summaryrefslogtreecommitdiff
path: root/mm/slub.c
blob: 7277413ebc8b9a75806fba91103f57557b248cc3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter
 * (C) 2011 Linux Foundation, Christoph Lameter
 */

#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include "slab.h"
#include <linux/proc_fs.h>
#include <linux/notifier.h>
#include <linux/seq_file.h>
#include <linux/kasan.h>
#include <linux/kmemcheck.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/debugobjects.h>
#include <linux/kallsyms.h>
#include <linux/memory.h>
#include <linux/math64.h>
#include <linux/fault-inject.h>
#include <linux/stacktrace.h>
#include <linux/prefetch.h>
#include <linux/memcontrol.h>

#include <trace/events/kmem.h>

#include "internal.h"

/*
 * Lock order:
 *   1. slab_mutex (Global Mutex)
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
 *
 *   slab_mutex
 *
 *   The role of the slab_mutex is to protect the list of all the slabs
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
 * freed then the slab will show up again on the partial lists.
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
 * 			freelist that allows lockless access to
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
 * 			the fast path and disables lockless freelists.
 */

static inline int kmem_cache_debug(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
#else
	return 0;
#endif
}

static inline void *fixup_red_left(struct kmem_cache *s, void *p)
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
#define MIN_PARTIAL 5

/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in use.
 */
#define MAX_PARTIAL 10

#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)

/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


/*
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
 */
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)

#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */

/* Internal SLUB flags */
#define __OBJECT_POISON		0x80000000UL /* Poison object */
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

/*
 * Tracking user of a slab.
 */
#define TRACK_ADDRS_COUNT 16
struct track {
	unsigned long addr;	/* Called from address */
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

#ifdef CONFIG_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
#endif

static inline void stat(const struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
#endif
}

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
	return p;
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)

#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

static inline struct kmem_cache_order_objects oo_make(int order,
		unsigned long size, int reserved)
{
	struct kmem_cache_order_objects x = {
		(order << OO_SHIFT) + order_objects(order, size, reserved)
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
	return x.x >> OO_SHIFT;
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
	return x.x & OO_MASK;
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	VM_BUG_ON_PAGE(PageTail(page), page);
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	VM_BUG_ON_PAGE(PageTail(page), page);
	__bit_spin_unlock(PG_locked, &page->flags);
}

static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
	if (s->flags & __CMPXCHG_DOUBLE) {
		if (cmpxchg_double(&page->freelist, &page->counters,
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return true;
	} else
#endif
	{
		slab_lock(page);
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
			page->freelist = freelist_new;
			set_page_slub_counters(page, counters_new);
			slab_unlock(page);
			return true;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif

	return false;
}

static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
	if (s->flags & __CMPXCHG_DOUBLE) {
		if (cmpxchg_double(&page->freelist, &page->counters,
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return true;
	} else
#endif
	{
		unsigned long flags;

		local_irq_save(flags);
		slab_lock(page);
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
			page->freelist = freelist_new;
			set_page_slub_counters(page, counters_new);
			slab_unlock(page);
			local_irq_restore(flags);
			return true;
		}
		slab_unlock(page);
		local_irq_restore(flags);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif

	return false;
}

#ifdef CONFIG_SLUB_DEBUG
/*
 * Determine a map of object in use on a page.
 *
 * Node listlock must be held to guarantee that the page does
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

/*
 * Debug settings:
 */
#if defined(CONFIG_SLUB_DEBUG_ON)
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#elif defined(CONFIG_KASAN)
static int slub_debug = SLAB_STORE_USER;
#else
static int slub_debug;
#endif

static char *slub_debug_slabs;
static int disable_higher_order_debug;

/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

/*
 * Object debugging
 */

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

static void print_section(char *text, u8 *addr, unsigned int length)
{
	metadata_access_enable();
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
	metadata_access_disable();
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
			enum track_item alloc, unsigned long addr)
{
	struct track *p = get_track(s, object, alloc);

	if (addr) {
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		metadata_access_enable();
		save_stack_trace(&trace);
		metadata_access_disable();

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current->pid;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				pr_err("\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	struct va_format vaf;
	va_list args;

	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("=============================================================================\n");
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
	pr_err("-----------------------------------------------------------------------------\n\n");

	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
	va_end(args);
}

static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	struct va_format vaf;
	va_list args;

	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned int off;	/* Offset of last byte */
	u8 *addr = page_address(page);

	print_tracking(s, p);

	print_page_info(page);

	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
	else if (p > addr + 16)
		print_section("Bytes b4 ", p - 16, 16);

	print_section("Object ", p, min_t(unsigned long, s->object_size,
				PAGE_SIZE));
	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

	if (s->flags & SLAB_STORE_USER)
		off += 2 * sizeof(struct track);

	if (off != size_from_object(s))
		/* Beginning of the filler is the free pointer */
		print_section("Padding ", p + off, size_from_object(s) - off);

	dump_stack();
}

void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
	slab_bug(s, "%s", reason);
	print_trailer(s, page, object);
}

static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	slab_bug(s, "%s", buf);
	print_page_info(page);
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, u8 val)
{
	u8 *p = object;

