summaryrefslogtreecommitdiff
path: root/mm/slob.c
blob: a1f42bdc0245c84889080f20be6abb42ac808add (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/*
 * SLOB Allocator: Simple List Of Blocks
 *
 * Matt Mackall <mpm@selenic.com> 12/30/03
 *
 * How SLOB works:
 *
 * The core of SLOB is a traditional K&R style heap allocator, with
 * support for returning aligned objects. The granularity of this
 * allocator is 8 bytes on x86, though it's perhaps possible to reduce
 * this to 4 if it's deemed worth the effort. The slob heap is a
 * singly-linked list of pages from __get_free_page, grown on demand
 * and allocation from the heap is currently first-fit.
 *
 * Above this is an implementation of kmalloc/kfree. Blocks returned
 * from kmalloc are 8-byte aligned and prepended with a 8-byte header.
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
 * __get_free_pages directly so that it can return page-aligned blocks
 * and keeps a linked list of such pages and their orders. These
 * objects are detected in kfree() by their page alignment.
 *
 * SLAB is emulated on top of SLOB by simply calling constructors and
 * destructors for every SLAB allocation. Objects are returned with
 * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is
 * set, in which case the low-level allocator will fragment blocks to
 * create the proper alignment. Again, objects of page-size or greater
 * are allocated by calling __get_free_pages. As SLAB objects know
 * their size, no separate size bookkeeping is necessary and there is
 * essentially no allocation space overhead.
 */

#include <linux/config.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>

struct slob_block {
	int units;
	struct slob_block *next;
};
typedef struct slob_block slob_t;

#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
#define SLOB_ALIGN L1_CACHE_BYTES

struct bigblock {
	int order;
	void *pages;
	struct bigblock *next;
};
typedef struct bigblock bigblock_t;

static slob_t arena = { .next = &arena, .units = 1 };
static slob_t *slobfree = &arena;
static bigblock_t *bigblocks;
static DEFINE_SPINLOCK(slob_lock);
static DEFINE_SPINLOCK(block_lock);

static void slob_free(void *b, int size);

static void *slob_alloc(size_t size, gfp_t gfp, int align)
{
	slob_t *prev, *cur, *aligned = 0;
	int delta = 0, units = SLOB_UNITS(size);
	unsigned long flags;

	spin_lock_irqsave(&slob_lock, flags);
	prev = slobfree;
	for (cur = prev->next; ; prev = cur, cur = cur->next) {
		if (align) {
			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
			delta = aligned - cur;
		}
		if (cur->units >= units + delta) { /* room enough? */
			if (delta) { /* need to fragment head to align? */
				aligned->units = cur->units - delta;
				aligned->next = cur->next;
				cur->next = aligned;
				cur->units = delta;
				prev = cur;
				cur = aligned;
			}

			if (cur->units == units) /* exact fit? */
				prev->next = cur->next; /* unlink */
			else { /* fragment */
				prev->next = cur + units;
				prev->next->units = cur->units - units;
				prev->next->next = cur->next;
				cur->units = units;
			}

			slobfree = prev;
			spin_unlock_irqrestore(&slob_lock, flags);
			return cur;
		}
		if (cur == slobfree) {
			spin_unlock_irqrestore(&slob_lock, flags);

			if (size == PAGE_SIZE) /* trying to shrink arena? */
				return 0;

			cur = (slob_t *)__get_free_page(gfp);
			if (!cur)
				return 0;

			slob_free(cur, PAGE_SIZE);
			spin_lock_irqsave(&slob_lock, flags);
			cur = slobfree;
		}
	}
}

static void slob_free(void *block, int size)
{
	slob_t *cur, *b = (slob_t *)block;
	unsigned long flags;

	if (!block)
		return;

	if (size)
		b->units = SLOB_UNITS(size);

	/* Find reinsertion point */
	spin_lock_irqsave(&slob_lock, flags);
	for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next)
		if (cur >= cur->next && (b > cur || b < cur->next))
			break;

	if (b + b->units == cur->next) {
		b->units += cur->next->units;
		b->next = cur->next->next;
	} else
		b->next = cur->next;

	if (cur + cur->units == b) {
		cur->units += b->units;
		cur->next = b->next;
	} else
		cur->next = b;

	slobfree = cur;

	spin_unlock_irqrestore(&slob_lock, flags);
}

static int FASTCALL(find_order(int size));
static int fastcall find_order(int size)
{
	int order = 0;
	for ( ; size > 4096 ; size >>=1)
		order++;
	return order;
}

void *kmalloc(size_t size, gfp_t gfp)
{
	slob_t *m;
	bigblock_t *bb;
	unsigned long flags;

