summaryrefslogtreecommitdiff
path: root/mm/rmap.c
blob: 5a35c030e7793d22fa769a6815c587533ac1093c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
/*
 * mm/rmap.c - physical to virtual reverse mappings
 *
 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
 * Released under the General Public License (GPL).
 *
 * Simple, low overhead reverse mapping scheme.
 * Please try to keep this thing as modular as possible.
 *
 * Provides methods for unmapping each kind of mapped page:
 * the anon methods track anonymous pages, and
 * the file methods track pages belonging to an inode.
 *
 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
 * Contributions by Hugh Dickins 2003, 2004
 */

/*
 * Lock ordering in mm:
 *
 * inode->i_mutex	(while writing or truncating, not reading or faulting)
 *   inode->i_alloc_sem (vmtruncate_range)
 *   mm->mmap_sem
 *     page->flags PG_locked (lock_page)
 *       mapping->i_mmap_lock
 *         anon_vma->lock
 *           mm->page_table_lock or pte_lock
 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
 *             swap_lock (in swap_duplicate, swap_info_get)
 *               mmlist_lock (in mmput, drain_mmlist and others)
 *               mapping->private_lock (in __set_page_dirty_buffers)
 *               inode_lock (in set_page_dirty's __mark_inode_dirty)
 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
 *                 mapping->tree_lock (widely used, in set_page_dirty,
 *                           in arch-dependent flush_dcache_mmap_lock,
 *                           within inode_lock in __sync_single_inode)
 */

#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rmap.h>
#include <linux/rcupdate.h>
#include <linux/module.h>
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>

#include <asm/tlbflush.h>

#include "internal.h"

static struct kmem_cache *anon_vma_cachep;

static inline struct anon_vma *anon_vma_alloc(void)
{
	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
}

static inline void anon_vma_free(struct anon_vma *anon_vma)
{
	kmem_cache_free(anon_vma_cachep, anon_vma);
}

/**
 * anon_vma_prepare - attach an anon_vma to a memory region
 * @vma: the memory region in question
 *
 * This makes sure the memory mapping described by 'vma' has
 * an 'anon_vma' attached to it, so that we can associate the
 * anonymous pages mapped into it with that anon_vma.
 *
 * The common case will be that we already have one, but if
 * if not we either need to find an adjacent mapping that we
 * can re-use the anon_vma from (very common when the only
 * reason for splitting a vma has been mprotect()), or we
 * allocate a new one.
 *
 * Anon-vma allocations are very subtle, because we may have
 * optimistically looked up an anon_vma in page_lock_anon_vma()
 * and that may actually touch the spinlock even in the newly
 * allocated vma (it depends on RCU to make sure that the
 * anon_vma isn't actually destroyed).
 *
 * As a result, we need to do proper anon_vma locking even
 * for the new allocation. At the same time, we do not want
 * to do any locking for the common case of already having
 * an anon_vma.
 *
 * This must be called with the mmap_sem held for reading.
 */
int anon_vma_prepare(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	might_sleep();
	if (unlikely(!anon_vma)) {
		struct mm_struct *mm = vma->vm_mm;
		struct anon_vma *allocated;

		anon_vma = find_mergeable_anon_vma(vma);
		allocated = NULL;
		if (!anon_vma) {
			anon_vma = anon_vma_alloc();
			if (unlikely(!anon_vma))
				return -ENOMEM;
			allocated = anon_vma;
		}
		spin_lock(&anon_vma->lock);

		/* page_table_lock to protect against threads */
		spin_lock(&mm->page_table_lock);
		if (likely(!vma->anon_vma)) {
			vma->anon_vma = anon_vma;
			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
			allocated = NULL;
		}
		spin_unlock(&mm->page_table_lock);

		spin_unlock(&anon_vma->lock);
		if (unlikely(allocated))
			anon_vma_free(allocated);
	}
	return 0;
}

void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
{
	BUG_ON(vma->anon_vma != next->anon_vma);
	list_del(&next->anon_vma_node);
}

void __anon_vma_link(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	if (anon_vma)
		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
}

void anon_vma_link(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	if (anon_vma) {
		spin_lock(&anon_vma->lock);
		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
		spin_unlock(&anon_vma->lock);
	}
}

void anon_vma_unlink(struct vm_area_struct *vma)
{
	struct anon_vma *anon_vma = vma->anon_vma;
	int empty;

	if (!anon_vma)
		return;

	spin_lock(&anon_vma->lock);
	list_del(&vma->anon_vma_node);

