summaryrefslogtreecommitdiff
path: root/mm/slab.c
blob: 59c8e28f7b6ab7498ba13a244168f3e021f21155 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
// SPDX-License-Identifier: GPL-2.0
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same initializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts -
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
 *  Several members in struct kmem_cache and struct slab never change, they
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/poison.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/cpuset.h>
#include	<linux/proc_fs.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/kfence.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
#include	<linux/string.h>
#include	<linux/uaccess.h>
#include	<linux/nodemask.h>
#include	<linux/kmemleak.h>
#include	<linux/mempolicy.h>
#include	<linux/mutex.h>
#include	<linux/fault-inject.h>
#include	<linux/rtmutex.h>
#include	<linux/reciprocal_div.h>
#include	<linux/debugobjects.h>
#include	<linux/memory.h>
#include	<linux/prefetch.h>
#include	<linux/sched/task_stack.h>

#include	<net/sock.h>

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

#include <trace/events/kmem.h>

#include	"internal.h"

#include	"slab.h"

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
	void *entry[];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
};

struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_NODE (MAX_NUMNODES)

static int drain_freelist(struct kmem_cache *cache,
			struct kmem_cache_node *n, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
static void cache_reap(struct work_struct *unused);

static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct slab *slab,
				void **list);
static int slab_early_init = 1;

#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))

static void kmem_cache_node_init(struct kmem_cache_node *parent)
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->total_slabs = 0;
	parent->free_slabs = 0;
	parent->shared = NULL;
	parent->alien = NULL;
	parent->colour_next = 0;
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)

#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/*
 * Optimization question: fewer reaps means less probability for unnecessary
 * cpucache drain/refill cycles.
 *
 * OTOH the cpuarrays can contain lots of objects,
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
#define	STATS_INC_NODEFREES(x)	do { } while (0)
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

/*
 * memory layout of objects:
 * 0		: objp
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 * 		redzone word.
 * cachep->obj_offset: The real object.
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
 */
static int obj_offset(struct kmem_cache *cachep)
{
	return cachep->obj_offset;
}

static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	return (unsigned long long *) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
}

static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
		return (unsigned long long *)(objp + cachep->size -
					      sizeof(unsigned long long) -
					      REDZONE_ALIGN);
	return (unsigned long long *) (objp + cachep->size -
				       sizeof(unsigned long long));
}

static void **dbg_userword(struct kmem_cache *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
}

#else

#define obj_offset(x)			0
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
 */
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
static bool slab_max_order_set __initdata;

static inline void *index_to_obj(struct kmem_cache *cache,
				 const struct slab *slab, unsigned int idx)
{
	return slab->s_mem + cache->size * idx;
}

#define BOOT_CPUCACHE_ENTRIES	1
/* internal cache of cache description objs */
static struct kmem_cache kmem_cache_boot = {
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
	.size = sizeof(struct kmem_cache),
	.name = "kmem_cache",
};

static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);

static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
{
	return this_cpu_ptr(cachep->cpu_cache);
}

/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		slab_flags_t flags, size_t *left_over)
{
	unsigned int num;
	size_t slab_size = PAGE_SIZE << gfporder;

	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
		num = slab_size / buffer_size;
		*left_over = slab_size % buffer_size;
	} else {
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
	}

	return num;
}

#if DEBUG
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)

static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
{
	pr_err("slab error in %s(): cache `%s': %s\n",
	       function, cachep->name, msg);
	dump_stack();
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
#endif

/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, slab_reap_node);

static void init_reap_node(int cpu)
{
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
}

static void next_reap_node(void)
{
	int node = __this_cpu_read(slab_reap_node);

	node = next_node_in(node, node_online_map);
	__this_cpu_write(slab_reap_node, node);
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void start_cpu_timer(int cpu)
{
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);

	if (reap_work->work.func == NULL) {
		init_reap_node(cpu);
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
	}
}

static void init_arraycache(struct array_cache *ac, int limit, int batch)
{
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
	}
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transferred to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(ac);
	init_arraycache(ac, entries, batchcount);
	return ac;
}

static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct slab *slab, void *objp)
{
	struct kmem_cache_node *n;
	int slab_node;
	LIST_HEAD(list);

	slab_node = slab_nid(slab);
	n = get_node(cachep, slab_node);

	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, slab_node, &list);
	spin_unlock(&n->list_lock);

	slabs_destroy(cachep, &list);
}

/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min3(from->avail, max, to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

/* &alien->lock must be held by alien callers. */
static __always_inline void __free_one(struct array_cache *ac, void *objp)
{
	/* Avoid trivial double-free. */
	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
		return;
	ac->entry[ac->avail++] = objp;
}

#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, n) do { } while (0)

static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
{
	return NULL;
}

static inline void free_alien_cache(struct alien_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags & ~__GFP_NOFAIL;
}

#else	/* CONFIG_NUMA */

static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	if (alc) {
		kmemleak_no_scan(alc);
		init_arraycache(&alc->ac, entries, batch);
		spin_lock_init(&alc->lock);
	}
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
	struct alien_cache **alc_ptr;
	int i;

	if (limit > 1)
		limit = 12;
	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
		}
	}
	return alc_ptr;
}

static void free_alien_cache(struct alien_cache **alc_ptr)
{
	int i;

	if (!alc_ptr)
		return;
	for_each_node(i)
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
}

static void __drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache *ac, int node,
				struct list_head *list)
{
	struct kmem_cache_node *n = get_node(cachep, node);

	if (ac->avail) {
		spin_lock(&n->list_lock);
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);

		free_block(cachep, ac->entry, ac->avail, node, list);
		ac->avail = 0;
		spin_unlock(&n->list_lock);
	}
}

