_frames(sk);
	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
		up->pending = 0;
	release_sock(sk);

out:
	ip_rt_put(rt);
out_free:
	if (free)
		kfree(ipc.opt);
	if (!err)
		return len;
	/*
	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
	 * we don't have a good statistic (IpOutDiscards but it can be too many
	 * things).  We could add another new stat but at least for now that
	 * seems like overkill.
	 */
	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
		UDP_INC_STATS(sock_net(sk),
			      UDP_MIB_SNDBUFERRORS, is_udplite);
	}
	return err;

do_confirm:
	if (msg->msg_flags & MSG_PROBE)
		dst_confirm_neigh(&rt->dst, &fl4->daddr);
	if (!(msg->msg_flags&MSG_PROBE) || len)
		goto back_from_confirm;
	err = 0;
	goto out;
}
EXPORT_SYMBOL(udp_sendmsg);

int udp_sendpage(struct sock *sk, struct page *page, int offset,
		 size_t size, int flags)
{
	struct inet_sock *inet = inet_sk(sk);
	struct udp_sock *up = udp_sk(sk);
	int ret;

	if (flags & MSG_SENDPAGE_NOTLAST)
		flags |= MSG_MORE;

	if (!up->pending) {
		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };

		/* Call udp_sendmsg to specify destination address which
		 * sendpage interface can't pass.
		 * This will succeed only when the socket is connected.
		 */
		ret = udp_sendmsg(sk, &msg, 0);
		if (ret < 0)
			return ret;
	}

	lock_sock(sk);

	if (unlikely(!up->pending)) {
		release_sock(sk);

		net_dbg_ratelimited("cork failed\n");
		return -EINVAL;
	}

	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
			     page, offset, size, flags);
	if (ret == -EOPNOTSUPP) {
		release_sock(sk);
		return sock_no_sendpage(sk->sk_socket, page, offset,
					size, flags);
	}
	if (ret < 0) {
		udp_flush_pending_frames(sk);
		goto out;
	}

	up->len += size;
	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
		ret = udp_push_pending_frames(sk);
	if (!ret)
		ret = size;
out:
	release_sock(sk);
	return ret;
}

#define UDP_SKB_IS_STATELESS 0x80000000

/* all head states (dst, sk, nf conntrack) except skb extensions are
 * cleared by udp_rcv().
 *
 * We need to preserve secpath, if present, to eventually process
 * IP_CMSG_PASSSEC at recvmsg() time.
 *
 * Other extensions can be cleared.
 */
static bool udp_try_make_stateless(struct sk_buff *skb)
{
	if (!skb_has_extensions(skb))
		return true;

	if (!secpath_exists(skb)) {
		skb_ext_reset(skb);
		return true;
	}

	return false;
}

static void udp_set_dev_scratch(struct sk_buff *skb)
{
	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);

	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
	scratch->_tsize_state = skb->truesize;
#if BITS_PER_LONG == 64
	scratch->len = skb->len;
	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
	scratch->is_linear = !skb_is_nonlinear(skb);
#endif
	if (udp_try_make_stateless(skb))
		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
}

static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
{
	/* We come here after udp_lib_checksum_complete() returned 0.
	 * This means that __skb_checksum_complete() might have
	 * set skb->csum_valid to 1.
	 * On 64bit platforms, we can set csum_unnecessary
	 * to true, but only if the skb is not shared.
	 */
#if BITS_PER_LONG == 64
	if (!skb_shared(skb))
		udp_skb_scratch(skb)->csum_unnecessary = true;
#endif
}

static int udp_skb_truesize(struct sk_buff *skb)
{
	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
}

static bool udp_skb_has_head_state(struct sk_buff *skb)
{
	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
}

/* fully reclaim rmem/fwd memory allocated for skb */
static void udp_rmem_release(struct sock *sk, int size, int partial,
			     bool rx_queue_lock_held)
{
	struct udp_sock *up = udp_sk(sk);
	struct sk_buff_head *sk_queue;
	int amt;

	if (likely(partial)) {
		up->forward_deficit += size;
		size = up->forward_deficit;
		if (size < (sk->sk_rcvbuf >> 2) &&
		    !skb_queue_empty(&up->reader_queue))
			return;
	} else {
		size += up->forward_deficit;
	}
	up->forward_deficit = 0;

	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
	 * if the called don't held it already
	 */
	sk_queue = &sk->sk_receive_queue;
	if (!rx_queue_lock_held)
		spin_lock(&sk_queue->lock);


	sk->sk_forward_alloc += size;
	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
	sk->sk_forward_alloc -= amt;

	if (amt)
		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);

	atomic_sub(size, &sk->sk_rmem_alloc);

	/* this can save us from acquiring the rx queue lock on next receive */
	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);

	if (!rx_queue_lock_held)
		spin_unlock(&sk_queue->lock);
}

/* Note: called with reader_queue.lock held.
 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
 * This avoids a cache line miss while receive_queue lock is held.
 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
 */
void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
{
	prefetch(&skb->data);
	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
}
EXPORT_SYMBOL(udp_skb_destructor);

/* as above, but the caller held the rx queue lock, too */
static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
{
	prefetch(&skb->data);
	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
}

/* Idea of busylocks is to let producers grab an extra spinlock
 * to relieve pressure on the receive_queue spinlock shared by consumer.
 * Under flood, this means that only one producer can be in line
 * trying to acquire the receive_queue spinlock.
 * These busylock can be allocated on a per cpu manner, instead of a
 * per socket one (that would consume a cache line per socket)
 */
static int udp_busylocks_log __read_mostly;
static spinlock_t *udp_busylocks __read_mostly;

static spinlock_t *busylock_acquire(void *ptr)
{
	spinlock_t *busy;

	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
	spin_lock(busy);
	return busy;
}

static void busylock_release(spinlock_t *busy)
{
	if (busy)
		spin_unlock(busy);
}

int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
{
	struct sk_buff_head *list = &sk->sk_receive_queue;
	int rmem, delta, amt, err = -ENOMEM;
	spinlock_t *busy = NULL;
	int size;

	/* try to avoid the costly atomic add/sub pair when the receive
	 * queue is full; always allow at least a packet
	 */
	rmem = atomic_read(&sk->sk_rmem_alloc);
	if (rmem > sk->sk_rcvbuf)
		goto drop;

	/* Under mem pressure, it might be helpful to help udp_recvmsg()
	 * having linear skbs :
	 * - Reduce memory overhead and thus increase receive queue capacity
	 * - Less cache line misses at copyout() time
	 * - Less work at consume_skb() (less alien page frag freeing)
	 */
	if (rmem > (sk->sk_rcvbuf >> 1)) {
		skb_condense(skb);

		busy = busylock_acquire(sk);
	}
	size = skb->truesize;
	udp_set_dev_scratch(skb);