	/* We must garbage collect the anon_vma if it's empty */
	empty = list_empty(&anon_vma->head);
	spin_unlock(&anon_vma->lock);

	if (empty)
		anon_vma_free(anon_vma);
}

static void anon_vma_ctor(void *data)
{
	struct anon_vma *anon_vma = data;

	spin_lock_init(&anon_vma->lock);
	INIT_LIST_HEAD(&anon_vma->head);
}

void __init anon_vma_init(void)
{
	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
}

/*
 * Getting a lock on a stable anon_vma from a page off the LRU is
 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
 */
struct anon_vma *page_lock_anon_vma(struct page *page)
{
	struct anon_vma *anon_vma;
	unsigned long anon_mapping;

	rcu_read_lock();
	anon_mapping = (unsigned long) page->mapping;
	if (!(anon_mapping & PAGE_MAPPING_ANON))
		goto out;
	if (!page_mapped(page))
		goto out;

	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
	spin_lock(&anon_vma->lock);
	return anon_vma;
out:
	rcu_read_unlock();
	return NULL;
}

void page_unlock_anon_vma(struct anon_vma *anon_vma)
{
	spin_unlock(&anon_vma->lock);
	rcu_read_unlock();
}

/*
 * At what user virtual address is page expected in @vma?
 * Returns virtual address or -EFAULT if page's index/offset is not
 * within the range mapped the @vma.
 */
static inline unsigned long
vma_address(struct page *page, struct vm_area_struct *vma)
{
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	unsigned long address;

	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
		/* page should be within @vma mapping range */
		return -EFAULT;
	}
	return address;
}

/*
 * At what user virtual address is page expected in vma? checking that the
 * page matches the vma: currently only used on anon pages, by unuse_vma;
 */
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{
	if (PageAnon(page)) {
		if ((void *)vma->anon_vma !=
		    (void *)page->mapping - PAGE_MAPPING_ANON)
			return -EFAULT;
	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
		if (!vma->vm_file ||
		    vma->vm_file->f_mapping != page->mapping)
			return -EFAULT;
	} else
		return -EFAULT;
	return vma_address(page, vma);
}

/*
 * Check that @page is mapped at @address into @mm.
 *
 * If @sync is false, page_check_address may perform a racy check to avoid
 * the page table lock when the pte is not present (helpful when reclaiming
 * highly shared pages).
 *
 * On success returns with pte mapped and locked.
 */
pte_t *page_check_address(struct page *page, struct mm_struct *mm,
			  unsigned long address, spinlock_t **ptlp, int sync)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	spinlock_t *ptl;

	pgd = pgd_offset(mm, address);
	if (!pgd_present(*pgd))
		return NULL;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return NULL;

	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return NULL;

	pte = pte_offset_map(pmd, address);
	/* Make a quick check before getting the lock */
	if (!sync && !pte_present(*pte)) {
		pte_unmap(pte);
		return NULL;
	}

	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
		*ptlp = ptl;
		return pte;
	}
	pte_unmap_unlock(pte, ptl);
	return NULL;
}

/**
 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 * @page: the page to test
 * @vma: the VMA to test
 *
 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 * if the page is not mapped into the page tables of this VMA.  Only
 * valid for normal file or anonymous VMAs.
 */
static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
{
	unsigned long address;
	pte_t *pte;
	spinlock_t *ptl;

	address = vma_address(page, vma);
	if (address == -EFAULT)		/* out of vma range */
		return 0;
	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
	if (!pte)			/* the page is not in this mm */
		return 0;
	pte_unmap_unlock(pte, ptl);

	return 1;
}

/*
 * Subfunctions of page_referenced: page_referenced_one called
 * repeatedly from either page_referenced_anon or page_referenced_file.
 */
static int page_referenced_one(struct page *page,
			       struct vm_area_struct *vma,
			       unsigned int *mapcount,
			       unsigned long *vm_flags)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *pte;
	spinlock_t *ptl;
	int referenced = 0;

	address = vma_address(page, vma);
	if (address == -EFAULT)
		goto out;

	pte = page_check_address(page, mm, address, &ptl, 0);
	if (!pte)
		goto out;