/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
{
	int node = __this_cpu_read(slab_reap_node);

	if (n->alien) {
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
				spin_unlock_irq(&alc->lock);
				slabs_destroy(cachep, &list);
			}
		}
	}
}

static void drain_alien_cache(struct kmem_cache *cachep,
				struct alien_cache **alien)
{
	int i = 0;
	struct alien_cache *alc;
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
		alc = alien[i];
		if (alc) {
			LIST_HEAD(list);

			ac = &alc->ac;
			spin_lock_irqsave(&alc->lock, flags);
			__drain_alien_cache(cachep, ac, i, &list);
			spin_unlock_irqrestore(&alc->lock, flags);
			slabs_destroy(cachep, &list);
		}
	}
}

static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int slab_node)
{
	struct kmem_cache_node *n;
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
	LIST_HEAD(list);

	n = get_node(cachep, node);
	STATS_INC_NODEFREES(cachep);
	if (n->alien && n->alien[slab_node]) {
		alien = n->alien[slab_node];
		ac = &alien->ac;
		spin_lock(&alien->lock);
		if (unlikely(ac->avail == ac->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, ac, slab_node, &list);
		}
		__free_one(ac, objp);
		spin_unlock(&alien->lock);
		slabs_destroy(cachep, &list);
	} else {
		n = get_node(cachep, slab_node);
		spin_lock(&n->list_lock);
		free_block(cachep, &objp, 1, slab_node, &list);
		spin_unlock(&n->list_lock);
		slabs_destroy(cachep, &list);
	}
	return 1;
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int slab_node = slab_nid(virt_to_slab(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing an object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == slab_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, slab_node);
}

/*
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
}
#endif

static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex provides sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
/*
 * Allocates and initializes node for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodes are not replaced if
 * already in use.
 *
 * Must hold slab_mutex.
 */
static int init_cache_node_node(int node)
{
	int ret;
	struct kmem_cache *cachep;

	list_for_each_entry(cachep, &slab_caches, list) {
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
	}

	return 0;
}
#endif

static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_rcu().
	 */
	if (old_shared && force_change)
		synchronize_rcu();

fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

#ifdef CONFIG_SMP

static void cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_cache_node *n = NULL;
	int node = cpu_to_mem(cpu);
	const struct cpumask *mask = cpumask_of_node(node);

	list_for_each_entry(cachep, &slab_caches, list) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct alien_cache **alien;
		LIST_HEAD(list);

		n = get_node(cachep, node);
		if (!n)
			continue;

		spin_lock_irq(&n->list_lock);

		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		free_block(cachep, nc->entry, nc->avail, node, &list);
		nc->avail = 0;

		if (!cpumask_empty(mask)) {
			spin_unlock_irq(&n->list_lock);
			goto free_slab;
		}

		shared = n->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node, &list);
			n->shared = NULL;
		}

		alien = n->alien;
		n->alien = NULL;

		spin_unlock_irq(&n->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}

free_slab:
		slabs_destroy(cachep, &list);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &slab_caches, list) {
		n = get_node(cachep, node);
		if (!n)
			continue;
		drain_freelist(cachep, n, INT_MAX);
	}
}

static int cpuup_prepare(long cpu)
{
	struct kmem_cache *cachep;
	int node = cpu_to_mem(cpu);
	int err;

	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_cache_node and not this cpu's kmem_cache_node
	 */
	err = init_cache_node_node(node);
	if (err < 0)
		goto bad;

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &slab_caches, list) {
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
	}

	return 0;
bad:
	cpuup_canceled(cpu);
	return -ENOMEM;
}

int slab_prepare_cpu(unsigned int cpu)
{
	int err;

	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The kmem_cache_node structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
#endif

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
}

static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}

#if defined(CONFIG_NUMA)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold slab_mutex.
 */
static int __meminit drain_cache_node_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &slab_caches, list) {
		struct kmem_cache_node *n;

		n = get_node(cachep, node);
		if (!n)
			continue;

		drain_freelist(cachep, n, INT_MAX);

		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&slab_mutex);
		ret = init_cache_node_node(nid);
		mutex_unlock(&slab_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&slab_mutex);
		ret = drain_cache_node_node(nid);
		mutex_unlock(&slab_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
	return notifier_from_errno(ret);
}
#endif /* CONFIG_NUMA */

/*
 * swap the static kmem_cache_node with kmalloced memory
 */
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
				int nodeid)
{
	struct kmem_cache_node *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_cache_node));
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->node[nodeid] = ptr;
}

/*
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
 */
static void __init set_up_node(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->node[node] = &init_kmem_cache_node[index + node];
		cachep->node[node]->next_reap = jiffies +
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
	}
}

/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
 */
void __init kmem_cache_init(void)
{
	int i;

	kmem_cache = &kmem_cache_boot;

	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
		use_alien_caches = 0;

	for (i = 0; i < NUM_INIT_LISTS; i++)
		kmem_cache_node_init(&init_kmem_cache_node[i]);

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
	 */
	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
		slab_max_order = SLAB_MAX_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
	 * 2) Create the first kmalloc cache.
	 *    The struct kmem_cache for the new cache is allocated normally.
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
	 * 4) Replace the __init data head arrays for kmem_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
	 */

	/* 1) create the kmem_cache */

	/*
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
	 */
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, node) +
				  nr_node_ids * sizeof(struct kmem_cache_node *),
				  SLAB_HWCACHE_ALIGN, 0, 0);
	list_add(&kmem_cache->list, &slab_caches);
	slab_state = PARTIAL;

	/*
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
	 */
	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
				kmalloc_info[INDEX_NODE].size,
				ARCH_KMALLOC_FLAGS, 0,
				kmalloc_info[INDEX_NODE].size);
	slab_state = PARTIAL_NODE;
	setup_kmalloc_cache_index_table();

	slab_early_init = 0;

	/* 5) Replace the bootstrap kmem_cache_node */
	{
		int nid;

		for_each_online_node(nid) {
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);

			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
		}
	}

	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&slab_mutex);