	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->object_size, val, s->inuse - s->object_size);
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
			u8 *start, unsigned int value, unsigned int bytes)
{
	u8 *fault;
	u8 *end;

	metadata_access_enable();
	fault = memchr_inv(start, value, bytes);
	metadata_access_disable();
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
 *
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->object_size
 * 	Padding to reach word boundary. This is also used for Redzoning.
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	object_size == inuse.
 *
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
 * 	Meta data starts here.
 *
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debugging is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
 *
 * object + s->size
 * 	Nothing is used beyond s->size.
 *
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (size_from_object(s) == off)
		return 1;

	return check_bytes_and_report(s, page, p, "Object padding",
			p + off, POISON_INUSE, size_from_object(s) - off);
}

/* Check the pad bytes at the end of a slab page */
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;

	if (!(s->flags & SLAB_POISON))
		return 1;

	start = page_address(page);
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
	end = start + length;
	remainder = length % s->size;
	if (!remainder)
		return 1;

	metadata_access_enable();
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
	metadata_access_disable();
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding ", end - remainder, remainder);

	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
	return 0;
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, u8 val)
{
	u8 *p = object;
	u8 *endobject = object + s->object_size;

	if (s->flags & SLAB_RED_ZONE) {
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, val, s->inuse - s->object_size))
			return 0;
	} else {
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
		}
	}

	if (s->flags & SLAB_POISON) {
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->object_size - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
				p + s->object_size - 1, POISON_END, 1)))
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && val == SLUB_RED_ACTIVE)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus lose the remainder
		 * of the free objects in this slab. May cause
		 * another error because the object count is now wrong.
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	int maxobj;

	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
		slab_err(s, page, "Not a valid slab page");
		return 0;
	}

	maxobj = order_objects(compound_order(page), s->size, s->reserved);
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
		slab_err(s, page, "inuse %u > max %u",
			page->inuse, page->objects);
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp;
	void *object = NULL;
	int max_objects;

	fp = page->freelist;
	while (fp && nr <= page->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
			} else {
				slab_err(s, page, "Freepointer corrupt");
				page->freelist = NULL;
				page->inuse = page->objects;
				slab_fix(s, "Freelist cleared");
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	max_objects = order_objects(compound_order(page), s->size, s->reserved);
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
	if (page->inuse != page->objects - nr) {
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
		slab_fix(s, "Object count adjusted.");
	}
	return search == NULL;
}

static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
{
	if (s->flags & SLAB_TRACE) {
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object ", (void *)object,
					s->object_size);

		dump_stack();
	}
}

/*
 * Tracking of fully allocated slabs for debugging purposes.
 */
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	lockdep_assert_held(&n->list_lock);
	list_add(&page->lru, &n->full);
}

static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	lockdep_assert_held(&n->list_lock);
	list_del(&page->lru);
}

/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
	if (likely(n)) {
		atomic_long_inc(&n->nr_slabs);
		atomic_long_add(objects, &n->total_objects);
	}
}
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
	atomic_long_sub(objects, &n->total_objects);
}

/* Object debug checks for alloc/free paths */
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, SLUB_RED_INACTIVE);
	init_tracking(s, object);
}

static inline int alloc_consistency_checks(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (!check_slab(s, page))
		return 0;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
		return 0;
	}

	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}

	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, SLUB_RED_ACTIVE);
	return 1;

bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
		 * as used avoids touching the remaining objects.
		 */
		slab_fix(s, "Marking all objects used");
		page->inuse = page->objects;
		page->freelist = NULL;
	}
	return 0;
}

static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
{
	if (!check_valid_pointer(s, page, object)) {
		slab_err(s, page, "Invalid object pointer 0x%p", object);
		return 0;
	}

	if (on_freelist(s, page, object)) {
		object_err(s, page, object, "Object already free");
		return 0;
	}

	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
		return 0;

	if (unlikely(s != page->slab_cache)) {
		if (!PageSlab(page)) {
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
		} else if (!page->slab_cache) {
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
			dump_stack();
		} else
			object_err(s, page, object,
					"page slab pointer corrupt.");
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
	}

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
	init_object(s, object, SLUB_RED_INACTIVE);

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
	ret = 1;

out:
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
}

static int __init setup_slub_debug(char *str)
{
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
	for (; *str && *str != ','; str++) {
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
		default:
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
		}
	}

check_slabs:
	if (*str == ',')
		slub_debug_slabs = str + 1;
out:
	return 1;
}

__setup("slub_debug", setup_slub_debug);

unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	/*
	 * Enable debugging if selected on the kernel commandline.
	 */
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
		flags |= slub_debug;

	return flags;
}
#else /* !CONFIG_SLUB_DEBUG */
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}

static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, unsigned long addr) { return 0; }

static inline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr) { return 0; }

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, u8 val) { return 1; }
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}
#define slub_debug 0

#define disable_higher_order_debug 0

static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}

#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
	kasan_kmalloc_large(ptr, size);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
	kasan_kfree_large(x);
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);

	kasan_slab_free(s, x);
}

static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;

	do {
		slab_free_hook(s, object);
	} while ((object != tail_obj) &&
		 (object = get_freepointer(s, object)));
#endif
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