	if (size < PAGE_SIZE - SLOB_UNIT) {
		m = slob_alloc(size + SLOB_UNIT, gfp, 0);
		return m ? (void *)(m + 1) : 0;
	}

	bb = slob_alloc(sizeof(bigblock_t), gfp, 0);
	if (!bb)
		return 0;

	bb->order = find_order(size);
	bb->pages = (void *)__get_free_pages(gfp, bb->order);

	if (bb->pages) {
		spin_lock_irqsave(&block_lock, flags);
		bb->next = bigblocks;
		bigblocks = bb;
		spin_unlock_irqrestore(&block_lock, flags);
		return bb->pages;
	}

	slob_free(bb, sizeof(bigblock_t));
	return 0;
}

EXPORT_SYMBOL(kmalloc);

void kfree(const void *block)
{
	bigblock_t *bb, **last = &bigblocks;
	unsigned long flags;

	if (!block)
		return;

	if (!((unsigned long)block & (PAGE_SIZE-1))) {
		/* might be on the big block list */
		spin_lock_irqsave(&block_lock, flags);
		for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) {
			if (bb->pages == block) {
				*last = bb->next;
				spin_unlock_irqrestore(&block_lock, flags);
				free_pages((unsigned long)block, bb->order);
				slob_free(bb, sizeof(bigblock_t));
				return;
			}
		}
		spin_unlock_irqrestore(&block_lock, flags);
	}

	slob_free((slob_t *)block - 1, 0);
	return;
}

EXPORT_SYMBOL(kfree);

unsigned int ksize(const void *block)
{
	bigblock_t *bb;
	unsigned long flags;

	if (!block)
		return 0;

	if (!((unsigned long)block & (PAGE_SIZE-1))) {
		spin_lock_irqsave(&block_lock, flags);
		for (bb = bigblocks; bb; bb = bb->next)
			if (bb->pages == block) {
				spin_unlock_irqrestore(&slob_lock, flags);
				return PAGE_SIZE << bb->order;
			}
		spin_unlock_irqrestore(&block_lock, flags);
	}

	return ((slob_t *)block - 1)->units * SLOB_UNIT;
}

struct kmem_cache {
	unsigned int size, align;
	const char *name;
	void (*ctor)(void *, struct kmem_cache *, unsigned long);
	void (*dtor)(void *, struct kmem_cache *, unsigned long);
};

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
	size_t align, unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
{
	struct kmem_cache *c;

	c = slob_alloc(sizeof(struct kmem_cache), flags, 0);

	if (c) {
		c->name = name;
		c->size = size;
		c->ctor = ctor;
		c->dtor = dtor;
		/* ignore alignment unless it's forced */
		c->align = (flags & SLAB_MUST_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
		if (c->align < align)
			c->align = align;
	}

	return c;
}
EXPORT_SYMBOL(kmem_cache_create);

int kmem_cache_destroy(struct kmem_cache *c)
{
	slob_free(c, sizeof(struct kmem_cache));
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
{
	void *b;

	if (c->size < PAGE_SIZE)
		b = slob_alloc(c->size, flags, c->align);
	else
		b = (void *)__get_free_pages(flags, find_order(c->size));

	if (c->ctor)
		c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR);

	return b;
}
EXPORT_SYMBOL(kmem_cache_alloc);

void kmem_cache_free(struct kmem_cache *c, void *b)
{
	if (c->dtor)
		c->dtor(b, c, 0);

	if (c->size < PAGE_SIZE)
		slob_free(b, c->size);
	else
		free_pages((unsigned long)b, find_order(c->size));
}
EXPORT_SYMBOL(kmem_cache_free);

unsigned int kmem_cache_size(struct kmem_cache *c)
{
	return c->size;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *c)
{
	return c->name;
}
EXPORT_SYMBOL(kmem_cache_name);

static struct timer_list slob_timer = TIMER_INITIALIZER(
	(void (*)(unsigned long))kmem_cache_init, 0, 0);

void kmem_cache_init(void)
{
	void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1);

	if (p)
		free_page((unsigned long)p);

	mod_timer(&slob_timer, jiffies + HZ);
}

atomic_t slab_reclaim_pages = ATOMIC_INIT(0);
EXPORT_SYMBOL(slab_reclaim_pages);

#ifdef CONFIG_SMP

void *__alloc_percpu(size_t size)
{
	int i;
	struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);

	if (!pdata)
		return NULL;

	for (i = 0; i < NR_CPUS; i++) {
		if (!cpu_possible(i))
			continue;
		pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
	return (void *) (~(unsigned long) pdata);

unwind_oom:
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);

void
free_percpu(const void *objp)
{
	int i;
	struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);

	for (i = 0; i < NR_CPUS; i++) {
		if (!cpu_possible(i))
			continue;
		kfree(p->ptrs[i]);
	}
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);

#endif