	/* Done! */
	slab_state = FULL;

#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * node.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int ret;

	/*
	 * Register the timers that return unneeded pages to the page allocator
	 */
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);

	return 0;
}
__initcall(cpucache_init);

static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
#if DEBUG
	struct kmem_cache_node *n;
	unsigned long flags;
	int node;
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;

	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
		cachep->name, cachep->size, cachep->gfporder);

	for_each_kmem_cache_node(cachep, node, n) {
		unsigned long total_slabs, free_slabs, free_objs;

		spin_lock_irqsave(&n->list_lock, flags);
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);

		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
	}
#endif
}

/*
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
{
	struct folio *folio;
	struct slab *slab;

	flags |= cachep->allocflags;

	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
	if (!folio) {
		slab_out_of_memory(cachep, flags, nodeid);
		return NULL;
	}

	slab = folio_slab(folio);

	account_slab(slab, cachep->gfporder, cachep, flags);
	__folio_set_slab(folio);
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
		slab_set_pfmemalloc(slab);

	return slab;
}

/*
 * Interface to system's page release.
 */
static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
{
	int order = cachep->gfporder;
	struct folio *folio = slab_folio(slab);

	BUG_ON(!folio_test_slab(folio));
	__slab_clear_pfmemalloc(slab);
	__folio_clear_slab(folio);
	page_mapcount_reset(folio_page(folio, 0));
	folio->mapping = NULL;

	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += 1 << order;
	unaccount_slab(slab, order, cachep);
	__free_pages(folio_page(folio, 0), order);
}

static void kmem_rcu_free(struct rcu_head *head)
{
	struct kmem_cache *cachep;
	struct slab *slab;

	slab = container_of(head, struct slab, rcu_head);
	cachep = slab->slab_cache;

	kmem_freepages(cachep, slab);
}

#if DEBUG
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}

#ifdef CONFIG_DEBUG_PAGEALLOC
static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map) {}

#endif

static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
{
	int size = cachep->object_size;
	addr = &((char *)addr)[obj_offset(cachep)];

	memset(addr, val, size);
	*(unsigned char *)(addr + size - 1) = POISON_END;
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	unsigned char error = 0;
	int bad_count = 0;

	pr_err("%03x: ", offset);
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			pr_err("Single bit error detected. Probably bad RAM.\n");
#ifdef CONFIG_X86
			pr_err("Run memtest86+ or a similar memory test tool.\n");
#else
			pr_err("Run a memory test tool.\n");
#endif
		}
	}
}
#endif

#if DEBUG

static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
	}

	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
	realobj = (char *)objp + obj_offset(cachep);
	size = cachep->object_size;
	for (i = 0; i < size && lines; i += 16, lines--) {
		int limit;
		limit = 16;
		if (i + limit > size)
			limit = size - i;
		dump_line(realobj, i, limit);
	}
}

static void check_poison_obj(struct kmem_cache *cachep, void *objp)
{
	char *realobj;
	int size, i;
	int lines = 0;

	if (is_debug_pagealloc_cache(cachep))
		return;

	realobj = (char *)objp + obj_offset(cachep);
	size = cachep->object_size;

	for (i = 0; i < size; i++) {
		char exp = POISON_FREE;
		if (i == size - 1)
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
			i = (i / 16) * 16;
			limit = 16;
			if (i + limit > size)
				limit = size - i;
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
		struct slab *slab = virt_to_slab(objp);
		unsigned int objnr;

		objnr = obj_to_index(cachep, slab, objp);
		if (objnr) {
			objp = index_to_obj(cachep, slab, objnr - 1);
			realobj = (char *)objp + obj_offset(cachep);
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
			print_objinfo(cachep, objp, 2);
		}
		if (objnr + 1 < cachep->num) {
			objp = index_to_obj(cachep, slab, objnr + 1);
			realobj = (char *)objp + obj_offset(cachep);
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

#if DEBUG
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct slab *slab)
{
	int i;

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, slab->freelist - obj_offset(cachep),
			POISON_FREE);
	}

	for (i = 0; i < cachep->num; i++) {
		void *objp = index_to_obj(cachep, slab, i);

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
			slab_kernel_map(cachep, objp, 1);
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object was overwritten");
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object was overwritten");
		}
	}
}
#else
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct slab *slab)
{
}
#endif

/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slab: slab being destroyed
 *
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
 */
static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
{
	void *freelist;

	freelist = slab->freelist;
	slab_destroy_debugcheck(cachep, slab);
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
		call_rcu(&slab->rcu_head, kmem_rcu_free);
	else
		kmem_freepages(cachep, slab);

	/*
	 * From now on, we don't use freelist
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
		kfree(freelist);
}

/*
 * Update the size of the caches before calling slabs_destroy as it may
 * recursively call kfree.
 */
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct slab *slab, *n;

	list_for_each_entry_safe(slab, n, list, slab_list) {
		list_del(&slab->slab_list);
		slab_destroy(cachep, slab);
	}
}

/**
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 *
 * Return: number of left-over bytes in a slab
 */
static size_t calculate_slab_order(struct kmem_cache *cachep,
				size_t size, slab_flags_t flags)
{
	size_t left_over = 0;
	int gfporder;

	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
		unsigned int num;
		size_t remainder;

		num = cache_estimate(gfporder, size, flags, &remainder);
		if (!num)
			continue;

		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

		if (flags & CFLGS_OFF_SLAB) {
			struct kmem_cache *freelist_cache;
			size_t freelist_size;
			size_t freelist_cache_size;

			freelist_size = num * sizeof(freelist_idx_t);
			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
			} else {
				freelist_cache = kmalloc_slab(freelist_size, 0u);
				if (!freelist_cache)
					continue;
				freelist_cache_size = freelist_cache->size;

				/*
				 * Needed to avoid possible looping condition
				 * in cache_grow_begin()
				 */
				if (OFF_SLAB(freelist_cache))
					continue;
			}