/*
 * Slab allocation and freeing
 */
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
{
	struct page *page;
	int order = oo_order(oo);

	flags |= __GFP_NOTRACK;

	if (node == NUMA_NO_NODE)
		page = alloc_pages(flags, order);
	else
		page = __alloc_pages_node(node, flags, order);

	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}

	return page;
}

static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_order_objects oo = s->oo;
	gfp_t alloc_gfp;
	void *start, *p;
	int idx, order;

	flags &= gfp_allowed_mask;

	if (gfpflags_allow_blocking(flags))
		local_irq_enable();

	flags |= s->allocflags;

	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);

	page = alloc_slab_page(s, alloc_gfp, node, oo);
	if (unlikely(!page)) {
		oo = s->min;
		alloc_gfp = flags;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(s, alloc_gfp, node, oo);
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
	}

	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
	}

	page->objects = oo_objects(oo);

	order = compound_order(page);
	page->slab_cache = s;
	__SetPageSlab(page);
	if (page_is_pfmemalloc(page))
		SetPageSlabPfmemalloc(page);

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << order);

	kasan_poison_slab(page);

	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
	}

	page->freelist = fixup_red_left(s, start);
	page->inuse = page->objects;
	page->frozen = 1;

out:
	if (gfpflags_allow_blocking(flags))
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

	return page;
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int order = compound_order(page);
	int pages = 1 << order;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		void *p;

		slab_pad_check(s, page);
		for_each_object(p, s, page_address(page),
						page->objects)
			check_object(s, page, p, SLUB_RED_INACTIVE);
	}

	kmemcheck_free_shadow(page, compound_order(page));

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		-pages);

	__ClearPageSlabPfmemalloc(page);
	__ClearPageSlab(page);

	page_mapcount_reset(page);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
}

#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

	__free_slab(page->slab_cache, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			head = &page->rcu_head;
		}

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	dec_slabs_node(s, page_to_nid(page), page->objects);
	free_slab(s, page);
}

/*
 * Management of partially allocated slabs.
 */
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
{
	n->nr_partial++;
	if (tail == DEACTIVATE_TO_TAIL)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
}

static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
{
	lockdep_assert_held(&n->list_lock);
	__add_partial(n, page, tail);
}

static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
}

/*
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
 *
 * Returns a list of objects or NULL if it fails.
 */
static inline void *acquire_slab(struct kmem_cache *s,
		struct kmem_cache_node *n, struct page *page,
		int mode, int *objects)
{
	void *freelist;
	unsigned long counters;
	struct page new;

	lockdep_assert_held(&n->list_lock);

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
	*objects = new.objects - new.inuse;
	if (mode) {
		new.inuse = page->objects;
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}

	VM_BUG_ON(new.frozen);
	new.frozen = 1;

	if (!__cmpxchg_double_slab(s, page,
			freelist, counters,
			new.freelist, new.counters,
			"acquire_slab"))
		return NULL;

	remove_partial(n, page);
	WARN_ON(!freelist);
	return freelist;
}

static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);

/*
 * Try to allocate a partial slab from a specific node.
 */
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
{
	struct page *page, *page2;
	void *object = NULL;
	int available = 0;
	int objects;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
		void *t;

		if (!pfmemalloc_match(page, flags))
			continue;

		t = acquire_slab(s, n, page, object == NULL, &objects);
		if (!t)
			break;

		available += objects;
		if (!object) {
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
			put_cpu_partial(s, page, 0);
			stat(s, CPU_PARTIAL_NODE);
		}
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
			break;

	}
	spin_unlock(&n->list_lock);
	return object;
}

/*
 * Get a page from somewhere. Search in increasing NUMA distances.
 */
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
		struct kmem_cache_cpu *c)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zoneref *z;
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
	void *object;
	unsigned int cpuset_mems_cookie;

	/*
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
	 *
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
	 *
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
	 */
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
		return NULL;

	do {
		cpuset_mems_cookie = read_mems_allowed_begin();
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed(zone, flags) &&
					n->nr_partial > s->min_partial) {
				object = get_partial_node(s, n, c, flags);
				if (object) {
					/*
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
					 */
					return object;
				}
			}
		}
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
		struct kmem_cache_cpu *c)
{
	void *object;
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);

	object = get_partial_node(s, get_node(s, searchnode), c, flags);
	if (object || node != NUMA_NO_NODE)
		return object;

	return get_any_partial(s, flags, c);
}

#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	pr_info("%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		pr_warn("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
}

static void init_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}

/*
 * Remove the cpu slab
 */
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
{
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
	int tail = DEACTIVATE_TO_HEAD;
	struct page new;
	struct page old;

	if (page->freelist) {
		stat(s, DEACTIVATE_REMOTE_FREES);
		tail = DEACTIVATE_TO_TAIL;
	}

	/*
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

		} while (!__cmpxchg_double_slab(s, page,
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

	/*
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
	 */
redo:

	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);

	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

	if (!new.inuse && n->nr_partial >= s->min_partial)
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)

			remove_full(s, n, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
			stat(s, tail);

		} else if (m == M_FULL) {

			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
	if (!__cmpxchg_double_slab(s, page,
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
}

/*
 * Unfreeze all the cpu partial slabs.
 *
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
 */
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	struct kmem_cache_node *n = NULL, *n2 = NULL;
	struct page *page, *discard_page = NULL;