	/*
	 * Don't want to elevate referenced for mlocked page that gets this far,
	 * in order that it progresses to try_to_unmap and is moved to the
	 * unevictable list.
	 */
	if (vma->vm_flags & VM_LOCKED) {
		*mapcount = 1;	/* break early from loop */
		*vm_flags |= VM_LOCKED;
		goto out_unmap;
	}

	if (ptep_clear_flush_young_notify(vma, address, pte)) {
		/*
		 * Don't treat a reference through a sequentially read
		 * mapping as such.  If the page has been used in
		 * another mapping, we will catch it; if this other
		 * mapping is already gone, the unmap path will have
		 * set PG_referenced or activated the page.
		 */
		if (likely(!VM_SequentialReadHint(vma)))
			referenced++;
	}

	/* Pretend the page is referenced if the task has the
	   swap token and is in the middle of a page fault. */
	if (mm != current->mm && has_swap_token(mm) &&
			rwsem_is_locked(&mm->mmap_sem))
		referenced++;

out_unmap:
	(*mapcount)--;
	pte_unmap_unlock(pte, ptl);
out:
	if (referenced)
		*vm_flags |= vma->vm_flags;
	return referenced;
}

static int page_referenced_anon(struct page *page,
				struct mem_cgroup *mem_cont,
				unsigned long *vm_flags)
{
	unsigned int mapcount;
	struct anon_vma *anon_vma;
	struct vm_area_struct *vma;
	int referenced = 0;

	anon_vma = page_lock_anon_vma(page);
	if (!anon_vma)
		return referenced;

	mapcount = page_mapcount(page);
	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
		/*
		 * If we are reclaiming on behalf of a cgroup, skip
		 * counting on behalf of references from different
		 * cgroups
		 */
		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
			continue;
		referenced += page_referenced_one(page, vma,
						  &mapcount, vm_flags);
		if (!mapcount)
			break;
	}

	page_unlock_anon_vma(anon_vma);
	return referenced;
}

/**
 * page_referenced_file - referenced check for object-based rmap
 * @page: the page we're checking references on.
 * @mem_cont: target memory controller
 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 *
 * For an object-based mapped page, find all the places it is mapped and
 * check/clear the referenced flag.  This is done by following the page->mapping
 * pointer, then walking the chain of vmas it holds.  It returns the number
 * of references it found.
 *
 * This function is only called from page_referenced for object-based pages.
 */
static int page_referenced_file(struct page *page,
				struct mem_cgroup *mem_cont,
				unsigned long *vm_flags)
{
	unsigned int mapcount;
	struct address_space *mapping = page->mapping;
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	int referenced = 0;

	/*
	 * The caller's checks on page->mapping and !PageAnon have made
	 * sure that this is a file page: the check for page->mapping
	 * excludes the case just before it gets set on an anon page.
	 */
	BUG_ON(PageAnon(page));

	/*
	 * The page lock not only makes sure that page->mapping cannot
	 * suddenly be NULLified by truncation, it makes sure that the
	 * structure at mapping cannot be freed and reused yet,
	 * so we can safely take mapping->i_mmap_lock.
	 */
	BUG_ON(!PageLocked(page));

	spin_lock(&mapping->i_mmap_lock);

	/*
	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
	 * is more likely to be accurate if we note it after spinning.
	 */
	mapcount = page_mapcount(page);

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/*
		 * If we are reclaiming on behalf of a cgroup, skip
		 * counting on behalf of references from different
		 * cgroups
		 */
		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
			continue;
		referenced += page_referenced_one(page, vma,
						  &mapcount, vm_flags);
		if (!mapcount)
			break;
	}

	spin_unlock(&mapping->i_mmap_lock);
	return referenced;
}

/**
 * page_referenced - test if the page was referenced
 * @page: the page to test
 * @is_locked: caller holds lock on the page
 * @mem_cont: target memory controller
 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 *
 * Quick test_and_clear_referenced for all mappings to a page,
 * returns the number of ptes which referenced the page.
 */
int page_referenced(struct page *page,
		    int is_locked,
		    struct mem_cgroup *mem_cont,
		    unsigned long *vm_flags)
{
	int referenced = 0;

	if (TestClearPageReferenced(page))
		referenced++;