	/* we drop only if the receive buf is full and the receive
	 * queue contains some other skb
	 */
	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
		goto uncharge_drop;

	spin_lock(&list->lock);
	if (size >= sk->sk_forward_alloc) {
		amt = sk_mem_pages(size);
		delta = amt << SK_MEM_QUANTUM_SHIFT;
		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
			err = -ENOBUFS;
			spin_unlock(&list->lock);
			goto uncharge_drop;
		}

		sk->sk_forward_alloc += delta;
	}

	sk->sk_forward_alloc -= size;

	/* no need to setup a destructor, we will explicitly release the
	 * forward allocated memory on dequeue
	 */
	sock_skb_set_dropcount(sk, skb);

	__skb_queue_tail(list, skb);
	spin_unlock(&list->lock);

	if (!sock_flag(sk, SOCK_DEAD))
		sk->sk_data_ready(sk);

	busylock_release(busy);
	return 0;

uncharge_drop:
	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);

drop:
	atomic_inc(&sk->sk_drops);
	busylock_release(busy);
	return err;
}
EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);

void udp_destruct_sock(struct sock *sk)
{
	/* reclaim completely the forward allocated memory */
	struct udp_sock *up = udp_sk(sk);
	unsigned int total = 0;
	struct sk_buff *skb;

	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
		total += skb->truesize;
		kfree_skb(skb);
	}
	udp_rmem_release(sk, total, 0, true);

	inet_sock_destruct(sk);
}
EXPORT_SYMBOL_GPL(udp_destruct_sock);

int udp_init_sock(struct sock *sk)
{
	skb_queue_head_init(&udp_sk(sk)->reader_queue);
	sk->sk_destruct = udp_destruct_sock;
	return 0;
}
EXPORT_SYMBOL_GPL(udp_init_sock);

void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
{
	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
		bool slow = lock_sock_fast(sk);

		sk_peek_offset_bwd(sk, len);
		unlock_sock_fast(sk, slow);
	}

	if (!skb_unref(skb))
		return;

	/* In the more common cases we cleared the head states previously,
	 * see __udp_queue_rcv_skb().
	 */
	if (unlikely(udp_skb_has_head_state(skb)))
		skb_release_head_state(skb);
	__consume_stateless_skb(skb);
}
EXPORT_SYMBOL_GPL(skb_consume_udp);

static struct sk_buff *__first_packet_length(struct sock *sk,
					     struct sk_buff_head *rcvq,
					     int *total)
{
	struct sk_buff *skb;

	while ((skb = skb_peek(rcvq)) != NULL) {
		if (udp_lib_checksum_complete(skb)) {
			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
					IS_UDPLITE(sk));
			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
					IS_UDPLITE(sk));
			atomic_inc(&sk->sk_drops);
			__skb_unlink(skb, rcvq);
			*total += skb->truesize;
			kfree_skb(skb);
		} else {
			udp_skb_csum_unnecessary_set(skb);
			break;
		}
	}
	return skb;
}

/**
 *	first_packet_length	- return length of first packet in receive queue
 *	@sk: socket
 *
 *	Drops all bad checksum frames, until a valid one is found.
 *	Returns the length of found skb, or -1 if none is found.
 */
static int first_packet_length(struct sock *sk)
{
	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
	struct sk_buff *skb;
	int total = 0;
	int res;

	spin_lock_bh(&rcvq->lock);
	skb = __first_packet_length(sk, rcvq, &total);
	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
		spin_lock(&sk_queue->lock);
		skb_queue_splice_tail_init(sk_queue, rcvq);
		spin_unlock(&sk_queue->lock);

		skb = __first_packet_length(sk, rcvq, &total);
	}
	res = skb ? skb->len : -1;
	if (total)
		udp_rmem_release(sk, total, 1, false);
	spin_unlock_bh(&rcvq->lock);
	return res;
}

/*
 *	IOCTL requests applicable to the UDP protocol
 */

int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
	switch (cmd) {
	case SIOCOUTQ:
	{
		int amount = sk_wmem_alloc_get(sk);

		return put_user(amount, (int __user *)arg);
	}

	case SIOCINQ:
	{
		int amount = max_t(int, 0, first_packet_length(sk));

		return put_user(amount, (int __user *)arg);
	}

	default:
		return -ENOIOCTLCMD;
	}

	return 0;
}
EXPORT_SYMBOL(udp_ioctl);

struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
			       int *off, int *err)
{
	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
	struct sk_buff_head *queue;
	struct sk_buff *last;
	long timeo;
	int error;

	queue = &udp_sk(sk)->reader_queue;
	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
	do {
		struct sk_buff *skb;

		error = sock_error(sk);
		if (error)
			break;

		error = -EAGAIN;
		do {
			spin_lock_bh(&queue->lock);
			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
							err, &last);
			if (skb) {
				if (!(flags & MSG_PEEK))
					udp_skb_destructor(sk, skb);
				spin_unlock_bh(&queue->lock);
				return skb;
			}

			if (skb_queue_empty_lockless(sk_queue)) {
				spin_unlock_bh(&queue->lock);
				goto busy_check;
			}

			/* refill the reader queue and walk it again
			 * keep both queues locked to avoid re-acquiring
			 * the sk_receive_queue lock if fwd memory scheduling
			 * is needed.
			 */
			spin_lock(&sk_queue->lock);
			skb_queue_splice_tail_init(sk_queue, queue);

			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
							err, &last);
			if (skb && !(flags & MSG_PEEK))
				udp_skb_dtor_locked(sk, skb);
			spin_unlock(&sk_queue->lock);
			spin_unlock_bh(&queue->lock);
			if (skb)
				return skb;

busy_check:
			if (!sk_can_busy_loop(sk))
				break;

			sk_busy_loop(sk, flags & MSG_DONTWAIT);
		} while (!skb_queue_empty_lockless(sk_queue));

		/* sk_queue is empty, reader_queue may contain peeked packets */
	} while (timeo &&
		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
					      &error, &timeo,
					      (struct sk_buff *)sk_queue));

	*err = error;
	return NULL;
}
EXPORT_SYMBOL(__skb_recv_udp);

int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
		  sk_read_actor_t recv_actor)
{
	int copied = 0;

	while (1) {
		struct sk_buff *skb;
		int err, used;

		skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
		if (!skb)
			return err;

		if (udp_lib_checksum_complete(skb)) {
			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
					IS_UDPLITE(sk));
			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
					IS_UDPLITE(sk));
			atomic_inc(&sk->sk_drops);
			kfree_skb(skb);
			continue;
		}

		used = recv_actor(desc, skb, 0, skb->len);
		if (used <= 0) {
			if (!copied)
				copied = used;
			kfree_skb(skb);
			break;
		} else if (used <= skb->len) {
			copied += used;
		}

		kfree_skb(skb);
		if (!desc->count)
			break;
	}

	return copied;
}
EXPORT_SYMBOL(udp_read_sock);