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

		} while (!__cmpxchg_double_slab(s, page,
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
			page->next = discard_page;
			discard_page = page;
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
		}
	}

	if (n)
		spin_unlock(&n->list_lock);

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
#endif
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	struct page *oldpage;
	int pages;
	int pobjects;

	preempt_disable();
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
				local_irq_restore(flags);
				oldpage = NULL;
				pobjects = 0;
				pages = 0;
				stat(s, CPU_PARTIAL_DRAIN);
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
#endif
}

static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
	stat(s, CPUSLAB_FLUSH);
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
}

/*
 * Flush cpu slab.
 *
 * Called from IPI handler with interrupts disabled.
 */
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

		unfreeze_partials(s, c);
	}
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

	__flush_cpu_slab(s, smp_processor_id());
}

static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

	return c->page || c->partial;
}

static void flush_all(struct kmem_cache *s)
{
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
}

/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct page *page, int node)
{
#ifdef CONFIG_NUMA
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
		return 0;
#endif
	return 1;
}

#ifdef CONFIG_SLUB_DEBUG
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */

static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
	int node;
	struct kmem_cache_node *n;

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));

	if (oo_order(s->min) > get_order(s->object_size))
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);

	for_each_kmem_cache_node(s, node, n) {
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);

		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
#endif
}

static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
	void *freelist;
	struct kmem_cache_cpu *c = *pc;
	struct page *page;

	freelist = get_partial(s, flags, node, c);

	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
	if (page) {
		c = raw_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
		freelist = page->freelist;
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
		freelist = NULL;

	return freelist;
}

static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

/*
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
 *
 * This function must be called with interrupt disabled.
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;

		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

	} while (!__cmpxchg_double_slab(s, page,
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

/*
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
 *
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
 *
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
 */
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *freelist;
	struct page *page;

	page = c->page;
	if (!page)
		goto new_slab;
redo:

	if (unlikely(!node_match(page, node))) {
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
	}

	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

	/* must check again c->freelist in case of cpu migration or IRQ */
	freelist = c->freelist;
	if (freelist)
		goto load_freelist;

	freelist = get_freelist(s, page);

	if (!freelist) {
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
		goto new_slab;
	}

	stat(s, ALLOC_REFILL);

load_freelist:
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
	c->freelist = get_freepointer(s, freelist);
	c->tid = next_tid(c->tid);
	return freelist;

new_slab:

	if (c->partial) {
		page = c->page = c->partial;
		c->partial = page->next;
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
	}

	freelist = new_slab_objects(s, gfpflags, node, &c);

	if (unlikely(!freelist)) {
		slab_out_of_memory(s, gfpflags, node);
		return NULL;
	}

	page = c->page;
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
		goto load_freelist;

	/* Only entered in the debug case */
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
		goto new_slab;	/* Slab failed checks. Next slab needed */

	deactivate_slab(s, page, get_freepointer(s, freelist));
	c->page = NULL;
	c->freelist = NULL;
	return freelist;
}

/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
		gfp_t gfpflags, int node, unsigned long addr)
{
	void *object;
	struct kmem_cache_cpu *c;
	struct page *page;
	unsigned long tid;

	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
		return NULL;
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
	 *
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
	 */
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

	object = c->freelist;
	page = c->page;
	if (unlikely(!object || !node_match(page, node))) {
		object = __slab_alloc(s, gfpflags, node, addr, c);
		stat(s, ALLOC_SLOWPATH);
	} else {
		void *next_object = get_freepointer_safe(s, object);

		/*
		 * The cmpxchg will only match if there was no additional
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
		 */
		if (unlikely(!this_cpu_cmpxchg_double(
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
				next_object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
		prefetch_freepointer(s, next_object);
		stat(s, ALLOC_FASTPATH);
	}

	if (unlikely(gfpflags & __GFP_ZERO) && object)
		memset(object, 0, s->object_size);

	slab_post_alloc_hook(s, gfpflags, 1, &object);

	return object;
}

static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);

	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);

	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_TRACING
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	kasan_kmalloc(s, ret, size);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
#endif

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);

	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    s->object_size, s->size, gfpflags, node);

	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

#ifdef CONFIG_TRACING
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
				    gfp_t gfpflags,
				    int node, size_t size)
{
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);

	kasan_kmalloc(s, ret, size);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
#endif
#endif

/*
 * Slow path handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
 *
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
 */
static void __slab_free(struct kmem_cache *s, struct page *page,
			void *head, void *tail, int cnt,
			unsigned long addr)

{
	void *prior;
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
	unsigned long uninitialized_var(flags);

	stat(s, FREE_SLOWPATH);

	if (kmem_cache_debug(s) &&
	    !free_debug_processing(s, page, head, tail, cnt, addr))
		return;

	do {
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, tail, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse -= cnt;
		if ((!new.inuse || !prior) && !was_frozen) {

			if (kmem_cache_has_cpu_partial(s) && !prior) {

				/*
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
				 */
				new.frozen = 1;