			/* check if off slab has enough benefit */
			if (freelist_cache_size > cachep->size / 2)
				continue;
		}

		/* Found something acceptable - save it away */
		cachep->num = num;
		cachep->gfporder = gfporder;
		left_over = remainder;

		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		if (gfporder >= slab_max_order)
			break;

		/*
		 * Acceptable internal fragmentation?
		 */
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
			break;
	}
	return left_over;
}

static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
	cpu_cache = __alloc_percpu(size, sizeof(void *));

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	if (slab_state >= FULL)
		return enable_cpucache(cachep, gfp);

	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

	if (slab_state == DOWN) {
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
	} else if (slab_state == PARTIAL) {
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
	} else {
		int node;

		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
		}
	}

	cachep->node[numa_mem_id()]->next_reap =
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
	return 0;
}

slab_flags_t kmem_cache_flags(unsigned int object_size,
	slab_flags_t flags, const char *name)
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, slab_flags_t flags)
{
	size_t left;

	cachep->num = 0;

	/*
	 * If slab auto-initialization on free is enabled, store the freelist
	 * off-slab, so that its contents don't end up in one of the allocated
	 * objects.
	 */
	if (unlikely(slab_want_init_on_free(cachep)))
		return false;

	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, slab_flags_t flags)
{
	size_t left;

	cachep->num = 0;

	/*
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, slab_flags_t flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

/**
 * __kmem_cache_create - Create a cache.
 * @cachep: cache management descriptor
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within an int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the created cache or %NULL in case of error
 */
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
{
	size_t ralign = BYTES_PER_WORD;
	gfp_t gfp;
	int err;
	unsigned int size = cachep->size;

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

	/*
	 * Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
	size = ALIGN(size, BYTES_PER_WORD);

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size = ALIGN(size, REDZONE_ALIGN);
	}

	/* 3) caller mandated alignment */
	if (ralign < cachep->align) {
		ralign = cachep->align;
	}
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
	/*
	 * 4) Store it.
	 */
	cachep->align = ralign;
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;

	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

#if DEBUG

	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires one word storage behind the end of
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
		 */
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
	}
#endif

	kasan_cache_create(cachep, &size, &flags);

	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
	}
#endif

	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

	if (set_off_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OFF_SLAB;
		goto done;
	}

	if (set_on_slab_cache(cachep, size, flags))
		goto done;

	return -E2BIG;

done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
	cachep->flags = flags;
	cachep->allocflags = __GFP_COMP;
	if (flags & SLAB_CACHE_DMA)
		cachep->allocflags |= GFP_DMA;
	if (flags & SLAB_CACHE_DMA32)
		cachep->allocflags |= GFP_DMA32;
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
	cachep->size = size;
	cachep->reciprocal_buffer_size = reciprocal_value(size);

#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	err = setup_cpu_cache(cachep, gfp);
	if (err) {
		__kmem_cache_release(cachep);
		return err;
	}

	return 0;
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

static void check_spinlock_acquired(struct kmem_cache *cachep)
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
#endif
}

static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&get_node(cachep, node)->list_lock);
#endif
}

#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_mutex_acquired()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
#define check_spinlock_acquired_node(x, y) do { } while(0)
#endif

static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}

static void do_drain(void *arg)
{
	struct kmem_cache *cachep = arg;
	struct array_cache *ac;
	int node = numa_mem_id();
	struct kmem_cache_node *n;
	LIST_HEAD(list);

	check_irq_off();
	ac = cpu_cache_get(cachep);
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
	free_block(cachep, ac->entry, ac->avail, node, &list);
	spin_unlock(&n->list_lock);
	ac->avail = 0;
	slabs_destroy(cachep, &list);
}

static void drain_cpu_caches(struct kmem_cache *cachep)
{
	struct kmem_cache_node *n;
	int node;
	LIST_HEAD(list);

	on_each_cpu(do_drain, cachep, 1);
	check_irq_on();
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
			drain_alien_cache(cachep, n->alien);

	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
}

/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_cache_node *n, int tofree)
{
	struct list_head *p;
	int nr_freed;
	struct slab *slab;

	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {

		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
			goto out;
		}

		slab = list_entry(p, struct slab, slab_list);
		list_del(&slab->slab_list);
		n->free_slabs--;
		n->total_slabs--;
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
		slab_destroy(cache, slab);
		nr_freed++;
	}
out:
	return nr_freed;
}

bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

int __kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret = 0;
	int node;
	struct kmem_cache_node *n;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_kmem_cache_node(cachep, node, n) {
		drain_freelist(cachep, n, INT_MAX);

		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
	}
	return (ret ? 1 : 0);
}

int __kmem_cache_shutdown(struct kmem_cache *cachep)
{
	return __kmem_cache_shrink(cachep);
}

void __kmem_cache_release(struct kmem_cache *cachep)
{
	int i;
	struct kmem_cache_node *n;

	cache_random_seq_destroy(cachep);

	free_percpu(cachep->cpu_cache);

	/* NUMA: free the node structures */
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
	}
}

/*
 * Get the memory for a slab management obj.
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
 */
static void *alloc_slabmgmt(struct kmem_cache *cachep,
				   struct slab *slab, int colour_off,
				   gfp_t local_flags, int nodeid)
{
	void *freelist;
	void *addr = slab_address(slab);

	slab->s_mem = addr + colour_off;
	slab->active = 0;

	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		freelist = kmalloc_node(cachep->freelist_size,
					      local_flags, nodeid);
	} else {
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
	}

	return freelist;
}

static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
{
	return ((freelist_idx_t *) slab->freelist)[idx];
}

static inline void set_free_obj(struct slab *slab,
					unsigned int idx, freelist_idx_t val)
{
	((freelist_idx_t *)(slab->freelist))[idx] = val;
}

static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
{
#if DEBUG
	int i;

	for (i = 0; i < cachep->num; i++) {
		void *objp = index_to_obj(cachep, slab, i);