/*
 * 	This should be easy, if there is something there we
 * 	return it, otherwise we block.
 */

int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
		int *addr_len)
{
	struct inet_sock *inet = inet_sk(sk);
	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
	struct sk_buff *skb;
	unsigned int ulen, copied;
	int off, err, peeking = flags & MSG_PEEK;
	int is_udplite = IS_UDPLITE(sk);
	bool checksum_valid = false;

	if (flags & MSG_ERRQUEUE)
		return ip_recv_error(sk, msg, len, addr_len);

try_again:
	off = sk_peek_offset(sk, flags);
	skb = __skb_recv_udp(sk, flags, &off, &err);
	if (!skb)
		return err;

	ulen = udp_skb_len(skb);
	copied = len;
	if (copied > ulen - off)
		copied = ulen - off;
	else if (copied < ulen)
		msg->msg_flags |= MSG_TRUNC;

	/*
	 * If checksum is needed at all, try to do it while copying the
	 * data.  If the data is truncated, or if we only want a partial
	 * coverage checksum (UDP-Lite), do it before the copy.
	 */

	if (copied < ulen || peeking ||
	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
		checksum_valid = udp_skb_csum_unnecessary(skb) ||
				!__udp_lib_checksum_complete(skb);
		if (!checksum_valid)
			goto csum_copy_err;
	}

	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
		if (udp_skb_is_linear(skb))
			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
		else
			err = skb_copy_datagram_msg(skb, off, msg, copied);
	} else {
		err = skb_copy_and_csum_datagram_msg(skb, off, msg);

		if (err == -EINVAL)
			goto csum_copy_err;
	}

	if (unlikely(err)) {
		if (!peeking) {
			atomic_inc(&sk->sk_drops);
			UDP_INC_STATS(sock_net(sk),
				      UDP_MIB_INERRORS, is_udplite);
		}
		kfree_skb(skb);
		return err;
	}

	if (!peeking)
		UDP_INC_STATS(sock_net(sk),
			      UDP_MIB_INDATAGRAMS, is_udplite);

	sock_recv_cmsgs(msg, sk, skb);

	/* Copy the address. */
	if (sin) {
		sin->sin_family = AF_INET;
		sin->sin_port = udp_hdr(skb)->source;
		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
		*addr_len = sizeof(*sin);

		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
						      (struct sockaddr *)sin);
	}

	if (udp_sk(sk)->gro_enabled)
		udp_cmsg_recv(msg, sk, skb);

	if (inet->cmsg_flags)
		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);

	err = copied;
	if (flags & MSG_TRUNC)
		err = ulen;

	skb_consume_udp(sk, skb, peeking ? -err : err);
	return err;

csum_copy_err:
	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
				 udp_skb_destructor)) {
		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
	}
	kfree_skb(skb);

	/* starting over for a new packet, but check if we need to yield */
	cond_resched();
	msg->msg_flags &= ~MSG_TRUNC;
	goto try_again;
}

int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
{
	/* This check is replicated from __ip4_datagram_connect() and
	 * intended to prevent BPF program called below from accessing bytes
	 * that are out of the bound specified by user in addr_len.
	 */
	if (addr_len < sizeof(struct sockaddr_in))
		return -EINVAL;

	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
}
EXPORT_SYMBOL(udp_pre_connect);

int __udp_disconnect(struct sock *sk, int flags)
{
	struct inet_sock *inet = inet_sk(sk);
	/*
	 *	1003.1g - break association.
	 */

	sk->sk_state = TCP_CLOSE;
	inet->inet_daddr = 0;
	inet->inet_dport = 0;
	sock_rps_reset_rxhash(sk);
	sk->sk_bound_dev_if = 0;
	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
		inet_reset_saddr(sk);
		if (sk->sk_prot->rehash &&
		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
			sk->sk_prot->rehash(sk);
	}

	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
		sk->sk_prot->unhash(sk);
		inet->inet_sport = 0;
	}
	sk_dst_reset(sk);
	return 0;
}
EXPORT_SYMBOL(__udp_disconnect);

int udp_disconnect(struct sock *sk, int flags)
{
	lock_sock(sk);
	__udp_disconnect(sk, flags);
	release_sock(sk);
	return 0;
}
EXPORT_SYMBOL(udp_disconnect);

void udp_lib_unhash(struct sock *sk)
{
	if (sk_hashed(sk)) {
		struct udp_table *udptable = sk->sk_prot->h.udp_table;
		struct udp_hslot *hslot, *hslot2;

		hslot  = udp_hashslot(udptable, sock_net(sk),
				      udp_sk(sk)->udp_port_hash);
		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);

		spin_lock_bh(&hslot->lock);
		if (rcu_access_pointer(sk->sk_reuseport_cb))
			reuseport_detach_sock(sk);
		if (sk_del_node_init_rcu(sk)) {
			hslot->count--;
			inet_sk(sk)->inet_num = 0;
			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);

			spin_lock(&hslot2->lock);
			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
			hslot2->count--;
			spin_unlock(&hslot2->lock);
		}
		spin_unlock_bh(&hslot->lock);
	}
}
EXPORT_SYMBOL(udp_lib_unhash);

/*
 * inet_rcv_saddr was changed, we must rehash secondary hash
 */
void udp_lib_rehash(struct sock *sk, u16 newhash)
{
	if (sk_hashed(sk)) {
		struct udp_table *udptable = sk->sk_prot->h.udp_table;
		struct udp_hslot *hslot, *hslot2, *nhslot2;

		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
		nhslot2 = udp_hashslot2(udptable, newhash);
		udp_sk(sk)->udp_portaddr_hash = newhash;

		if (hslot2 != nhslot2 ||
		    rcu_access_pointer(sk->sk_reuseport_cb)) {
			hslot = udp_hashslot(udptable, sock_net(sk),
					     udp_sk(sk)->udp_port_hash);
			/* we must lock primary chain too */
			spin_lock_bh(&hslot->lock);
			if (rcu_access_pointer(sk->sk_reuseport_cb))
				reuseport_detach_sock(sk);

			if (hslot2 != nhslot2) {
				spin_lock(&hslot2->lock);
				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
				hslot2->count--;
				spin_unlock(&hslot2->lock);

				spin_lock(&nhslot2->lock);
				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
							 &nhslot2->head);
				nhslot2->count++;
				spin_unlock(&nhslot2->lock);
			}

			spin_unlock_bh(&hslot->lock);
		}
	}
}
EXPORT_SYMBOL(udp_lib_rehash);

void udp_v4_rehash(struct sock *sk)
{
	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
					  inet_sk(sk)->inet_rcv_saddr,
					  inet_sk(sk)->inet_num);
	udp_lib_rehash(sk, new_hash);
}

static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
	int rc;

	if (inet_sk(sk)->inet_daddr) {
		sock_rps_save_rxhash(sk, skb);
		sk_mark_napi_id(sk, skb);
		sk_incoming_cpu_update(sk);
	} else {
		sk_mark_napi_id_once(sk, skb);
	}

	rc = __udp_enqueue_schedule_skb(sk, skb);
	if (rc < 0) {
		int is_udplite = IS_UDPLITE(sk);
		int drop_reason;