			} else { /* Needs to be taken off a list */

				n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
		}

	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		head, new.counters,
		"__slab_free"));

	if (likely(!n)) {

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
		if (new.frozen && !was_frozen) {
			put_cpu_partial(s, page, 1);
			stat(s, CPU_PARTIAL_FREE);
		}
		/*
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}

	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
	 */
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
			remove_full(s, n, page);
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
	}
	spin_unlock_irqrestore(&n->list_lock, flags);
	return;

slab_empty:
	if (prior) {
		/*
		 * Slab on the partial list.
		 */
		remove_partial(n, page);
		stat(s, FREE_REMOVE_PARTIAL);
	} else {
		/* Slab must be on the full list */
		remove_full(s, n, page);
	}

	spin_unlock_irqrestore(&n->list_lock, flags);
	stat(s, FREE_SLAB);
	discard_slab(s, page);
}

/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
 */
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	void *tail_obj = tail ? : head;
	struct kmem_cache_cpu *c;
	unsigned long tid;

	slab_free_freelist_hook(s, head, tail);

redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succeed.
	 */
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));

	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();

	if (likely(page == c->page)) {
		set_freepointer(s, tail_obj, c->freelist);

		if (unlikely(!this_cpu_cmpxchg_double(
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				head, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
		stat(s, FREE_FASTPATH);
	} else
		__slab_free(s, page, head, tail_obj, cnt, addr);

}

void kmem_cache_free(struct kmem_cache *s, void *x)
{
	s = cache_from_obj(s, x);
	if (!s)
		return;
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
	trace_kmem_cache_free(_RET_IP_, x);
}
EXPORT_SYMBOL(kmem_cache_free);

struct detached_freelist {
	struct page *page;
	void *tail;
	void *freelist;
	int cnt;
	struct kmem_cache *s;
};

/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
	struct page *page;

	/* Always re-init detached_freelist */
	df->page = NULL;

	do {
		object = p[--size];
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
	} while (!object && size);

	if (!object)
		return 0;

	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
			__free_kmem_pages(page, compound_order(page));
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}

	/* Start new detached freelist */
	df->page = page;
	set_freepointer(df->s, object, NULL);
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
			set_freepointer(df->s, object, df->freelist);
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
		}

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
	}

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
		if (unlikely(!df.page))
			continue;

		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
	} while (likely(size));
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

/* Note that interrupts must be enabled when calling this function. */
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
{
	struct kmem_cache_cpu *c;
	int i;

	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
					    _RET_IP_, c);
			if (unlikely(!p[i]))
				goto error;

			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
	return i;
error:
	local_irq_enable();
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


/*
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
 * must be moved on and off the partial lists and is therefore a factor in
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static int slub_min_objects;

/*
 * Calculate the order of allocation given an slab object size.
 *
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/16th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
 *
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
 *
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
 */
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover, int reserved)
{
	int order;
	int rem;
	int min_order = slub_min_order;

	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;

	for (order = max(min_order, get_order(min_objects * size + reserved));
			order <= max_order; order++) {

		unsigned long slab_size = PAGE_SIZE << order;

		rem = (slab_size - reserved) % size;

		if (rem <= slab_size / fract_leftover)
			break;
	}

	return order;
}

static inline int calculate_order(int size, int reserved)
{
	int order;
	int min_objects;
	int fraction;
	int max_objects;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we increase the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
	max_objects = order_objects(slub_max_order, size, reserved);
	min_objects = min(min_objects, max_objects);

	while (min_objects > 1) {
		fraction = 16;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
					slub_max_order, fraction, reserved);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects--;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1, reserved);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
	if (order < MAX_ORDER)
		return order;
	return -ENOSYS;
}

static void
init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_set(&n->nr_slabs, 0);
	atomic_long_set(&n->total_objects, 0);
	INIT_LIST_HEAD(&n->full);
#endif
}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));

	/*
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
	 */
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);

	return 1;
}

static struct kmem_cache *kmem_cache_node;

/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
 */
static void early_kmem_cache_node_alloc(int node)
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));

	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);

	BUG_ON(!page);
	if (page_to_nid(page) != node) {
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
	}

	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
#ifdef CONFIG_SLUB_DEBUG
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
	init_tracking(kmem_cache_node, n);
#endif
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
	init_kmem_cache_node(n);
	inc_slabs_node(kmem_cache_node, node, page->objects);

	/*
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
	 */
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
		s->node[node] = NULL;
	}
}

void __kmem_cache_release(struct kmem_cache *s)
{
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

static int init_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n;

		if (slab_state == DOWN) {
			early_kmem_cache_node_alloc(node);
			continue;
		}
		n = kmem_cache_alloc_node(kmem_cache_node,
						GFP_KERNEL, node);

		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
		}

		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}

static void set_min_partial(struct kmem_cache *s, unsigned long min)
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s, int forced_order)
{
	unsigned long flags = s->flags;
	unsigned long size = s->object_size;
	int order;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
			!s->ctor)
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
	 * If we are Redzoning then check if there is some space between the
	 * end of the object and the free pointer. If not then add an
	 * additional word to have some bytes to store Redzone information.
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
		size += sizeof(void *);
#endif

	/*
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
		s->ctor)) {
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

#ifdef CONFIG_SLUB_DEBUG
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

	if (flags & SLAB_RED_ZONE) {
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if a user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
#endif

