summaryrefslogtreecommitdiff
path: root/mm/swap_state.c
blob: b68c93014f50c681b5bc1f3d9da2cd8db1fe025a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
 *  linux/mm/swap_state.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *
 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
 */
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
#include <linux/vmalloc.h>
#include <linux/swap_slots.h>
#include <linux/huge_mm.h>

#include <asm/pgtable.h>

/*
 * swapper_space is a fiction, retained to simplify the path through
 * vmscan's shrink_page_list.
 */
static const struct address_space_operations swap_aops = {
	.writepage	= swap_writepage,
	.set_page_dirty	= swap_set_page_dirty,
#ifdef CONFIG_MIGRATION
	.migratepage	= migrate_page,
#endif
};

struct address_space *swapper_spaces[MAX_SWAPFILES];
static unsigned int nr_swapper_spaces[MAX_SWAPFILES];

#define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
#define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)

static struct {
	unsigned long add_total;
	unsigned long del_total;
	unsigned long find_success;
	unsigned long find_total;
} swap_cache_info;

unsigned long total_swapcache_pages(void)
{
	unsigned int i, j, nr;
	unsigned long ret = 0;
	struct address_space *spaces;

	rcu_read_lock();
	for (i = 0; i < MAX_SWAPFILES; i++) {
		/*
		 * The corresponding entries in nr_swapper_spaces and
		 * swapper_spaces will be reused only after at least
		 * one grace period.  So it is impossible for them
		 * belongs to different usage.
		 */
		nr = nr_swapper_spaces[i];
		spaces = rcu_dereference(swapper_spaces[i]);
		if (!nr || !spaces)
			continue;
		for (j = 0; j < nr; j++)
			ret += spaces[j].nrpages;
	}
	rcu_read_unlock();
	return ret;
}

static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);

void show_swap_cache_info(void)
{
	printk("%lu pages in swap cache\n", total_swapcache_pages());
	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
		swap_cache_info.add_total, swap_cache_info.del_total,
		swap_cache_info.find_success, swap_cache_info.find_total);
	printk("Free swap  = %ldkB\n",
		get_nr_swap_pages() << (PAGE_SHIFT - 10));
	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}

/*
 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 * but sets SwapCache flag and private instead of mapping and index.
 */
int __add_to_swap_cache(struct page *page, swp_entry_t entry)
{
	int error, i, nr = hpage_nr_pages(page);
	struct address_space *address_space;
	pgoff_t idx = swp_offset(entry);

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapCache(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);

	page_ref_add(page, nr);
	SetPageSwapCache(page);

	address_space = swap_address_space(entry);
	spin_lock_irq(&address_space->tree_lock);
	for (i = 0; i < nr; i++) {
		set_page_private(page + i, entry.val + i);
		error = radix_tree_insert(&address_space->page_tree,
					  idx + i, page + i);
		if (unlikely(error))
			break;
	}
	if (likely(!error)) {
		address_space->nrpages += nr;
		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
		ADD_CACHE_INFO(add_total, nr);
	} else {
		/*
		 * Only the context which have set SWAP_HAS_CACHE flag
		 * would call add_to_swap_cache().
		 * So add_to_swap_cache() doesn't returns -EEXIST.
		 */
		VM_BUG_ON(error == -EEXIST);
		set_page_private(page + i, 0UL);
		while (i--) {
			radix_tree_delete(&address_space->page_tree, idx + i);
			set_page_private(page + i, 0UL);
		}
		ClearPageSwapCache(page);
		page_ref_sub(page, nr);
	}
	spin_unlock_irq(&address_space->tree_lock);

	return error;
}


int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
	int error;

	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
	if (!error) {
		error = __add_to_swap_cache(page, entry);
		radix_tree_preload_end();
	}
	return error;
}

/*
 * This must be called only on pages that have
 * been verified to be in the swap cache.
 */
void __delete_from_swap_cache(struct page *page)
{
	struct address_space *address_space;
	int i, nr = hpage_nr_pages(page);
	swp_entry_t entry;
	pgoff_t idx;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
	VM_BUG_ON_PAGE(PageWriteback(page), page);

	entry.val = page_private(page);
	address_space = swap_address_space(entry);
	idx = swp_offset(entry);
	for (i = 0; i < nr; i++) {
		radix_tree_delete(&address_space->page_tree, idx + i);
		set_page_private(page + i, 0);
	}
	ClearPageSwapCache(page);
	address_space->nrpages -= nr;
	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	ADD_CACHE_INFO(del_total, nr);
}

/**
 * add_to_swap - allocate swap space for a page
 * @page: page we want to move to swap
 *
 * Allocate swap space for the page and add the page to the
 * swap cache.  Caller needs to hold the page lock. 
 */
int add_to_swap(struct page *page)
{
	swp_entry_t entry;
	int err;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageUptodate(page), page);

	entry = get_swap_page(page);
	if (!entry.val)
		return 0;

	if (mem_cgroup_try_charge_swap(page, entry))
		goto fail;