		/* Note that an ENOMEM error is charged twice */
		if (rc == -ENOMEM) {
			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
					is_udplite);
			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
		} else {
			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
				      is_udplite);
			drop_reason = SKB_DROP_REASON_PROTO_MEM;
		}
		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
		kfree_skb_reason(skb, drop_reason);
		trace_udp_fail_queue_rcv_skb(rc, sk);
		return -1;
	}

	return 0;
}

/* returns:
 *  -1: error
 *   0: success
 *  >0: "udp encap" protocol resubmission
 *
 * Note that in the success and error cases, the skb is assumed to
 * have either been requeued or freed.
 */
static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
{
	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
	struct udp_sock *up = udp_sk(sk);
	int is_udplite = IS_UDPLITE(sk);

	/*
	 *	Charge it to the socket, dropping if the queue is full.
	 */
	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
		goto drop;
	}
	nf_reset_ct(skb);

	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);

		/*
		 * This is an encapsulation socket so pass the skb to
		 * the socket's udp_encap_rcv() hook. Otherwise, just
		 * fall through and pass this up the UDP socket.
		 * up->encap_rcv() returns the following value:
		 * =0 if skb was successfully passed to the encap
		 *    handler or was discarded by it.
		 * >0 if skb should be passed on to UDP.
		 * <0 if skb should be resubmitted as proto -N
		 */

		/* if we're overly short, let UDP handle it */
		encap_rcv = READ_ONCE(up->encap_rcv);
		if (encap_rcv) {
			int ret;

			/* Verify checksum before giving to encap */
			if (udp_lib_checksum_complete(skb))
				goto csum_error;

			ret = encap_rcv(sk, skb);
			if (ret <= 0) {
				__UDP_INC_STATS(sock_net(sk),
						UDP_MIB_INDATAGRAMS,
						is_udplite);
				return -ret;
			}
		}

		/* FALLTHROUGH -- it's a UDP Packet */
	}

	/*
	 * 	UDP-Lite specific tests, ignored on UDP sockets
	 */
	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {

		/*
		 * MIB statistics other than incrementing the error count are
		 * disabled for the following two types of errors: these depend
		 * on the application settings, not on the functioning of the
		 * protocol stack as such.
		 *
		 * RFC 3828 here recommends (sec 3.3): "There should also be a
		 * way ... to ... at least let the receiving application block
		 * delivery of packets with coverage values less than a value
		 * provided by the application."
		 */
		if (up->pcrlen == 0) {          /* full coverage was set  */
			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
					    UDP_SKB_CB(skb)->cscov, skb->len);
			goto drop;
		}
		/* The next case involves violating the min. coverage requested
		 * by the receiver. This is subtle: if receiver wants x and x is
		 * greater than the buffersize/MTU then receiver will complain
		 * that it wants x while sender emits packets of smaller size y.
		 * Therefore the above ...()->partial_cov statement is essential.
		 */
		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
			goto drop;
		}
	}

	prefetch(&sk->sk_rmem_alloc);
	if (rcu_access_pointer(sk->sk_filter) &&
	    udp_lib_checksum_complete(skb))
			goto csum_error;

	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
		goto drop;
	}

	udp_csum_pull_header(skb);

	ipv4_pktinfo_prepare(sk, skb);
	return __udp_queue_rcv_skb(sk, skb);

csum_error:
	drop_reason = SKB_DROP_REASON_UDP_CSUM;
	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
drop:
	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
	atomic_inc(&sk->sk_drops);
	kfree_skb_reason(skb, drop_reason);
	return -1;
}

static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
	struct sk_buff *next, *segs;
	int ret;

	if (likely(!udp_unexpected_gso(sk, skb)))
		return udp_queue_rcv_one_skb(sk, skb);

	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
	__skb_push(skb, -skb_mac_offset(skb));
	segs = udp_rcv_segment(sk, skb, true);
	skb_list_walk_safe(segs, skb, next) {
		__skb_pull(skb, skb_transport_offset(skb));

		udp_post_segment_fix_csum(skb);
		ret = udp_queue_rcv_one_skb(sk, skb);
		if (ret > 0)
			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
	}
	return 0;
}

/* For TCP sockets, sk_rx_dst is protected by socket lock
 * For UDP, we use xchg() to guard against concurrent changes.
 */
bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
{
	struct dst_entry *old;

	if (dst_hold_safe(dst)) {
		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
		dst_release(old);
		return old != dst;
	}
	return false;
}
EXPORT_SYMBOL(udp_sk_rx_dst_set);

/*
 *	Multicasts and broadcasts go to each listener.
 *
 *	Note: called only from the BH handler context.
 */
static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
				    struct udphdr  *uh,
				    __be32 saddr, __be32 daddr,
				    struct udp_table *udptable,
				    int proto)
{
	struct sock *sk, *first = NULL;
	unsigned short hnum = ntohs(uh->dest);
	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
	unsigned int offset = offsetof(typeof(*sk), sk_node);
	int dif = skb->dev->ifindex;
	int sdif = inet_sdif(skb);
	struct hlist_node *node;
	struct sk_buff *nskb;

	if (use_hash2) {
		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
			    udptable->mask;
		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
start_lookup:
		hslot = &udptable->hash2[hash2];
		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
	}

	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
					 uh->source, saddr, dif, sdif, hnum))
			continue;

		if (!first) {
			first = sk;
			continue;
		}
		nskb = skb_clone(skb, GFP_ATOMIC);

		if (unlikely(!nskb)) {
			atomic_inc(&sk->sk_drops);
			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
					IS_UDPLITE(sk));
			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
					IS_UDPLITE(sk));
			continue;
		}
		if (udp_queue_rcv_skb(sk, nskb) > 0)
			consume_skb(nskb);
	}

	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
	if (use_hash2 && hash2 != hash2_any) {
		hash2 = hash2_any;
		goto start_lookup;
	}

	if (first) {
		if (udp_queue_rcv_skb(first, skb) > 0)
			consume_skb(skb);
	} else {
		kfree_skb(skb);
		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
				proto == IPPROTO_UDPLITE);
	}
	return 0;
}