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, s->align);
	s->size = size;
	if (forced_order >= 0)
		order = forced_order;
	else
		order = calculate_order(size, s->reserved);

	if (order < 0)
		return 0;

	s->allocflags = 0;
	if (order)
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= GFP_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

	/*
	 * Determine the number of objects per slab
	 */
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;

	return !!oo_objects(s->oo);
}

static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
{
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
	s->reserved = 0;

	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);

	if (!calculate_sizes(s, -1))
		goto error;
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
		if (get_order(s->size) > get_order(s->object_size)) {
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}

#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

#ifdef CONFIG_NUMA
	s->remote_node_defrag_ratio = 1000;
#endif
	if (!init_kmem_cache_nodes(s))
		goto error;

	if (alloc_kmem_cache_cpus(s))
		return 0;

	free_kmem_cache_nodes(s);
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, (unsigned long)s->size, s->size,
		      oo_order(s->oo), s->offset, flags);
	return -EINVAL;
}

static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
	if (!map)
		return;
	slab_err(s, page, text, s->name);
	slab_lock(page);

	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
	kfree(map);
#endif
}

/*
 * Attempt to free all partial slabs on a node.
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
 */
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
{
	struct page *page, *h;

	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
	list_for_each_entry_safe(page, h, &n->partial, lru) {
		if (!page->inuse) {
			remove_partial(n, page);
			discard_slab(s, page);
		} else {
			list_slab_objects(s, page,
			"Objects remaining in %s on __kmem_cache_shutdown()");
		}
	}
	spin_unlock_irq(&n->list_lock);
}

/*
 * Release all resources used by a slab cache.
 */
int __kmem_cache_shutdown(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	flush_all(s);
	/* Attempt to free all objects */
	for_each_kmem_cache_node(s, node, n) {
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
			return 1;
	}
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
	get_option(&str, &slub_min_order);

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
	get_option(&str, &slub_max_order);
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
	get_option(&str, &slub_min_objects);

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
	struct kmem_cache *s;
	void *ret;

	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return kmalloc_large(size, flags);

	s = kmalloc_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
		return s;

	ret = slab_alloc(s, flags, _RET_IP_);

	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);

	kasan_kmalloc(s, ret, size);

	return ret;
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
	struct page *page;
	void *ptr = NULL;

	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
	if (page)
		ptr = page_address(page);

	kmalloc_large_node_hook(ptr, size, flags);
	return ptr;
}

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	struct kmem_cache *s;
	void *ret;

	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
		ret = kmalloc_large_node(size, flags, node);

		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);

		return ret;
	}

	s = kmalloc_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
		return s;

	ret = slab_alloc_node(s, flags, node, _RET_IP_);

	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);

	kasan_kmalloc(s, ret, size);

	return ret;
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

static size_t __ksize(const void *object)
{
	struct page *page;

	if (unlikely(object == ZERO_SIZE_PTR))
		return 0;

	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
		return PAGE_SIZE << compound_order(page);
	}

	return slab_ksize(page->slab_cache);
}

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
	void *object = (void *)x;

	trace_kfree(_RET_IP_, x);

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return;

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		BUG_ON(!PageCompound(page));
		kfree_hook(x);
		__free_kmem_pages(page, compound_order(page));
		return;
	}
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
}
EXPORT_SYMBOL(kfree);

#define SHRINK_PROMOTE_MAX 32

/*
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
 */
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
	unsigned long flags;
	int ret = 0;

	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

	flush_all(s);
	for_each_kmem_cache_node(s, node, n) {
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
		 * Build lists of slabs to discard or promote.
		 *
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
				n->nr_partial--;
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
		}

		/*
		 * Promote the slabs filled up most to the head of the
		 * partial list.
		 */
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);

		spin_unlock_irqrestore(&n->list_lock, flags);

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, &discard, lru)
			discard_slab(s, page);

		if (slabs_node(s, node))
			ret = 1;
	}

	return ret;
}

static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list)
		__kmem_cache_shrink(s, false);
	mutex_unlock(&slab_mutex);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid_normal;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shouldn't call this
			 * callback. So, we must fail.
			 */
			BUG_ON(slabs_node(s, offline_node));

			s->node[offline_node] = NULL;
			kmem_cache_free(kmem_cache_node, n);
		}
	}
	mutex_unlock(&slab_mutex);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid_normal;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is available yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	mutex_unlock(&slab_mutex);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
	return ret;
}

static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};

/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

/*
 * Used for early kmem_cache structures that were allocated using
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
 */

static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
{
	int node;
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
	struct kmem_cache_node *n;

	memcpy(s, static_cache, kmem_cache->object_size);

	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
	for_each_kmem_cache_node(s, node, n) {
		struct page *p;

		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;

#ifdef CONFIG_SLUB_DEBUG
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
#endif
	}
	slab_init_memcg_params(s);
	list_add(&s->list, &slab_caches);
	return s;
}

void __init kmem_cache_init(void)
{
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;

	if (debug_guardpage_minorder())
		slub_max_order = 0;

	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;

	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);

	register_hotmemory_notifier(&slab_memory_callback_nb);

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);

	kmem_cache = bootstrap(&boot_kmem_cache);