		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
			cachep->ctor(objp + obj_offset(cachep));
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the end of an object");
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the start of an object");
		}
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0);
		}
	}
#endif
}

#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
		unsigned int *list;
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization method available.
 * return true if the pre-computed list is available, false otherwise.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
	rand = get_random_u32();

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = rand % count;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
}

/* Swap two freelist entries */
static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *) slab->freelist)[a],
		((freelist_idx_t *) slab->freelist)[b]);
}

/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
{
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
		for (i = 0; i < count; i++)
			set_free_obj(slab, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(slab, i, rand);
		}
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(slab, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(slab, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct slab *slab)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

static void cache_init_objs(struct kmem_cache *cachep,
			    struct slab *slab)
{
	int i;
	void *objp;
	bool shuffled;

	cache_init_objs_debug(cachep, slab);

	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, slab);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
						obj_offset(cachep);
	}

	for (i = 0; i < cachep->num; i++) {
		objp = index_to_obj(cachep, slab, i);
		objp = kasan_init_slab_obj(cachep, objp);

		/* constructor could break poison info */
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}

		if (!shuffled)
			set_free_obj(slab, i, i);
	}
}

static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
{
	void *objp;

	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
	slab->active++;

	return objp;
}

static void slab_put_obj(struct kmem_cache *cachep,
			struct slab *slab, void *objp)
{
	unsigned int objnr = obj_to_index(cachep, slab, objp);
#if DEBUG
	unsigned int i;

	/* Verify double free bug */
	for (i = slab->active; i < cachep->num; i++) {
		if (get_free_obj(slab, i) == objnr) {
			pr_err("slab: double free detected in cache '%s', objp %px\n",
			       cachep->name, objp);
			BUG();
		}
	}
#endif
	slab->active--;
	if (!slab->freelist)
		slab->freelist = objp + obj_offset(cachep);

	set_free_obj(slab, slab->active, objnr);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
static struct slab *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
{
	void *freelist;
	size_t offset;
	gfp_t local_flags;
	int slab_node;
	struct kmem_cache_node *n;
	struct slab *slab;

	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
	 */
	if (unlikely(flags & GFP_SLAB_BUG_MASK))
		flags = kmalloc_fix_flags(flags);

	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);

	check_irq_off();
	if (gfpflags_allow_blocking(local_flags))
		local_irq_enable();

	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
	 */
	slab = kmem_getpages(cachep, local_flags, nodeid);
	if (!slab)
		goto failed;

	slab_node = slab_nid(slab);
	n = get_node(cachep, slab_node);

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

	/*
	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
	 * page_address() in the latter returns a non-tagged pointer,
	 * as it should be for slab pages.
	 */
	kasan_poison_slab(slab);

	/* Get slab management. */
	freelist = alloc_slabmgmt(cachep, slab, offset,
			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
	if (OFF_SLAB(cachep) && !freelist)
		goto opps1;

	slab->slab_cache = cachep;
	slab->freelist = freelist;

	cache_init_objs(cachep, slab);

	if (gfpflags_allow_blocking(local_flags))
		local_irq_disable();

	return slab;

opps1:
	kmem_freepages(cachep, slab);
failed:
	if (gfpflags_allow_blocking(local_flags))
		local_irq_disable();
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!slab)
		return;

	INIT_LIST_HEAD(&slab->slab_list);
	n = get_node(cachep, slab_nid(slab));

	spin_lock(&n->list_lock);
	n->total_slabs++;
	if (!slab->active) {
		list_add_tail(&slab->slab_list, &n->slabs_free);
		n->free_slabs++;
	} else
		fixup_slab_list(cachep, n, slab, &list);

	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - slab->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
		       (unsigned long)objp);
		BUG();
	}
}

static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
}

static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
				   unsigned long caller)
{
	unsigned int objnr;
	struct slab *slab;

	BUG_ON(virt_to_cache(objp) != cachep);

	objp -= obj_offset(cachep);
	kfree_debugcheck(objp);
	slab = virt_to_slab(objp);

	if (cachep->flags & SLAB_RED_ZONE) {
		verify_redzone_free(cachep, objp);
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = (void *)caller;

	objnr = obj_to_index(cachep, slab, objp);

	BUG_ON(objnr >= cachep->num);
	BUG_ON(objp != index_to_obj(cachep, slab, objnr));

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
		slab_kernel_map(cachep, objp, 0);
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x, objp, z) (objp)
#endif

static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct slab *slab,
				void **list)
{
	/* move slabp to correct slabp list: */
	list_del(&slab->slab_list);
	if (slab->active == cachep->num) {
		list_add(&slab->slab_list, &n->slabs_full);
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = slab->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			slab->freelist = NULL;
		}
	} else
		list_add(&slab->slab_list, &n->slabs_partial);
}

/* Try to find non-pfmemalloc slab if needed */
static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
					struct slab *slab, bool pfmemalloc)
{
	if (!slab)
		return NULL;

	if (pfmemalloc)
		return slab;

	if (!slab_test_pfmemalloc(slab))
		return slab;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		slab_clear_pfmemalloc(slab);
		return slab;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&slab->slab_list);
	if (!slab->active) {
		list_add_tail(&slab->slab_list, &n->slabs_free);
		n->free_slabs++;
	} else
		list_add_tail(&slab->slab_list, &n->slabs_partial);