/* Initialize UDP checksum. If exited with zero value (success),
 * CHECKSUM_UNNECESSARY means, that no more checks are required.
 * Otherwise, csum completion requires checksumming packet body,
 * including udp header and folding it to skb->csum.
 */
static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
				 int proto)
{
	int err;

	UDP_SKB_CB(skb)->partial_cov = 0;
	UDP_SKB_CB(skb)->cscov = skb->len;

	if (proto == IPPROTO_UDPLITE) {
		err = udplite_checksum_init(skb, uh);
		if (err)
			return err;

		if (UDP_SKB_CB(skb)->partial_cov) {
			skb->csum = inet_compute_pseudo(skb, proto);
			return 0;
		}
	}

	/* Note, we are only interested in != 0 or == 0, thus the
	 * force to int.
	 */
	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
							inet_compute_pseudo);
	if (err)
		return err;

	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
		/* If SW calculated the value, we know it's bad */
		if (skb->csum_complete_sw)
			return 1;

		/* HW says the value is bad. Let's validate that.
		 * skb->csum is no longer the full packet checksum,
		 * so don't treat it as such.
		 */
		skb_checksum_complete_unset(skb);
	}

	return 0;
}

/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
 * return code conversion for ip layer consumption
 */
static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
			       struct udphdr *uh)
{
	int ret;

	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);

	ret = udp_queue_rcv_skb(sk, skb);

	/* a return value > 0 means to resubmit the input, but
	 * it wants the return to be -protocol, or 0
	 */
	if (ret > 0)
		return -ret;
	return 0;
}

/*
 *	All we need to do is get the socket, and then do a checksum.
 */

int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
		   int proto)
{
	struct sock *sk;
	struct udphdr *uh;
	unsigned short ulen;
	struct rtable *rt = skb_rtable(skb);
	__be32 saddr, daddr;
	struct net *net = dev_net(skb->dev);
	bool refcounted;
	int drop_reason;

	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;

	/*
	 *  Validate the packet.
	 */
	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
		goto drop;		/* No space for header. */

	uh   = udp_hdr(skb);
	ulen = ntohs(uh->len);
	saddr = ip_hdr(skb)->saddr;
	daddr = ip_hdr(skb)->daddr;

	if (ulen > skb->len)
		goto short_packet;

	if (proto == IPPROTO_UDP) {
		/* UDP validates ulen. */
		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
			goto short_packet;
		uh = udp_hdr(skb);
	}

	if (udp4_csum_init(skb, uh, proto))
		goto csum_error;

	sk = skb_steal_sock(skb, &refcounted);
	if (sk) {
		struct dst_entry *dst = skb_dst(skb);
		int ret;

		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
			udp_sk_rx_dst_set(sk, dst);

		ret = udp_unicast_rcv_skb(sk, skb, uh);
		if (refcounted)
			sock_put(sk);
		return ret;
	}

	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
		return __udp4_lib_mcast_deliver(net, skb, uh,
						saddr, daddr, udptable, proto);

	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
	if (sk)
		return udp_unicast_rcv_skb(sk, skb, uh);

	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
		goto drop;
	nf_reset_ct(skb);

	/* No socket. Drop packet silently, if checksum is wrong */
	if (udp_lib_checksum_complete(skb))
		goto csum_error;

	drop_reason = SKB_DROP_REASON_NO_SOCKET;
	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);

	/*
	 * Hmm.  We got an UDP packet to a port to which we
	 * don't wanna listen.  Ignore it.
	 */
	kfree_skb_reason(skb, drop_reason);
	return 0;

short_packet:
	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
			    proto == IPPROTO_UDPLITE ? "Lite" : "",
			    &saddr, ntohs(uh->source),
			    ulen, skb->len,
			    &daddr, ntohs(uh->dest));
	goto drop;

csum_error:
	/*
	 * RFC1122: OK.  Discards the bad packet silently (as far as
	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
	 */
	drop_reason = SKB_DROP_REASON_UDP_CSUM;
	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
			    proto == IPPROTO_UDPLITE ? "Lite" : "",
			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
			    ulen);
	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
drop:
	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
	kfree_skb_reason(skb, drop_reason);
	return 0;
}

/* We can only early demux multicast if there is a single matching socket.
 * If more than one socket found returns NULL
 */
static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
						  __be16 loc_port, __be32 loc_addr,
						  __be16 rmt_port, __be32 rmt_addr,
						  int dif, int sdif)
{
	struct sock *sk, *result;
	unsigned short hnum = ntohs(loc_port);
	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
	struct udp_hslot *hslot = &udp_table.hash[slot];

	/* Do not bother scanning a too big list */
	if (hslot->count > 10)
		return NULL;

	result = NULL;
	sk_for_each_rcu(sk, &hslot->head) {
		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
					rmt_port, rmt_addr, dif, sdif, hnum)) {
			if (result)
				return NULL;
			result = sk;
		}
	}

	return result;
}

/* For unicast we should only early demux connected sockets or we can
 * break forwarding setups.  The chains here can be long so only check
 * if the first socket is an exact match and if not move on.
 */
static struct sock *__udp4_lib_demux_lookup(struct net *net,
					    __be16 loc_port, __be32 loc_addr,
					    __be16 rmt_port, __be32 rmt_addr,
					    int dif, int sdif)
{
	unsigned short hnum = ntohs(loc_port);
	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
	unsigned int slot2 = hash2 & udp_table.mask;
	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
	struct sock *sk;

	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
		if (inet_match(net, sk, acookie, ports, dif, sdif))
			return sk;
		/* Only check first socket in chain */
		break;
	}
	return NULL;
}

int udp_v4_early_demux(struct sk_buff *skb)
{
	struct net *net = dev_net(skb->dev);
	struct in_device *in_dev = NULL;
	const struct iphdr *iph;
	const struct udphdr *uh;
	struct sock *sk = NULL;
	struct dst_entry *dst;
	int dif = skb->dev->ifindex;
	int sdif = inet_sdif(skb);
	int ours;

	/* validate the packet */
	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
		return 0;

	iph = ip_hdr(skb);
	uh = udp_hdr(skb);

	if (skb->pkt_type == PACKET_MULTICAST) {
		in_dev = __in_dev_get_rcu(skb->dev);

		if (!in_dev)
			return 0;

		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
				       iph->protocol);
		if (!ours)
			return 0;

		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
						   uh->source, iph->saddr,
						   dif, sdif);
	} else if (skb->pkt_type == PACKET_HOST) {
		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
					     uh->source, iph->saddr, dif, sdif);
	}

	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
		return 0;

	skb->sk = sk;
	skb->destructor = sock_efree;
	dst = rcu_dereference(sk->sk_rx_dst);

	if (dst)
		dst = dst_check(dst, 0);
	if (dst) {
		u32 itag = 0;

		/* set noref for now.
		 * any place which wants to hold dst has to call
		 * dst_hold_safe()
		 */
		skb_dst_set_noref(skb, dst);