	*vm_flags = 0;
	if (page_mapped(page) && page->mapping) {
		if (PageAnon(page))
			referenced += page_referenced_anon(page, mem_cont,
								vm_flags);
		else if (is_locked)
			referenced += page_referenced_file(page, mem_cont,
								vm_flags);
		else if (!trylock_page(page))
			referenced++;
		else {
			if (page->mapping)
				referenced += page_referenced_file(page,
							mem_cont, vm_flags);
			unlock_page(page);
		}
	}

	if (page_test_and_clear_young(page))
		referenced++;

	return referenced;
}

static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *pte;
	spinlock_t *ptl;
	int ret = 0;

	address = vma_address(page, vma);
	if (address == -EFAULT)
		goto out;

	pte = page_check_address(page, mm, address, &ptl, 1);
	if (!pte)
		goto out;

	if (pte_dirty(*pte) || pte_write(*pte)) {
		pte_t entry;

		flush_cache_page(vma, address, pte_pfn(*pte));
		entry = ptep_clear_flush_notify(vma, address, pte);
		entry = pte_wrprotect(entry);
		entry = pte_mkclean(entry);
		set_pte_at(mm, address, pte, entry);
		ret = 1;
	}

	pte_unmap_unlock(pte, ptl);
out:
	return ret;
}

static int page_mkclean_file(struct address_space *mapping, struct page *page)
{
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	int ret = 0;

	BUG_ON(PageAnon(page));

	spin_lock(&mapping->i_mmap_lock);
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (vma->vm_flags & VM_SHARED)
			ret += page_mkclean_one(page, vma);
	}
	spin_unlock(&mapping->i_mmap_lock);
	return ret;
}

int page_mkclean(struct page *page)
{
	int ret = 0;

	BUG_ON(!PageLocked(page));

	if (page_mapped(page)) {
		struct address_space *mapping = page_mapping(page);
		if (mapping) {
			ret = page_mkclean_file(mapping, page);
			if (page_test_dirty(page)) {
				page_clear_dirty(page);
				ret = 1;
			}
		}
	}

	return ret;
}
EXPORT_SYMBOL_GPL(page_mkclean);

/**
 * __page_set_anon_rmap - setup new anonymous rmap
 * @page:	the page to add the mapping to
 * @vma:	the vm area in which the mapping is added
 * @address:	the user virtual address mapped
 */
static void __page_set_anon_rmap(struct page *page,
	struct vm_area_struct *vma, unsigned long address)
{
	struct anon_vma *anon_vma = vma->anon_vma;

	BUG_ON(!anon_vma);
	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
	page->mapping = (struct address_space *) anon_vma;

	page->index = linear_page_index(vma, address);

	/*
	 * nr_mapped state can be updated without turning off
	 * interrupts because it is not modified via interrupt.
	 */
	__inc_zone_page_state(page, NR_ANON_PAGES);
}

/**
 * __page_check_anon_rmap - sanity check anonymous rmap addition
 * @page:	the page to add the mapping to
 * @vma:	the vm area in which the mapping is added
 * @address:	the user virtual address mapped
 */
static void __page_check_anon_rmap(struct page *page,
	struct vm_area_struct *vma, unsigned long address)
{
#ifdef CONFIG_DEBUG_VM
	/*
	 * The page's anon-rmap details (mapping and index) are guaranteed to
	 * be set up correctly at this point.
	 *
	 * We have exclusion against page_add_anon_rmap because the caller
	 * always holds the page locked, except if called from page_dup_rmap,
	 * in which case the page is already known to be setup.
	 *
	 * We have exclusion against page_add_new_anon_rmap because those pages
	 * are initially only visible via the pagetables, and the pte is locked
	 * over the call to page_add_new_anon_rmap.
	 */
	struct anon_vma *anon_vma = vma->anon_vma;
	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
	BUG_ON(page->mapping != (struct address_space *)anon_vma);
	BUG_ON(page->index != linear_page_index(vma, address));
#endif
}