	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
		if (!slab_test_pfmemalloc(slab))
			return slab;
	}

	n->free_touched = 1;
	list_for_each_entry(slab, &n->slabs_free, slab_list) {
		if (!slab_test_pfmemalloc(slab)) {
			n->free_slabs--;
			return slab;
		}
	}

	return NULL;
}

static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
{
	struct slab *slab;

	assert_spin_locked(&n->list_lock);
	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
					slab_list);
	if (!slab) {
		n->free_touched = 1;
		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
						slab_list);
		if (slab)
			n->free_slabs--;
	}

	if (sk_memalloc_socks())
		slab = get_valid_first_slab(n, slab, pfmemalloc);

	return slab;
}

static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct slab *slab;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	slab = get_first_slab(n, true);
	if (!slab) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, slab);
	n->free_objects--;

	fixup_slab_list(cachep, n, slab, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct slab *slab, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(slab->active >= cachep->num);

	while (slab->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
	}

	return batchcount;
}

static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
{
	int batchcount;
	struct kmem_cache_node *n;
	struct array_cache *ac, *shared;
	int node;
	void *list = NULL;
	struct slab *slab;

	check_irq_off();
	node = numa_mem_id();

	ac = cpu_cache_get(cachep);
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
	n = get_node(cachep, node);

	BUG_ON(ac->avail > 0 || !n);
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

	spin_lock(&n->list_lock);
	shared = READ_ONCE(n->shared);

	/* See if we can refill from the shared array */
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
		goto alloc_done;
	}

	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
		slab = get_first_slab(n, false);
		if (!slab)
			goto must_grow;

		check_spinlock_acquired(cachep);

		batchcount = alloc_block(cachep, ac, slab, batchcount);
		fixup_slab_list(cachep, n, slab, &list);
	}

must_grow:
	n->free_objects -= ac->avail;
alloc_done:
	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

direct_grow:
	if (unlikely(!ac->avail)) {
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);

		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
		ac = cpu_cache_get(cachep);
		if (!ac->avail && slab)
			alloc_block(cachep, ac, slab, batchcount);
		cache_grow_end(cachep, slab);

		if (!ac->avail)
			return NULL;
	}
	ac->touched = 1;

	return ac->entry[--ac->avail];
}

#if DEBUG
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, unsigned long caller)
{
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
	if (!objp || is_kfence_address(objp))
		return objp;
	if (cachep->flags & SLAB_POISON) {
		check_poison_obj(cachep, objp);
		slab_kernel_map(cachep, objp, 1);
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = (void *)caller;

	if (cachep->flags & SLAB_RED_ZONE) {
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside object was overwritten");
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}

	objp += obj_offset(cachep);
	if (cachep->ctor && cachep->flags & SLAB_POISON)
		cachep->ctor(objp);
	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
		       arch_slab_minalign());
	}
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
#endif

static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	void *objp;
	struct array_cache *ac;

	check_irq_off();

	ac = cpu_cache_get(cachep);
	if (likely(ac->avail)) {
		ac->touched = 1;
		objp = ac->entry[--ac->avail];

		STATS_INC_ALLOCHIT(cachep);
		goto out;
	}

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
	return objp;
}

#ifdef CONFIG_NUMA
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);

/*
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt() || (flags & __GFP_THISNODE))
		return NULL;
	nid_alloc = nid_here = numa_mem_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_slab_spread_node();
	else if (current->mempolicy)
		nid_alloc = mempolicy_slab_node();
	if (nid_alloc != nid_here)
		return ____cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

/*
 * Fallback function if there was no memory available and no objects on a
 * certain node and fall back is permitted. First we scan all the
 * available node for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
 */
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
{
	struct zonelist *zonelist;
	struct zoneref *z;
	struct zone *zone;
	enum zone_type highest_zoneidx = gfp_zone(flags);
	void *obj = NULL;
	struct slab *slab;
	int nid;
	unsigned int cpuset_mems_cookie;

	if (flags & __GFP_THISNODE)
		return NULL;

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	zonelist = node_zonelist(mempolicy_slab_node(), flags);

retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
		nid = zone_to_nid(zone);

		if (cpuset_zone_allowed(zone, flags) &&
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
				obj = ____cache_alloc_node(cache,
					gfp_exact_node(flags), nid);
				if (obj)
					break;
		}
	}

	if (!obj) {
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
		slab = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, slab);
		if (slab) {
			nid = slab_nid(slab);
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);

			/*
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
			 */
			if (!obj)
				goto retry;
		}
	}

	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;
	return obj;
}

/*
 * An interface to enable slab creation on nodeid
 */
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
{
	struct slab *slab;
	struct kmem_cache_node *n;
	void *obj = NULL;
	void *list = NULL;

	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
	n = get_node(cachep, nodeid);
	BUG_ON(!n);

	check_irq_off();
	spin_lock(&n->list_lock);
	slab = get_first_slab(n, false);
	if (!slab)
		goto must_grow;

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slab->active == cachep->num);

	obj = slab_get_obj(cachep, slab);
	n->free_objects--;

	fixup_slab_list(cachep, n, slab, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);
	return obj;

must_grow:
	spin_unlock(&n->list_lock);
	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
	if (slab) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, slab);
	}
	cache_grow_end(cachep, slab);

	return obj ? obj : fallback_alloc(cachep, flags);
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	void *objp = NULL;
	int slab_node = numa_mem_id();

	if (nodeid == NUMA_NO_NODE) {
		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
			objp = alternate_node_alloc(cachep, flags);
			if (objp)
				goto out;
		}
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		objp = ____cache_alloc(cachep, flags);
		nodeid = slab_node;
	} else if (nodeid == slab_node) {
		objp = ____cache_alloc(cachep, flags);
	} else if (!get_node(cachep, nodeid)) {
		/* Node not bootstrapped yet */
		objp = fallback_alloc(cachep, flags);
		goto out;
	}

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
	if (!objp)
		objp = ____cache_alloc_node(cachep, flags, nodeid);
out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
		int nodeid, size_t orig_size, unsigned long caller)
{
	unsigned long save_flags;
	void *objp;
	struct obj_cgroup *objcg = NULL;
	bool init = false;

	flags &= gfp_allowed_mask;
	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
	if (unlikely(!cachep))
		return NULL;

	objp = kfence_alloc(cachep, orig_size, flags);
	if (unlikely(objp))
		goto out;