	/*
	 * Radix-tree node allocations from PF_MEMALLOC contexts could
	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
	 * stops emergency reserves from being allocated.
	 *
	 * TODO: this could cause a theoretical memory reclaim
	 * deadlock in the swap out path.
	 */
	/*
	 * Add it to the swap cache.
	 */
	err = add_to_swap_cache(page, entry,
			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
	/* -ENOMEM radix-tree allocation failure */
	if (err)
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		goto fail;

	return 1;

fail:
	put_swap_page(page, entry);
	return 0;
}

/*
 * This must be called only on pages that have
 * been verified to be in the swap cache and locked.
 * It will never put the page into the free list,
 * the caller has a reference on the page.
 */
void delete_from_swap_cache(struct page *page)
{
	swp_entry_t entry;
	struct address_space *address_space;

	entry.val = page_private(page);

	address_space = swap_address_space(entry);
	spin_lock_irq(&address_space->tree_lock);
	__delete_from_swap_cache(page);
	spin_unlock_irq(&address_space->tree_lock);

	put_swap_page(page, entry);
	page_ref_sub(page, hpage_nr_pages(page));
}

/* 
 * If we are the only user, then try to free up the swap cache. 
 * 
 * Its ok to check for PageSwapCache without the page lock
 * here because we are going to recheck again inside
 * try_to_free_swap() _with_ the lock.
 * 					- Marcelo
 */
static inline void free_swap_cache(struct page *page)
{
	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
		try_to_free_swap(page);
		unlock_page(page);
	}
}

/* 
 * Perform a free_page(), also freeing any swap cache associated with
 * this page if it is the last user of the page.
 */
void free_page_and_swap_cache(struct page *page)
{
	free_swap_cache(page);
	if (!is_huge_zero_page(page))
		put_page(page);
}

/*
 * Passed an array of pages, drop them all from swapcache and then release
 * them.  They are removed from the LRU and freed if this is their last use.
 */
void free_pages_and_swap_cache(struct page **pages, int nr)
{
	struct page **pagep = pages;
	int i;

	lru_add_drain();
	for (i = 0; i < nr; i++)
		free_swap_cache(pagep[i]);
	release_pages(pagep, nr, false);
}

/*
 * Lookup a swap entry in the swap cache. A found page will be returned
 * unlocked and with its refcount incremented - we rely on the kernel
 * lock getting page table operations atomic even if we drop the page
 * lock before returning.
 */
struct page * lookup_swap_cache(swp_entry_t entry)
{
	struct page *page;

	page = find_get_page(swap_address_space(entry), swp_offset(entry));

	if (page && likely(!PageTransCompound(page))) {
		INC_CACHE_INFO(find_success);
		if (TestClearPageReadahead(page))
			atomic_inc(&swapin_readahead_hits);
	}

	INC_CACHE_INFO(find_total);
	return page;
}

struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
			struct vm_area_struct *vma, unsigned long addr,
			bool *new_page_allocated)
{
	struct page *found_page, *new_page = NULL;
	struct address_space *swapper_space = swap_address_space(entry);
	int err;
	*new_page_allocated = false;

	do {
		/*
		 * First check the swap cache.  Since this is normally
		 * called after lookup_swap_cache() failed, re-calling
		 * that would confuse statistics.
		 */
		found_page = find_get_page(swapper_space, swp_offset(entry));
		if (found_page)
			break;

		/*
		 * Just skip read ahead for unused swap slot.
		 * During swap_off when swap_slot_cache is disabled,
		 * we have to handle the race between putting
		 * swap entry in swap cache and marking swap slot
		 * as SWAP_HAS_CACHE.  That's done in later part of code or
		 * else swap_off will be aborted if we return NULL.
		 */
		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
			break;

		/*
		 * Get a new page to read into from swap.
		 */
		if (!new_page) {
			new_page = alloc_page_vma(gfp_mask, vma, addr);
			if (!new_page)
				break;		/* Out of memory */
		}

		/*
		 * call radix_tree_preload() while we can wait.
		 */
		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
		if (err)
			break;

		/*
		 * Swap entry may have been freed since our caller observed it.
		 */
		err = swapcache_prepare(entry);
		if (err == -EEXIST) {
			radix_tree_preload_end();
			/*
			 * We might race against get_swap_page() and stumble
			 * across a SWAP_HAS_CACHE swap_map entry whose page
			 * has not been brought into the swapcache yet.
			 */
			cond_resched();
			continue;
		}
		if (err) {		/* swp entry is obsolete ? */
			radix_tree_preload_end();
			break;
		}