/**
 * page_add_anon_rmap - add pte mapping to an anonymous page
 * @page:	the page to add the mapping to
 * @vma:	the vm area in which the mapping is added
 * @address:	the user virtual address mapped
 *
 * The caller needs to hold the pte lock and the page must be locked.
 */
void page_add_anon_rmap(struct page *page,
	struct vm_area_struct *vma, unsigned long address)
{
	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
	if (atomic_inc_and_test(&page->_mapcount))
		__page_set_anon_rmap(page, vma, address);
	else
		__page_check_anon_rmap(page, vma, address);
}

/**
 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
 * @page:	the page to add the mapping to
 * @vma:	the vm area in which the mapping is added
 * @address:	the user virtual address mapped
 *
 * Same as page_add_anon_rmap but must only be called on *new* pages.
 * This means the inc-and-test can be bypassed.
 * Page does not have to be locked.
 */
void page_add_new_anon_rmap(struct page *page,
	struct vm_area_struct *vma, unsigned long address)
{
	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
	SetPageSwapBacked(page);
	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
	__page_set_anon_rmap(page, vma, address);
	if (page_evictable(page, vma))
		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
	else
		add_page_to_unevictable_list(page);
}

/**
 * page_add_file_rmap - add pte mapping to a file page
 * @page: the page to add the mapping to
 *
 * The caller needs to hold the pte lock.
 */
void page_add_file_rmap(struct page *page)
{
	if (atomic_inc_and_test(&page->_mapcount)) {
		__inc_zone_page_state(page, NR_FILE_MAPPED);
		mem_cgroup_update_mapped_file_stat(page, 1);
	}
}

#ifdef CONFIG_DEBUG_VM
/**
 * page_dup_rmap - duplicate pte mapping to a page
 * @page:	the page to add the mapping to
 * @vma:	the vm area being duplicated
 * @address:	the user virtual address mapped
 *
 * For copy_page_range only: minimal extract from page_add_file_rmap /
 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
 * quicker.
 *
 * The caller needs to hold the pte lock.
 */
void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
{
	if (PageAnon(page))
		__page_check_anon_rmap(page, vma, address);
	atomic_inc(&page->_mapcount);
}
#endif

/**
 * page_remove_rmap - take down pte mapping from a page
 * @page: page to remove mapping from
 *
 * The caller needs to hold the pte lock.
 */
void page_remove_rmap(struct page *page)
{
	if (atomic_add_negative(-1, &page->_mapcount)) {
		/*
		 * Now that the last pte has gone, s390 must transfer dirty
		 * flag from storage key to struct page.  We can usually skip
		 * this if the page is anon, so about to be freed; but perhaps
		 * not if it's in swapcache - there might be another pte slot
		 * containing the swap entry, but page not yet written to swap.
		 */
		if ((!PageAnon(page) || PageSwapCache(page)) &&
		    page_test_dirty(page)) {
			page_clear_dirty(page);
			set_page_dirty(page);
		}
		if (PageAnon(page))
			mem_cgroup_uncharge_page(page);
		__dec_zone_page_state(page,
			PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
		mem_cgroup_update_mapped_file_stat(page, -1);
		/*
		 * It would be tidy to reset the PageAnon mapping here,
		 * but that might overwrite a racing page_add_anon_rmap
		 * which increments mapcount after us but sets mapping
		 * before us: so leave the reset to free_hot_cold_page,
		 * and remember that it's only reliable while mapped.
		 * Leaving it set also helps swapoff to reinstate ptes
		 * faster for those pages still in swapcache.
		 */
	}
}

/*
 * Subfunctions of try_to_unmap: try_to_unmap_one called
 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
 */
static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
				int migration)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *pte;
	pte_t pteval;
	spinlock_t *ptl;
	int ret = SWAP_AGAIN;

	address = vma_address(page, vma);
	if (address == -EFAULT)
		goto out;

	pte = page_check_address(page, mm, address, &ptl, 0);
	if (!pte)
		goto out;

	/*
	 * If the page is mlock()d, we cannot swap it out.
	 * If it's recently referenced (perhaps page_referenced
	 * skipped over this mm) then we should reactivate it.
	 */
	if (!migration) {
		if (vma->vm_flags & VM_LOCKED) {
			ret = SWAP_MLOCK;
			goto out_unmap;
		}
		if (ptep_clear_flush_young_notify(vma, address, pte)) {
			ret = SWAP_FAIL;
			goto out_unmap;
		}
  	}