	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
	setup_kmalloc_cache_index_table();
	create_kmalloc_caches(0);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
#endif

	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
		cache_line_size(),
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

void __init kmem_cache_init_late(void)
{
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *s, *c;

	s = find_mergeable(size, align, flags, name, ctor);
	if (s) {
		s->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->object_size = max(s->object_size, (int)size);
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));

		for_each_memcg_cache(c, s) {
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
			s = NULL;
		}
	}

	return s;
}

int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
{
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;

	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

	memcg_propagate_slab_attrs(s);
	err = sysfs_slab_add(s);
	if (err)
		__kmem_cache_release(s);

	return err;
}

#ifdef CONFIG_SMP
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	struct kmem_cache *s;
	unsigned long flags;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		mutex_lock(&slab_mutex);
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
		mutex_unlock(&slab_mutex);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block slab_notifier = {
	.notifier_call = slab_cpuup_callback
};

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
{
	struct kmem_cache *s;
	void *ret;

	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return kmalloc_large(size, gfpflags);

	s = kmalloc_slab(size, gfpflags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
		return s;

	ret = slab_alloc(s, gfpflags, caller);

	/* Honor the call site pointer we received. */
	trace_kmalloc(caller, ret, size, s->size, gfpflags);

	return ret;
}

#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, unsigned long caller)
{
	struct kmem_cache *s;
	void *ret;

	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}

	s = kmalloc_slab(size, gfpflags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
		return s;

	ret = slab_alloc_node(s, gfpflags, node, caller);

	/* Honor the call site pointer we received. */
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);

	return ret;
}
#endif

#ifdef CONFIG_SYSFS
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
#endif

#ifdef CONFIG_SLUB_DEBUG
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, page->objects);

	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
	}

	for_each_object(p, s, addr, page->objects)
		if (!test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
				return 0;
	return 1;
}

static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
{
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
}

static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
		validate_slab_slab(s, page, map);
		count++;
	}
	if (count != n->nr_partial)
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
		validate_slab_slab(s, page, map);
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

static long validate_slab_cache(struct kmem_cache *s)
{
	int node;
	unsigned long count = 0;
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				sizeof(unsigned long), GFP_KERNEL);
	struct kmem_cache_node *n;

	if (!map)
		return -ENOMEM;

	flush_all(s);
	for_each_kmem_cache_node(s, node, n)
		count += validate_slab_node(s, n, map);
	kfree(map);
	return count;
}
/*
 * Generate lists of code addresses where slabcache objects are allocated
 * and freed.
 */

struct location {
	unsigned long count;
	unsigned long addr;
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	DECLARE_BITMAP(cpus, NR_CPUS);
	nodemask_t nodes;
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

	l = (void *)__get_free_pages(flags, order);
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
				const struct track *track)
{
	long start, end, pos;
	struct location *l;
	unsigned long caddr;
	unsigned long age = jiffies - track->when;

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
			return 1;
		}

		if (track->addr < caddr)
			end = pos;
		else
			start = pos;
	}

	/*
	 * Not found. Insert new tracking element.
	 */
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc,
		unsigned long *map)
{
	void *addr = page_address(page);
	void *p;

	bitmap_zero(map, page->objects);
	get_map(s, page, map);

	for_each_object(p, s, addr, page->objects)
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
	int len = 0;
	unsigned long i;
	struct loc_track t = { 0, 0, NULL };
	int node;
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
	struct kmem_cache_node *n;

	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
		return sprintf(buf, "Out of memory\n");
	}
	/* Push back cpu slabs */
	flush_all(s);

	for_each_kmem_cache_node(s, node, n) {
		unsigned long flags;
		struct page *page;

		if (!atomic_long_read(&n->nr_slabs))
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc, map);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc, map);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
		struct location *l = &t.loc[i];

		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
			break;
		len += sprintf(buf + len, "%7ld ", l->count);

		if (l->addr)
			len += sprintf(buf + len, "%pS", (void *)l->addr);
		else
			len += sprintf(buf + len, "<not-available>");

		if (l->sum_time != l->min_time) {
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
		} else
			len += sprintf(buf + len, " age=%ld",
				l->min_time);

		if (l->min_pid != l->max_pid)
			len += sprintf(buf + len, " pid=%ld-%ld",
				l->min_pid, l->max_pid);
		else
			len += sprintf(buf + len, " pid=%ld",
				l->min_pid);

		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));

		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));

		len += sprintf(buf + len, "\n");
	}

	free_loc_track(&t);
	kfree(map);
	if (!t.count)
		len += sprintf(buf, "No data\n");
	return len;
}
#endif

#ifdef SLUB_RESILIENCY_TEST
static void __init resiliency_test(void)
{
	u8 *p;

	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);

	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	pr_err("\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

#ifdef CONFIG_SYSFS
enum slab_stat_type {
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
};

#define SO_ALL		(1 << SL_ALL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
#define SO_TOTAL	(1 << SL_TOTAL)

static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	if (!nodes)
		return -ENOMEM;

	if (flags & SO_CPU) {
		int cpu;

		for_each_possible_cpu(cpu) {
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
			int node;
			struct page *page;

			page = READ_ONCE(c->page);
			if (!page)
				continue;