		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
		__SetPageLocked(new_page);
		__SetPageSwapBacked(new_page);
		err = __add_to_swap_cache(new_page, entry);
		if (likely(!err)) {
			radix_tree_preload_end();
			/*
			 * Initiate read into locked page and return.
			 */
			lru_cache_add_anon(new_page);
			*new_page_allocated = true;
			return new_page;
		}
		radix_tree_preload_end();
		__ClearPageLocked(new_page);
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		put_swap_page(new_page, entry);
	} while (err != -ENOMEM);

	if (new_page)
		put_page(new_page);
	return found_page;
}

/*
 * Locate a page of swap in physical memory, reserving swap cache space
 * and reading the disk if it is not already cached.
 * A failure return means that either the page allocation failed or that
 * the swap entry is no longer in use.
 */
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
{
	bool page_was_allocated;
	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
			vma, addr, &page_was_allocated);

	if (page_was_allocated)
		swap_readpage(retpage, do_poll);

	return retpage;
}

static unsigned long swapin_nr_pages(unsigned long offset)
{
	static unsigned long prev_offset;
	unsigned int pages, max_pages, last_ra;
	static atomic_t last_readahead_pages;

	max_pages = 1 << READ_ONCE(page_cluster);
	if (max_pages <= 1)
		return 1;

	/*
	 * This heuristic has been found to work well on both sequential and
	 * random loads, swapping to hard disk or to SSD: please don't ask
	 * what the "+ 2" means, it just happens to work well, that's all.
	 */
	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
	if (pages == 2) {
		/*
		 * We can have no readahead hits to judge by: but must not get
		 * stuck here forever, so check for an adjacent offset instead
		 * (and don't even bother to check whether swap type is same).
		 */
		if (offset != prev_offset + 1 && offset != prev_offset - 1)
			pages = 1;
		prev_offset = offset;
	} else {
		unsigned int roundup = 4;
		while (roundup < pages)
			roundup <<= 1;
		pages = roundup;
	}

	if (pages > max_pages)
		pages = max_pages;

	/* Don't shrink readahead too fast */
	last_ra = atomic_read(&last_readahead_pages) / 2;
	if (pages < last_ra)
		pages = last_ra;
	atomic_set(&last_readahead_pages, pages);

	return pages;
}

/**
 * swapin_readahead - swap in pages in hope we need them soon
 * @entry: swap entry of this memory
 * @gfp_mask: memory allocation flags
 * @vma: user vma this address belongs to
 * @addr: target address for mempolicy
 *
 * Returns the struct page for entry and addr, after queueing swapin.
 *
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...
 *
 * This has been extended to use the NUMA policies from the mm triggering
 * the readahead.
 *
 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 */
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
			struct vm_area_struct *vma, unsigned long addr)
{
	struct page *page;
	unsigned long entry_offset = swp_offset(entry);
	unsigned long offset = entry_offset;
	unsigned long start_offset, end_offset;
	unsigned long mask;
	struct blk_plug plug;
	bool do_poll = true;

	mask = swapin_nr_pages(offset) - 1;
	if (!mask)
		goto skip;

	do_poll = false;
	/* Read a page_cluster sized and aligned cluster around offset. */
	start_offset = offset & ~mask;
	end_offset = offset | mask;
	if (!start_offset)	/* First page is swap header. */
		start_offset++;

	blk_start_plug(&plug);
	for (offset = start_offset; offset <= end_offset ; offset++) {
		/* Ok, do the async read-ahead now */
		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
						gfp_mask, vma, addr, false);
		if (!page)
			continue;
		if (offset != entry_offset && likely(!PageTransCompound(page)))
			SetPageReadahead(page);
		put_page(page);
	}
	blk_finish_plug(&plug);

	lru_add_drain();	/* Push any new pages onto the LRU now */
skip:
	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
}

int init_swap_address_space(unsigned int type, unsigned long nr_pages)
{
	struct address_space *spaces, *space;
	unsigned int i, nr;

	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
	if (!spaces)
		return -ENOMEM;
	for (i = 0; i < nr; i++) {
		space = spaces + i;
		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
		atomic_set(&space->i_mmap_writable, 0);
		space->a_ops = &swap_aops;
		/* swap cache doesn't use writeback related tags */
		mapping_set_no_writeback_tags(space);
		spin_lock_init(&space->tree_lock);
	}
	nr_swapper_spaces[type] = nr;
	rcu_assign_pointer(swapper_spaces[type], spaces);

	return 0;
}

void exit_swap_address_space(unsigned int type)
{
	struct address_space *spaces;

	spaces = swapper_spaces[type];
	nr_swapper_spaces[type] = 0;
	rcu_assign_pointer(swapper_spaces[type], NULL);
	synchronize_rcu();
	kvfree(spaces);
}