	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags, nodeid);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);
	init = slab_want_init_on_alloc(flags, cachep);

out:
	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
	return objp;
}

static __always_inline void *
slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
	   size_t orig_size, unsigned long caller)
{
	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
			       caller);
}

/*
 * Caller needs to acquire correct kmem_cache_node's list_lock
 * @list: List of detached free slabs should be freed by caller
 */
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
{
	int i;
	struct kmem_cache_node *n = get_node(cachep, node);
	struct slab *slab;

	n->free_objects += nr_objects;

	for (i = 0; i < nr_objects; i++) {
		void *objp;
		struct slab *slab;

		objp = objpp[i];

		slab = virt_to_slab(objp);
		list_del(&slab->slab_list);
		check_spinlock_acquired_node(cachep, node);
		slab_put_obj(cachep, slab, objp);
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
		if (slab->active == 0) {
			list_add(&slab->slab_list, &n->slabs_free);
			n->free_slabs++;
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
			list_add_tail(&slab->slab_list, &n->slabs_partial);
		}
	}

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
		list_move(&slab->slab_list, list);
		n->free_slabs--;
		n->total_slabs--;
	}
}

static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
{
	int batchcount;
	struct kmem_cache_node *n;
	int node = numa_mem_id();
	LIST_HEAD(list);

	batchcount = ac->batchcount;

	check_irq_off();
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
		int max = shared_array->limit - shared_array->avail;
		if (max) {
			if (batchcount > max)
				batchcount = max;
			memcpy(&(shared_array->entry[shared_array->avail]),
			       ac->entry, sizeof(void *) * batchcount);
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

	free_block(cachep, ac->entry, batchcount, node, &list);
free_done:
#if STATS
	{
		int i = 0;
		struct slab *slab;

		list_for_each_entry(slab, &n->slabs_free, slab_list) {
			BUG_ON(slab->active);

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
	spin_unlock(&n->list_lock);
	ac->avail -= batchcount;
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
	slabs_destroy(cachep, &list);
}

/*
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
 */
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
{
	bool init;

	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);

	if (is_kfence_address(objp)) {
		kmemleak_free_recursive(objp, cachep->flags);
		__kfence_free(objp);
		return;
	}

	/*
	 * As memory initialization might be integrated into KASAN,
	 * kasan_slab_free and initialization memset must be
	 * kept together to avoid discrepancies in behavior.
	 */
	init = slab_want_init_on_free(cachep);
	if (init && !kasan_has_integrated_init())
		memset(objp, 0, cachep->object_size);
	/* KASAN might put objp into memory quarantine, delaying its reuse. */
	if (kasan_slab_free(cachep, objp, init))
		return;

	/* Use KCSAN to help debug racy use-after-free. */
	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
		__kcsan_check_access(objp, cachep->object_size,
				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);

	___cache_free(cachep, objp, caller);
}

void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);

	check_irq_off();
	kmemleak_free_recursive(objp, cachep->flags);
	objp = cache_free_debugcheck(cachep, objp, caller);

	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
		return;

	if (ac->avail < ac->limit) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}

	if (sk_memalloc_socks()) {
		struct slab *slab = virt_to_slab(objp);

		if (unlikely(slab_test_pfmemalloc(slab))) {
			cache_free_pfmemalloc(cachep, slab, objp);
			return;
		}
	}

	__free_one(ac, objp);
}

static __always_inline
void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
			     gfp_t flags)
{
	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);

	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);

	return ret;
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 *
 * Return: pointer to the new object or %NULL in case of error
 */
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return __kmem_cache_alloc_lru(cachep, NULL, flags);
}
EXPORT_SYMBOL(kmem_cache_alloc);

void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
			   gfp_t flags)
{
	return __kmem_cache_alloc_lru(cachep, lru, flags);
}
EXPORT_SYMBOL(kmem_cache_alloc_lru);

static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
{
	size_t i;
	struct obj_cgroup *objcg = NULL;

	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
	if (!s)
		return 0;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = kfence_alloc(s, s->object_size, flags) ?:
			     __do_cache_alloc(s, flags, NUMA_NO_NODE);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

	/*
	 * memcg and kmem_cache debug support and memory initialization.
	 * Done outside of the IRQ disabled section.
	 */
	slab_post_alloc_hook(s, objcg, flags, size, p,
				slab_want_init_on_alloc(flags, s));
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
	slab_post_alloc_hook(s, objcg, flags, i, p, false);
	kmem_cache_free_bulk(s, i, p);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 *
 * Return: pointer to the new object or %NULL in case of error
 */
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);

	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);

	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
			     int nodeid, size_t orig_size,
			     unsigned long caller)
{
	return slab_alloc_node(cachep, NULL, flags, nodeid,
			       orig_size, caller);
}

#ifdef CONFIG_PRINTK
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	void *objp;

	kpp->kp_ptr = object;
	kpp->kp_slab = slab;
	cachep = slab->slab_cache;
	kpp->kp_slab_cache = cachep;
	objp = object - obj_offset(cachep);
	kpp->kp_data_offset = obj_offset(cachep);
	slab = virt_to_slab(objp);
	objnr = obj_to_index(cachep, slab, objp);
	objp = index_to_obj(cachep, slab, objnr);
	kpp->kp_objp = objp;
	if (DEBUG && cachep->flags & SLAB_STORE_USER)
		kpp->kp_ret = *dbg_userword(cachep, objp);
}
#endif

static __always_inline
void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
			  unsigned long caller)
{
	unsigned long flags;

	local_irq_save(flags);
	debug_check_no_locks_freed(objp, cachep->object_size);
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, cachep->object_size);
	__cache_free(cachep, objp, caller);
	local_irq_restore(flags);
}

void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
		       unsigned long caller)
{
	__do_kmem_cache_free(cachep, objp, caller);
}