	/* Nuke the page table entry. */
	flush_cache_page(vma, address, page_to_pfn(page));
	pteval = ptep_clear_flush_notify(vma, address, pte);

	/* Move the dirty bit to the physical page now the pte is gone. */
	if (pte_dirty(pteval))
		set_page_dirty(page);

	/* Update high watermark before we lower rss */
	update_hiwater_rss(mm);

	if (PageAnon(page)) {
		swp_entry_t entry = { .val = page_private(page) };

		if (PageSwapCache(page)) {
			/*
			 * Store the swap location in the pte.
			 * See handle_pte_fault() ...
			 */
			swap_duplicate(entry);
			if (list_empty(&mm->mmlist)) {
				spin_lock(&mmlist_lock);
				if (list_empty(&mm->mmlist))
					list_add(&mm->mmlist, &init_mm.mmlist);
				spin_unlock(&mmlist_lock);
			}
			dec_mm_counter(mm, anon_rss);
		} else if (PAGE_MIGRATION) {
			/*
			 * Store the pfn of the page in a special migration
			 * pte. do_swap_page() will wait until the migration
			 * pte is removed and then restart fault handling.
			 */
			BUG_ON(!migration);
			entry = make_migration_entry(page, pte_write(pteval));
		}
		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
		BUG_ON(pte_file(*pte));
	} else if (PAGE_MIGRATION && migration) {
		/* Establish migration entry for a file page */
		swp_entry_t entry;
		entry = make_migration_entry(page, pte_write(pteval));
		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
	} else
		dec_mm_counter(mm, file_rss);


	page_remove_rmap(page);
	page_cache_release(page);

out_unmap:
	pte_unmap_unlock(pte, ptl);
out:
	return ret;
}

/*
 * objrmap doesn't work for nonlinear VMAs because the assumption that
 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
 * Consequently, given a particular page and its ->index, we cannot locate the
 * ptes which are mapping that page without an exhaustive linear search.
 *
 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
 * maps the file to which the target page belongs.  The ->vm_private_data field
 * holds the current cursor into that scan.  Successive searches will circulate
 * around the vma's virtual address space.
 *
 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
 * more scanning pressure is placed against them as well.   Eventually pages
 * will become fully unmapped and are eligible for eviction.
 *
 * For very sparsely populated VMAs this is a little inefficient - chances are
 * there there won't be many ptes located within the scan cluster.  In this case
 * maybe we could scan further - to the end of the pte page, perhaps.
 *
 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
 */
#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))

static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
		struct vm_area_struct *vma, struct page *check_page)
{
	struct mm_struct *mm = vma->vm_mm;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	pte_t pteval;
	spinlock_t *ptl;
	struct page *page;
	unsigned long address;
	unsigned long end;
	int ret = SWAP_AGAIN;
	int locked_vma = 0;

	address = (vma->vm_start + cursor) & CLUSTER_MASK;
	end = address + CLUSTER_SIZE;
	if (address < vma->vm_start)
		address = vma->vm_start;
	if (end > vma->vm_end)
		end = vma->vm_end;

	pgd = pgd_offset(mm, address);
	if (!pgd_present(*pgd))
		return ret;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return ret;

	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return ret;

	/*
	 * MLOCK_PAGES => feature is configured.
	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
	 * keep the sem while scanning the cluster for mlocking pages.
	 */
	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
		locked_vma = (vma->vm_flags & VM_LOCKED);
		if (!locked_vma)
			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
	}

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);

	/* Update high watermark before we lower rss */
	update_hiwater_rss(mm);

	for (; address < end; pte++, address += PAGE_SIZE) {
		if (!pte_present(*pte))
			continue;
		page = vm_normal_page(vma, address, *pte);
		BUG_ON(!page || PageAnon(page));

		if (locked_vma) {
			mlock_vma_page(page);   /* no-op if already mlocked */
			if (page == check_page)
				ret = SWAP_MLOCK;
			continue;	/* don't unmap */
		}

		if (ptep_clear_flush_young_notify(vma, address, pte))
			continue;

		/* Nuke the page table entry. */
		flush_cache_page(vma, address, pte_pfn(*pte));
		pteval = ptep_clear_flush_notify(vma, address, pte);

		/* If nonlinear, store the file page offset in the pte. */
		if (page->index != linear_page_index(vma, address))
			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));