		/* for unconnected multicast sockets we need to validate
		 * the source on each packet
		 */
		if (!inet_sk(sk)->inet_daddr && in_dev)
			return ip_mc_validate_source(skb, iph->daddr,
						     iph->saddr,
						     iph->tos & IPTOS_RT_MASK,
						     skb->dev, in_dev, &itag);
	}
	return 0;
}

int udp_rcv(struct sk_buff *skb)
{
	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
}

void udp_destroy_sock(struct sock *sk)
{
	struct udp_sock *up = udp_sk(sk);
	bool slow = lock_sock_fast(sk);

	/* protects from races with udp_abort() */
	sock_set_flag(sk, SOCK_DEAD);
	udp_flush_pending_frames(sk);
	unlock_sock_fast(sk, slow);
	if (static_branch_unlikely(&udp_encap_needed_key)) {
		if (up->encap_type) {
			void (*encap_destroy)(struct sock *sk);
			encap_destroy = READ_ONCE(up->encap_destroy);
			if (encap_destroy)
				encap_destroy(sk);
		}
		if (up->encap_enabled)
			static_branch_dec(&udp_encap_needed_key);
	}
}

/*
 *	Socket option code for UDP
 */
int udp_lib_setsockopt(struct sock *sk, int level, int optname,
		       sockptr_t optval, unsigned int optlen,
		       int (*push_pending_frames)(struct sock *))
{
	struct udp_sock *up = udp_sk(sk);
	int val, valbool;
	int err = 0;
	int is_udplite = IS_UDPLITE(sk);

	if (optlen < sizeof(int))
		return -EINVAL;

	if (copy_from_sockptr(&val, optval, sizeof(val)))
		return -EFAULT;

	valbool = val ? 1 : 0;

	switch (optname) {
	case UDP_CORK:
		if (val != 0) {
			WRITE_ONCE(up->corkflag, 1);
		} else {
			WRITE_ONCE(up->corkflag, 0);
			lock_sock(sk);
			push_pending_frames(sk);
			release_sock(sk);
		}
		break;

	case UDP_ENCAP:
		switch (val) {
		case 0:
#ifdef CONFIG_XFRM
		case UDP_ENCAP_ESPINUDP:
		case UDP_ENCAP_ESPINUDP_NON_IKE:
#if IS_ENABLED(CONFIG_IPV6)
			if (sk->sk_family == AF_INET6)
				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
			else
#endif
				up->encap_rcv = xfrm4_udp_encap_rcv;
#endif
			fallthrough;
		case UDP_ENCAP_L2TPINUDP:
			up->encap_type = val;
			lock_sock(sk);
			udp_tunnel_encap_enable(sk->sk_socket);
			release_sock(sk);
			break;
		default:
			err = -ENOPROTOOPT;
			break;
		}
		break;

	case UDP_NO_CHECK6_TX:
		up->no_check6_tx = valbool;
		break;

	case UDP_NO_CHECK6_RX:
		up->no_check6_rx = valbool;
		break;

	case UDP_SEGMENT:
		if (val < 0 || val > USHRT_MAX)
			return -EINVAL;
		WRITE_ONCE(up->gso_size, val);
		break;

	case UDP_GRO:
		lock_sock(sk);

		/* when enabling GRO, accept the related GSO packet type */
		if (valbool)
			udp_tunnel_encap_enable(sk->sk_socket);
		up->gro_enabled = valbool;
		up->accept_udp_l4 = valbool;
		release_sock(sk);
		break;

	/*
	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
	 */
	/* The sender sets actual checksum coverage length via this option.
	 * The case coverage > packet length is handled by send module. */
	case UDPLITE_SEND_CSCOV:
		if (!is_udplite)         /* Disable the option on UDP sockets */
			return -ENOPROTOOPT;
		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
			val = 8;
		else if (val > USHRT_MAX)
			val = USHRT_MAX;
		up->pcslen = val;
		up->pcflag |= UDPLITE_SEND_CC;
		break;

	/* The receiver specifies a minimum checksum coverage value. To make
	 * sense, this should be set to at least 8 (as done below). If zero is
	 * used, this again means full checksum coverage.                     */
	case UDPLITE_RECV_CSCOV:
		if (!is_udplite)         /* Disable the option on UDP sockets */
			return -ENOPROTOOPT;
		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
			val = 8;
		else if (val > USHRT_MAX)
			val = USHRT_MAX;
		up->pcrlen = val;
		up->pcflag |= UDPLITE_RECV_CC;
		break;

	default:
		err = -ENOPROTOOPT;
		break;
	}

	return err;
}
EXPORT_SYMBOL(udp_lib_setsockopt);

int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
		   unsigned int optlen)
{
	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
		return udp_lib_setsockopt(sk, level, optname,
					  optval, optlen,
					  udp_push_pending_frames);
	return ip_setsockopt(sk, level, optname, optval, optlen);
}

int udp_lib_getsockopt(struct sock *sk, int level, int optname,
		       char __user *optval, int __user *optlen)
{
	struct udp_sock *up = udp_sk(sk);
	int val, len;

	if (get_user(len, optlen))
		return -EFAULT;

	len = min_t(unsigned int, len, sizeof(int));

	if (len < 0)
		return -EINVAL;

	switch (optname) {
	case UDP_CORK:
		val = READ_ONCE(up->corkflag);
		break;

	case UDP_ENCAP:
		val = up->encap_type;
		break;

	case UDP_NO_CHECK6_TX:
		val = up->no_check6_tx;
		break;

	case UDP_NO_CHECK6_RX:
		val = up->no_check6_rx;
		break;

	case UDP_SEGMENT:
		val = READ_ONCE(up->gso_size);
		break;

	case UDP_GRO:
		val = up->gro_enabled;
		break;

	/* The following two cannot be changed on UDP sockets, the return is
	 * always 0 (which corresponds to the full checksum coverage of UDP). */
	case UDPLITE_SEND_CSCOV:
		val = up->pcslen;
		break;

	case UDPLITE_RECV_CSCOV:
		val = up->pcrlen;
		break;

	default:
		return -ENOPROTOOPT;
	}

	if (put_user(len, optlen))
		return -EFAULT;
	if (copy_to_user(optval, &val, len))
		return -EFAULT;
	return 0;
}
EXPORT_SYMBOL(udp_lib_getsockopt);

int udp_getsockopt(struct sock *sk, int level, int optname,
		   char __user *optval, int __user *optlen)
{
	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
	return ip_getsockopt(sk, level, optname, optval, optlen);
}