			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;

			total += x;
			nodes[node] += x;

			page = READ_ONCE(c->partial);
			if (page) {
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
				total += x;
				nodes[node] += x;
			}
		}
	}

	get_online_mems();
#ifdef CONFIG_SLUB_DEBUG
	if (flags & SO_ALL) {
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {

			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
			else
				x = atomic_long_read(&n->nr_slabs);
			total += x;
			nodes[node] += x;
		}

	} else
#endif
	if (flags & SO_PARTIAL) {
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
	for (node = 0; node < nr_node_ids; node++)
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	put_online_mems();
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

#ifdef CONFIG_SLUB_DEBUG
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (atomic_long_read(&n->total_objects))
			return 1;

	return 0;
}
#endif

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj)

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0600, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->object_size);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", oo_objects(s->oo));
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	unsigned long order;
	int err;

	err = kstrtoul(buf, 10, &order);
	if (err)
		return err;

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", oo_order(s->oo));
}
SLAB_ATTR(order);

static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = kstrtoul(buf, 10, &min);
	if (err)
		return err;

	set_min_partial(s, min);
	return length;
}
SLAB_ATTR(min_partial);

static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = kstrtoul(buf, 10, &objects);
	if (err)
		return err;
	if (objects && !kmem_cache_has_cpu_partial(s))
		return -EINVAL;

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

#ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
		s->flags |= SLAB_CONSISTENCY_CHECKS;
	}
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
		s->flags |= SLAB_TRACE;
	}
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1') {
		s->flags |= SLAB_RED_ZONE;
	}
	calculate_sizes(s, -1);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1') {
		s->flags |= SLAB_POISON;
	}
	calculate_sizes(s, -1);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
		s->flags |= SLAB_STORE_USER;
	}
	calculate_sizes(s, -1);
	return length;
}
SLAB_ATTR(store_user);

static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
}
SLAB_ATTR(validate);

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	if (s->refcount > 1)
		return -EINVAL;

	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
#endif

static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

#ifdef CONFIG_NUMA
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
}

static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	unsigned long ratio;
	int err;

	err = kstrtoul(buf, 10, &ratio);
	if (err)
		return err;

	if (ratio <= 100)
		s->remote_node_defrag_ratio = ratio * 10;

	return length;
}
SLAB_ATTR(remote_node_defrag_ratio);
#endif

#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
	}
#endif
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
STAT_ATTR(ORDER_FALLBACK, order_fallback);
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
#endif

static struct attribute *slab_attrs[] = {
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&min_partial_attr.attr,
	&cpu_partial_attr.attr,
	&objects_attr.attr,
	&objects_partial_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&shrink_attr.attr,
	&reserved_attr.attr,
	&slabs_cpu_partial_attr.attr,
#ifdef CONFIG_SLUB_DEBUG
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
	&validate_attr.attr,
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
#endif
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
	&remote_node_defrag_ratio_attr.attr,
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&alloc_node_mismatch_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
	&deactivate_bypass_attr.attr,
	&order_fallback_attr.attr,
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
#endif
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
#ifdef CONFIG_MEMCG
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		struct kmem_cache *c;

		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
		mutex_unlock(&slab_mutex);
	}
#endif
	return err;
}

static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG
	int i;
	char *buffer = NULL;
	struct kmem_cache *root_cache;

	if (is_root_cache(s))
		return;

	root_cache = s->memcg_params.root_cache;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!root_cache->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

static const struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
	.release = kmem_cache_release,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static const struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

static struct kset *slab_kset;

static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG
	if (!is_root_cache(s))
		return s->memcg_params.root_cache->memcg_kset;
#endif
	return slab_kset;
}

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 *
 * Format	:[flags-]size
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
		*p++ = 'F';
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);

	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable = slab_unmergeable(s);

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
		sysfs_remove_link(&slab_kset->kobj, s->name);
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

	s->kobj.kset = cache_kset(s);
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
	if (err)
		goto out;

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		goto out_del_kobj;

#ifdef CONFIG_MEMCG
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
			err = -ENOMEM;
			goto out_del_kobj;
		}
	}
#endif

	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
}

void sysfs_slab_remove(struct kmem_cache *s)
{
	if (slab_state < FULL)
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
	kobject_put(&s->kobj);
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we lose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

static struct saved_alias *alias_list;

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == FULL) {
		/*
		 * If we have a leftover link then remove it.
		 */
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
	struct kmem_cache *s;
	int err;

	mutex_lock(&slab_mutex);

	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
	if (!slab_kset) {
		mutex_unlock(&slab_mutex);
		pr_err("Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

	slab_state = FULL;

	list_for_each_entry(s, &slab_caches, list) {
		err = sysfs_slab_add(s);
		if (err)
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
	}

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
		if (err)
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
		kfree(al);
	}

	mutex_unlock(&slab_mutex);
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif /* CONFIG_SYSFS */

/*
 * The /proc/slabinfo ABI
 */
#ifdef CONFIG_SLABINFO
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
{
	unsigned long nr_slabs = 0;
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n) {
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
		nr_free += count_partial(n, count_free);
	}

	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
{
}

ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
{
	return -EIO;
}
#endif /* CONFIG_SLABINFO */