		/* Move the dirty bit to the physical page now the pte is gone. */
		if (pte_dirty(pteval))
			set_page_dirty(page);

		page_remove_rmap(page);
		page_cache_release(page);
		dec_mm_counter(mm, file_rss);
		(*mapcount)--;
	}
	pte_unmap_unlock(pte - 1, ptl);
	if (locked_vma)
		up_read(&vma->vm_mm->mmap_sem);
	return ret;
}

/*
 * common handling for pages mapped in VM_LOCKED vmas
 */
static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
{
	int mlocked = 0;

	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
		if (vma->vm_flags & VM_LOCKED) {
			mlock_vma_page(page);
			mlocked++;	/* really mlocked the page */
		}
		up_read(&vma->vm_mm->mmap_sem);
	}
	return mlocked;
}

/**
 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
 * rmap method
 * @page: the page to unmap/unlock
 * @unlock:  request for unlock rather than unmap [unlikely]
 * @migration:  unmapping for migration - ignored if @unlock
 *
 * Find all the mappings of a page using the mapping pointer and the vma chains
 * contained in the anon_vma struct it points to.
 *
 * This function is only called from try_to_unmap/try_to_munlock for
 * anonymous pages.
 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
 * where the page was found will be held for write.  So, we won't recheck
 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
 * 'LOCKED.
 */
static int try_to_unmap_anon(struct page *page, int unlock, int migration)
{
	struct anon_vma *anon_vma;
	struct vm_area_struct *vma;
	unsigned int mlocked = 0;
	int ret = SWAP_AGAIN;

	if (MLOCK_PAGES && unlikely(unlock))
		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */

	anon_vma = page_lock_anon_vma(page);
	if (!anon_vma)
		return ret;

	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
		if (MLOCK_PAGES && unlikely(unlock)) {
			if (!((vma->vm_flags & VM_LOCKED) &&
			      page_mapped_in_vma(page, vma)))
				continue;  /* must visit all unlocked vmas */
			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
		} else {
			ret = try_to_unmap_one(page, vma, migration);
			if (ret == SWAP_FAIL || !page_mapped(page))
				break;
		}
		if (ret == SWAP_MLOCK) {
			mlocked = try_to_mlock_page(page, vma);
			if (mlocked)
				break;	/* stop if actually mlocked page */
		}
	}

	page_unlock_anon_vma(anon_vma);

	if (mlocked)
		ret = SWAP_MLOCK;	/* actually mlocked the page */
	else if (ret == SWAP_MLOCK)
		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */

	return ret;
}

/**
 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
 * @page: the page to unmap/unlock
 * @unlock:  request for unlock rather than unmap [unlikely]
 * @migration:  unmapping for migration - ignored if @unlock
 *
 * Find all the mappings of a page using the mapping pointer and the vma chains
 * contained in the address_space struct it points to.
 *
 * This function is only called from try_to_unmap/try_to_munlock for
 * object-based pages.
 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
 * where the page was found will be held for write.  So, we won't recheck
 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
 * 'LOCKED.
 */
static int try_to_unmap_file(struct page *page, int unlock, int migration)
{
	struct address_space *mapping = page->mapping;
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	int ret = SWAP_AGAIN;
	unsigned long cursor;
	unsigned long max_nl_cursor = 0;
	unsigned long max_nl_size = 0;
	unsigned int mapcount;
	unsigned int mlocked = 0;

	if (MLOCK_PAGES && unlikely(unlock))
		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */

	spin_lock(&mapping->i_mmap_lock);
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (MLOCK_PAGES && unlikely(unlock)) {
			if (!((vma->vm_flags & VM_LOCKED) &&
						page_mapped_in_vma(page, vma)))
				continue;	/* must visit all vmas */
			ret = SWAP_MLOCK;
		} else {
			ret = try_to_unmap_one(page, vma, migration);
			if (ret == SWAP_FAIL || !page_mapped(page))
				goto out;
		}
		if (ret == SWAP_MLOCK) {
			mlocked = try_to_mlock_page(page, vma);
			if (mlocked)
				break;  /* stop if actually mlocked page */
		}
	}

	if (mlocked)
		goto out;

	if (list_empty(&mapping->i_mmap_nonlinear))
		goto out;