/**
 * 	udp_poll - wait for a UDP event.
 *	@file: - file struct
 *	@sock: - socket
 *	@wait: - poll table
 *
 *	This is same as datagram poll, except for the special case of
 *	blocking sockets. If application is using a blocking fd
 *	and a packet with checksum error is in the queue;
 *	then it could get return from select indicating data available
 *	but then block when reading it. Add special case code
 *	to work around these arguably broken applications.
 */
__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
	__poll_t mask = datagram_poll(file, sock, wait);
	struct sock *sk = sock->sk;

	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
		mask |= EPOLLIN | EPOLLRDNORM;

	/* Check for false positives due to checksum errors */
	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
		mask &= ~(EPOLLIN | EPOLLRDNORM);

	/* psock ingress_msg queue should not contain any bad checksum frames */
	if (sk_is_readable(sk))
		mask |= EPOLLIN | EPOLLRDNORM;
	return mask;

}
EXPORT_SYMBOL(udp_poll);

int udp_abort(struct sock *sk, int err)
{
	lock_sock(sk);

	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
	 * with close()
	 */
	if (sock_flag(sk, SOCK_DEAD))
		goto out;

	sk->sk_err = err;
	sk_error_report(sk);
	__udp_disconnect(sk, 0);

out:
	release_sock(sk);

	return 0;
}
EXPORT_SYMBOL_GPL(udp_abort);

struct proto udp_prot = {
	.name			= "UDP",
	.owner			= THIS_MODULE,
	.close			= udp_lib_close,
	.pre_connect		= udp_pre_connect,
	.connect		= ip4_datagram_connect,
	.disconnect		= udp_disconnect,
	.ioctl			= udp_ioctl,
	.init			= udp_init_sock,
	.destroy		= udp_destroy_sock,
	.setsockopt		= udp_setsockopt,
	.getsockopt		= udp_getsockopt,
	.sendmsg		= udp_sendmsg,
	.recvmsg		= udp_recvmsg,
	.sendpage		= udp_sendpage,
	.release_cb		= ip4_datagram_release_cb,
	.hash			= udp_lib_hash,
	.unhash			= udp_lib_unhash,
	.rehash			= udp_v4_rehash,
	.get_port		= udp_v4_get_port,
	.put_port		= udp_lib_unhash,
#ifdef CONFIG_BPF_SYSCALL
	.psock_update_sk_prot	= udp_bpf_update_proto,
#endif
	.memory_allocated	= &udp_memory_allocated,
	.sysctl_mem		= sysctl_udp_mem,
	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
	.obj_size		= sizeof(struct udp_sock),
	.h.udp_table		= &udp_table,
	.diag_destroy		= udp_abort,
};
EXPORT_SYMBOL(udp_prot);

/* ------------------------------------------------------------------------ */
#ifdef CONFIG_PROC_FS

static struct sock *udp_get_first(struct seq_file *seq, int start)
{
	struct sock *sk;
	struct udp_seq_afinfo *afinfo;
	struct udp_iter_state *state = seq->private;
	struct net *net = seq_file_net(seq);

	if (state->bpf_seq_afinfo)
		afinfo = state->bpf_seq_afinfo;
	else
		afinfo = pde_data(file_inode(seq->file));

	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
	     ++state->bucket) {
		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];

		if (hlist_empty(&hslot->head))
			continue;

		spin_lock_bh(&hslot->lock);
		sk_for_each(sk, &hslot->head) {
			if (!net_eq(sock_net(sk), net))
				continue;
			if (afinfo->family == AF_UNSPEC ||
			    sk->sk_family == afinfo->family)
				goto found;
		}
		spin_unlock_bh(&hslot->lock);
	}
	sk = NULL;
found:
	return sk;
}

static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
{
	struct udp_seq_afinfo *afinfo;
	struct udp_iter_state *state = seq->private;
	struct net *net = seq_file_net(seq);

	if (state->bpf_seq_afinfo)
		afinfo = state->bpf_seq_afinfo;
	else
		afinfo = pde_data(file_inode(seq->file));

	do {
		sk = sk_next(sk);
	} while (sk && (!net_eq(sock_net(sk), net) ||
			(afinfo->family != AF_UNSPEC &&
			 sk->sk_family != afinfo->family)));

	if (!sk) {
		if (state->bucket <= afinfo->udp_table->mask)
			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
		return udp_get_first(seq, state->bucket + 1);
	}
	return sk;
}

static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
{
	struct sock *sk = udp_get_first(seq, 0);

	if (sk)
		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
			--pos;
	return pos ? NULL : sk;
}

void *udp_seq_start(struct seq_file *seq, loff_t *pos)
{
	struct udp_iter_state *state = seq->private;
	state->bucket = MAX_UDP_PORTS;

	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
}
EXPORT_SYMBOL(udp_seq_start);

void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	struct sock *sk;

	if (v == SEQ_START_TOKEN)
		sk = udp_get_idx(seq, 0);
	else
		sk = udp_get_next(seq, v);

	++*pos;
	return sk;
}
EXPORT_SYMBOL(udp_seq_next);

void udp_seq_stop(struct seq_file *seq, void *v)
{
	struct udp_seq_afinfo *afinfo;
	struct udp_iter_state *state = seq->private;

	if (state->bpf_seq_afinfo)
		afinfo = state->bpf_seq_afinfo;
	else
		afinfo = pde_data(file_inode(seq->file));

	if (state->bucket <= afinfo->udp_table->mask)
		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
}
EXPORT_SYMBOL(udp_seq_stop);

/* ------------------------------------------------------------------------ */
static void udp4_format_sock(struct sock *sp, struct seq_file *f,
		int bucket)
{
	struct inet_sock *inet = inet_sk(sp);
	__be32 dest = inet->inet_daddr;
	__be32 src  = inet->inet_rcv_saddr;
	__u16 destp	  = ntohs(inet->inet_dport);
	__u16 srcp	  = ntohs(inet->inet_sport);

	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
		bucket, src, srcp, dest, destp, sp->sk_state,
		sk_wmem_alloc_get(sp),
		udp_rqueue_get(sp),
		0, 0L, 0,
		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
		0, sock_i_ino(sp),
		refcount_read(&sp->sk_refcnt), sp,
		atomic_read(&sp->sk_drops));
}

int udp4_seq_show(struct seq_file *seq, void *v)
{
	seq_setwidth(seq, 127);
	if (v == SEQ_START_TOKEN)
		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
			   "rx_queue tr tm->when retrnsmt   uid  timeout "
			   "inode ref pointer drops");
	else {
		struct udp_iter_state *state = seq->private;

		udp4_format_sock(v, seq, state->bucket);
	}
	seq_pad(seq, '\n');
	return 0;
}

#ifdef CONFIG_BPF_SYSCALL
struct bpf_iter__udp {
	__bpf_md_ptr(struct bpf_iter_meta *, meta);
	__bpf_md_ptr(struct udp_sock *, udp_sk);
	uid_t uid __aligned(8);
	int bucket __aligned(8);
};

static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
			     struct udp_sock *udp_sk, uid_t uid, int bucket)
{
	struct bpf_iter__udp ctx;

	meta->seq_num--;  /* skip SEQ_START_TOKEN */
	ctx.meta = meta;
	ctx.udp_sk = udp_sk;
	ctx.uid = uid;
	ctx.bucket = bucket;
	return bpf_iter_run_prog(prog, &ctx);
}

static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
{
	struct udp_iter_state *state = seq->private;
	struct bpf_iter_meta meta;
	struct bpf_prog *prog;
	struct sock *sk = v;
	uid_t uid;

	if (v == SEQ_START_TOKEN)
		return 0;