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
{
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;

	trace_kmem_cache_free(_RET_IP_, objp, cachep);
	__do_kmem_cache_free(cachep, objp, _RET_IP_);
}
EXPORT_SYMBOL(kmem_cache_free);

void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{

	local_irq_disable();
	for (int i = 0; i < size; i++) {
		void *objp = p[i];
		struct kmem_cache *s;

		if (!orig_s) {
			struct folio *folio = virt_to_folio(objp);

			/* called via kfree_bulk */
			if (!folio_test_slab(folio)) {
				local_irq_enable();
				free_large_kmalloc(folio, objp);
				local_irq_disable();
				continue;
			}
			s = folio_slab(folio)->slab_cache;
		} else {
			s = cache_from_obj(orig_s, objp);
		}

		if (!s)
			continue;

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

/*
 * This initializes kmem_cache_node or resizes various caches for all nodes.
 */
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
{
	int ret;
	int node;
	struct kmem_cache_node *n;

	for_each_online_node(node) {
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
			goto fail;

	}

	return 0;

fail:
	if (!cachep->list.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			n = get_node(cachep, node);
			if (n) {
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
				cachep->node[node] = NULL;
			}
			node--;
		}
	}
	return -ENOMEM;
}

/* Always called with the slab_mutex held */
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
			    int batchcount, int shared, gfp_t gfp)
{
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;

	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
		return -ENOMEM;

	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();

	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
	cachep->shared = shared;

	if (!prev)
		goto setup_node;

	for_each_online_cpu(cpu) {
		LIST_HEAD(list);
		int node;
		struct kmem_cache_node *n;
		struct array_cache *ac = per_cpu_ptr(prev, cpu);

		node = cpu_to_mem(cpu);
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
		free_block(cachep, ac->entry, ac->avail, node, &list);
		spin_unlock_irq(&n->list_lock);
		slabs_destroy(cachep, &list);
	}
	free_percpu(prev);

setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
}

/* Called with slab_mutex held always */
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{
	int err;
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	err = cache_random_seq_create(cachep, cachep->num, gfp);
	if (err)
		goto end;

	/*
	 * The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
	if (cachep->size > 131072)
		limit = 1;
	else if (cachep->size > PAGE_SIZE)
		limit = 8;
	else if (cachep->size > 1024)
		limit = 24;
	else if (cachep->size > 256)
		limit = 54;
	else
		limit = 120;

	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
		shared = 8;

#if DEBUG
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
	batchcount = (limit + 1) / 2;
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
end:
	if (err)
		pr_err("enable_cpucache failed for %s, error %d\n",
		       cachep->name, -err);
	return err;
}

/*
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
 * if drain_array() is used on the shared array.
 */
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
			 struct array_cache *ac, int node)
{
	LIST_HEAD(list);

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();

	if (!ac || !ac->avail)
		return;

	if (ac->touched) {
		ac->touched = 0;
		return;
	}

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
}

/**
 * cache_reap - Reclaim memory from caches.
 * @w: work descriptor
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
 */
static void cache_reap(struct work_struct *w)
{
	struct kmem_cache *searchp;
	struct kmem_cache_node *n;
	int node = numa_mem_id();
	struct delayed_work *work = to_delayed_work(w);

	if (!mutex_trylock(&slab_mutex))
		/* Give up. Setup the next iteration. */
		goto out;

	list_for_each_entry(searchp, &slab_caches, list) {
		check_irq_on();

		/*
		 * We only take the node lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
		n = get_node(searchp, node);

		reap_alien(searchp, n);

		drain_array(searchp, n, cpu_cache_get(searchp), node);

		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
		if (time_after(n->next_reap, jiffies))
			goto next;

		n->next_reap = jiffies + REAPTIMEOUT_NODE;

		drain_array(searchp, n, n->shared, node);

		if (n->free_touched)
			n->free_touched = 0;
		else {
			int freed;

			freed = drain_freelist(searchp, n, (n->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
next:
		cond_resched();
	}
	check_irq_on();
	mutex_unlock(&slab_mutex);
	next_reap_node();
out:
	/* Set up the next iteration */
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
}

void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
{
	unsigned long active_objs, num_objs, active_slabs;
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(cachep, node, n) {
		check_irq_on();
		spin_lock_irq(&n->list_lock);

		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
		free_objs += n->free_objects;

		if (n->shared)
			shared_avail += n->shared->avail;

		spin_unlock_irq(&n->list_lock);
	}
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
	active_objs = num_objs - free_objs;

	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = total_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
#if STATS
	{			/* node stats */
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
		unsigned long node_frees = cachep->node_frees;
		unsigned long overflows = cachep->node_overflow;

		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
			   allochit, allocmiss, freehit, freemiss);
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 *
 * Return: %0 on success, negative error code otherwise.
 */
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
{
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
	int limit, batchcount, shared, res;
	struct kmem_cache *cachep;

	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
	kbuf[MAX_SLABINFO_WRITE] = '\0';

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
	mutex_lock(&slab_mutex);
	res = -EINVAL;
	list_for_each_entry(cachep, &slab_caches, list) {
		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
				res = 0;
			} else {
				res = do_tune_cpucache(cachep, limit,
						       batchcount, shared,
						       GFP_KERNEL);
			}
			break;
		}
	}
	mutex_unlock(&slab_mutex);
	if (res >= 0)
		res = count;
	return res;
}

#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
void __check_heap_object(const void *ptr, unsigned long n,
			 const struct slab *slab, bool to_user)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	ptr = kasan_reset_tag(ptr);

	/* Find and validate object. */
	cachep = slab->slab_cache;
	objnr = obj_to_index(cachep, slab, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	if (is_kfence_address(ptr))
		offset = ptr - kfence_object_start(ptr);
	else
		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
		return;

	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
}
#endif /* CONFIG_HARDENED_USERCOPY */