	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
						shared.vm_set.list) {
		if (MLOCK_PAGES && unlikely(unlock)) {
			if (!(vma->vm_flags & VM_LOCKED))
				continue;	/* must visit all vmas */
			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
			goto out;		/* no need to look further */
		}
		if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
			continue;
		cursor = (unsigned long) vma->vm_private_data;
		if (cursor > max_nl_cursor)
			max_nl_cursor = cursor;
		cursor = vma->vm_end - vma->vm_start;
		if (cursor > max_nl_size)
			max_nl_size = cursor;
	}

	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
		ret = SWAP_FAIL;
		goto out;
	}

	/*
	 * We don't try to search for this page in the nonlinear vmas,
	 * and page_referenced wouldn't have found it anyway.  Instead
	 * just walk the nonlinear vmas trying to age and unmap some.
	 * The mapcount of the page we came in with is irrelevant,
	 * but even so use it as a guide to how hard we should try?
	 */
	mapcount = page_mapcount(page);
	if (!mapcount)
		goto out;
	cond_resched_lock(&mapping->i_mmap_lock);

	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
	if (max_nl_cursor == 0)
		max_nl_cursor = CLUSTER_SIZE;

	do {
		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
						shared.vm_set.list) {
			if (!MLOCK_PAGES && !migration &&
			    (vma->vm_flags & VM_LOCKED))
				continue;
			cursor = (unsigned long) vma->vm_private_data;
			while ( cursor < max_nl_cursor &&
				cursor < vma->vm_end - vma->vm_start) {
				ret = try_to_unmap_cluster(cursor, &mapcount,
								vma, page);
				if (ret == SWAP_MLOCK)
					mlocked = 2;	/* to return below */
				cursor += CLUSTER_SIZE;
				vma->vm_private_data = (void *) cursor;
				if ((int)mapcount <= 0)
					goto out;
			}
			vma->vm_private_data = (void *) max_nl_cursor;
		}
		cond_resched_lock(&mapping->i_mmap_lock);
		max_nl_cursor += CLUSTER_SIZE;
	} while (max_nl_cursor <= max_nl_size);

	/*
	 * Don't loop forever (perhaps all the remaining pages are
	 * in locked vmas).  Reset cursor on all unreserved nonlinear
	 * vmas, now forgetting on which ones it had fallen behind.
	 */
	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
		vma->vm_private_data = NULL;
out:
	spin_unlock(&mapping->i_mmap_lock);
	if (mlocked)
		ret = SWAP_MLOCK;	/* actually mlocked the page */
	else if (ret == SWAP_MLOCK)
		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
	return ret;
}

/**
 * try_to_unmap - try to remove all page table mappings to a page
 * @page: the page to get unmapped
 * @migration: migration flag
 *
 * Tries to remove all the page table entries which are mapping this
 * page, used in the pageout path.  Caller must hold the page lock.
 * Return values are:
 *
 * SWAP_SUCCESS	- we succeeded in removing all mappings
 * SWAP_AGAIN	- we missed a mapping, try again later
 * SWAP_FAIL	- the page is unswappable
 * SWAP_MLOCK	- page is mlocked.
 */
int try_to_unmap(struct page *page, int migration)
{
	int ret;

	BUG_ON(!PageLocked(page));

	if (PageAnon(page))
		ret = try_to_unmap_anon(page, 0, migration);
	else
		ret = try_to_unmap_file(page, 0, migration);
	if (ret != SWAP_MLOCK && !page_mapped(page))
		ret = SWAP_SUCCESS;
	return ret;
}

/**
 * try_to_munlock - try to munlock a page
 * @page: the page to be munlocked
 *
 * Called from munlock code.  Checks all of the VMAs mapping the page
 * to make sure nobody else has this page mlocked. The page will be
 * returned with PG_mlocked cleared if no other vmas have it mlocked.
 *
 * Return values are:
 *
 * SWAP_SUCCESS	- no vma's holding page mlocked.
 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
 * SWAP_MLOCK	- page is now mlocked.
 */
int try_to_munlock(struct page *page)
{
	VM_BUG_ON(!PageLocked(page) || PageLRU(page));

	if (PageAnon(page))
		return try_to_unmap_anon(page, 1, 0);
	else
		return try_to_unmap_file(page, 1, 0);
}