	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
	meta.seq = seq;
	prog = bpf_iter_get_info(&meta, false);
	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
}

static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
{
	struct bpf_iter_meta meta;
	struct bpf_prog *prog;

	if (!v) {
		meta.seq = seq;
		prog = bpf_iter_get_info(&meta, true);
		if (prog)
			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
	}

	udp_seq_stop(seq, v);
}

static const struct seq_operations bpf_iter_udp_seq_ops = {
	.start		= udp_seq_start,
	.next		= udp_seq_next,
	.stop		= bpf_iter_udp_seq_stop,
	.show		= bpf_iter_udp_seq_show,
};
#endif

const struct seq_operations udp_seq_ops = {
	.start		= udp_seq_start,
	.next		= udp_seq_next,
	.stop		= udp_seq_stop,
	.show		= udp4_seq_show,
};
EXPORT_SYMBOL(udp_seq_ops);

static struct udp_seq_afinfo udp4_seq_afinfo = {
	.family		= AF_INET,
	.udp_table	= &udp_table,
};

static int __net_init udp4_proc_init_net(struct net *net)
{
	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
		return -ENOMEM;
	return 0;
}

static void __net_exit udp4_proc_exit_net(struct net *net)
{
	remove_proc_entry("udp", net->proc_net);
}

static struct pernet_operations udp4_net_ops = {
	.init = udp4_proc_init_net,
	.exit = udp4_proc_exit_net,
};

int __init udp4_proc_init(void)
{
	return register_pernet_subsys(&udp4_net_ops);
}

void udp4_proc_exit(void)
{
	unregister_pernet_subsys(&udp4_net_ops);
}
#endif /* CONFIG_PROC_FS */

static __initdata unsigned long uhash_entries;
static int __init set_uhash_entries(char *str)
{
	ssize_t ret;

	if (!str)
		return 0;

	ret = kstrtoul(str, 0, &uhash_entries);
	if (ret)
		return 0;

	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
		uhash_entries = UDP_HTABLE_SIZE_MIN;
	return 1;
}
__setup("uhash_entries=", set_uhash_entries);

void __init udp_table_init(struct udp_table *table, const char *name)
{
	unsigned int i;

	table->hash = alloc_large_system_hash(name,
					      2 * sizeof(struct udp_hslot),
					      uhash_entries,
					      21, /* one slot per 2 MB */
					      0,
					      &table->log,
					      &table->mask,
					      UDP_HTABLE_SIZE_MIN,
					      64 * 1024);

	table->hash2 = table->hash + (table->mask + 1);
	for (i = 0; i <= table->mask; i++) {
		INIT_HLIST_HEAD(&table->hash[i].head);
		table->hash[i].count = 0;
		spin_lock_init(&table->hash[i].lock);
	}
	for (i = 0; i <= table->mask; i++) {
		INIT_HLIST_HEAD(&table->hash2[i].head);
		table->hash2[i].count = 0;
		spin_lock_init(&table->hash2[i].lock);
	}
}

u32 udp_flow_hashrnd(void)
{
	static u32 hashrnd __read_mostly;

	net_get_random_once(&hashrnd, sizeof(hashrnd));

	return hashrnd;
}
EXPORT_SYMBOL(udp_flow_hashrnd);

static void __udp_sysctl_init(struct net *net)
{
	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;

#ifdef CONFIG_NET_L3_MASTER_DEV
	net->ipv4.sysctl_udp_l3mdev_accept = 0;
#endif
}

static int __net_init udp_sysctl_init(struct net *net)
{
	__udp_sysctl_init(net);
	return 0;
}

static struct pernet_operations __net_initdata udp_sysctl_ops = {
	.init	= udp_sysctl_init,
};

#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
		     struct udp_sock *udp_sk, uid_t uid, int bucket)

static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
{
	struct udp_iter_state *st = priv_data;
	struct udp_seq_afinfo *afinfo;
	int ret;

	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
	if (!afinfo)
		return -ENOMEM;

	afinfo->family = AF_UNSPEC;
	afinfo->udp_table = &udp_table;
	st->bpf_seq_afinfo = afinfo;
	ret = bpf_iter_init_seq_net(priv_data, aux);
	if (ret)
		kfree(afinfo);
	return ret;
}

static void bpf_iter_fini_udp(void *priv_data)
{
	struct udp_iter_state *st = priv_data;

	kfree(st->bpf_seq_afinfo);
	bpf_iter_fini_seq_net(priv_data);
}

static const struct bpf_iter_seq_info udp_seq_info = {
	.seq_ops		= &bpf_iter_udp_seq_ops,
	.init_seq_private	= bpf_iter_init_udp,
	.fini_seq_private	= bpf_iter_fini_udp,
	.seq_priv_size		= sizeof(struct udp_iter_state),
};

static struct bpf_iter_reg udp_reg_info = {
	.target			= "udp",
	.ctx_arg_info_size	= 1,
	.ctx_arg_info		= {
		{ offsetof(struct bpf_iter__udp, udp_sk),
		  PTR_TO_BTF_ID_OR_NULL },
	},
	.seq_info		= &udp_seq_info,
};

static void __init bpf_iter_register(void)
{
	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
	if (bpf_iter_reg_target(&udp_reg_info))
		pr_warn("Warning: could not register bpf iterator udp\n");
}
#endif

void __init udp_init(void)
{
	unsigned long limit;
	unsigned int i;

	udp_table_init(&udp_table, "UDP");
	limit = nr_free_buffer_pages() / 8;
	limit = max(limit, 128UL);
	sysctl_udp_mem[0] = limit / 4 * 3;
	sysctl_udp_mem[1] = limit;
	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;

	__udp_sysctl_init(&init_net);

	/* 16 spinlocks per cpu */
	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
				GFP_KERNEL);
	if (!udp_busylocks)
		panic("UDP: failed to alloc udp_busylocks\n");
	for (i = 0; i < (1U << udp_busylocks_log); i++)
		spin_lock_init(udp_busylocks + i);

	if (register_pernet_subsys(&udp_sysctl_ops))
		panic("UDP: failed to init sysctl parameters.\n");

#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
	bpf_iter_register();
#endif
}