summaryrefslogtreecommitdiff
path: root/mm/memblock.c
blob: bde61e8c28c55b6ccafd315debaa1ed74a00695c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
/*
 * Procedures for maintaining information about logical memory blocks.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/poison.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/memblock.h>

#include <asm-generic/sections.h>
#include <linux/io.h>

#include "internal.h"

static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
#endif

struct memblock memblock __initdata_memblock = {
	.memory.regions		= memblock_memory_init_regions,
	.memory.cnt		= 1,	/* empty dummy entry */
	.memory.max		= INIT_MEMBLOCK_REGIONS,

	.reserved.regions	= memblock_reserved_init_regions,
	.reserved.cnt		= 1,	/* empty dummy entry */
	.reserved.max		= INIT_MEMBLOCK_REGIONS,

#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
	.physmem.regions	= memblock_physmem_init_regions,
	.physmem.cnt		= 1,	/* empty dummy entry */
	.physmem.max		= INIT_PHYSMEM_REGIONS,
#endif

	.bottom_up		= false,
	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
};

int memblock_debug __initdata_memblock;
#ifdef CONFIG_MOVABLE_NODE
bool movable_node_enabled __initdata_memblock = false;
#endif
static bool system_has_some_mirror __initdata_memblock = false;
static int memblock_can_resize __initdata_memblock;
static int memblock_memory_in_slab __initdata_memblock = 0;
static int memblock_reserved_in_slab __initdata_memblock = 0;

ulong __init_memblock choose_memblock_flags(void)
{
	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
}

/* inline so we don't get a warning when pr_debug is compiled out */
static __init_memblock const char *
memblock_type_name(struct memblock_type *type)
{
	if (type == &memblock.memory)
		return "memory";
	else if (type == &memblock.reserved)
		return "reserved";
	else
		return "unknown";
}

/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
}

/*
 * Address comparison utilities
 */
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
				       phys_addr_t base2, phys_addr_t size2)
{
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}

static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size)
{
	unsigned long i;

	for (i = 0; i < type->cnt; i++) {
		phys_addr_t rgnbase = type->regions[i].base;
		phys_addr_t rgnsize = type->regions[i].size;
		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
			break;
	}

	return (i < type->cnt) ? i : -1;
}

/*
 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 * @flags: pick from blocks based on memory attributes
 *
 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 *
 * RETURNS:
 * Found address on success, 0 on failure.
 */
static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
				phys_addr_t size, phys_addr_t align, int nid,
				ulong flags)
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		cand = round_up(this_start, align);
		if (cand < this_end && this_end - cand >= size)
			return cand;
	}

	return 0;
}

/**
 * __memblock_find_range_top_down - find free area utility, in top-down
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 * @flags: pick from blocks based on memory attributes
 *
 * Utility called from memblock_find_in_range_node(), find free area top-down.
 *
 * RETURNS:
 * Found address on success, 0 on failure.
 */
static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
			       phys_addr_t size, phys_addr_t align, int nid,
			       ulong flags)
{
	phys_addr_t this_start, this_end, cand;
	u64 i;

	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
					NULL) {
		this_start = clamp(this_start, start, end);
		this_end = clamp(this_end, start, end);

		if (this_end < size)
			continue;

		cand = round_down(this_end - size, align);
		if (cand >= this_start)
			return cand;
	}

	return 0;
}

/**
 * memblock_find_in_range_node - find free area in given range and node
 * @size: size of free area to find
 * @align: alignment of free area to find
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 * @flags: pick from blocks based on memory attributes
 *
 * Find @size free area aligned to @align in the specified range and node.
 *
 * When allocation direction is bottom-up, the @start should be greater
 * than the end of the kernel image. Otherwise, it will be trimmed. The
 * reason is that we want the bottom-up allocation just near the kernel
 * image so it is highly likely that the allocated memory and the kernel
 * will reside in the same node.
 *
 * If bottom-up allocation failed, will try to allocate memory top-down.
 *
 * RETURNS:
 * Found address on success, 0 on failure.
 */
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
					phys_addr_t end, int nid, ulong flags)
{
	phys_addr_t kernel_end, ret;

	/* pump up @end */
	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
		end = memblock.current_limit;

	/* avoid allocating the first page */
	start = max_t(phys_addr_t, start, PAGE_SIZE);
	end = max(start, end);
	kernel_end = __pa_symbol(_end);

	/*
	 * try bottom-up allocation only when bottom-up mode
	 * is set and @end is above the kernel image.
	 */
	if (memblock_bottom_up() && end > kernel_end) {
		phys_addr_t bottom_up_start;

		/* make sure we will allocate above the kernel */
		bottom_up_start = max(start, kernel_end);

		/* ok, try bottom-up allocation first */
		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
						      size, align, nid, flags);
		if (ret)
			return ret;

		/*
		 * we always limit bottom-up allocation above the kernel,
		 * but top-down allocation doesn't have the limit, so
		 * retrying top-down allocation may succeed when bottom-up
		 * allocation failed.
		 *
		 * bottom-up allocation is expected to be fail very rarely,
		 * so we use WARN_ONCE() here to see the stack trace if
		 * fail happens.
		 */
		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
			     "memory hotunplug may be affected\n");
	}

	return __memblock_find_range_top_down(start, end, size, align, nid,
					      flags);
}

/**
 * memblock_find_in_range - find free area in given range
 * @start: start of candidate range
 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 * @size: size of free area to find
 * @align: alignment of free area to find
 *
 * Find @size free area aligned to @align in the specified range.
 *
 * RETURNS:
 * Found address on success, 0 on failure.
 */
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
					phys_addr_t end, phys_addr_t size,
					phys_addr_t align)
{
	phys_addr_t ret;
	ulong flags = choose_memblock_flags();

again:
	ret = memblock_find_in_range_node(size, align, start, end,
					    NUMA_NO_NODE, flags);

	if (!ret && (flags & MEMBLOCK_MIRROR)) {
		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
			&size);
		flags &= ~MEMBLOCK_MIRROR;
		goto again;
	}

	return ret;
}

static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
{
	type->total_size -= type->regions[r].size;
	memmove(&type->regions[r], &type->regions[r + 1],
		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
	type->cnt--;

	/* Special case for empty arrays */
	if (type->cnt == 0) {
		WARN_ON(type->total_size != 0);
		type->cnt = 1;
		type->regions[0].base = 0;
		type->regions[0].size = 0;
		type->regions[0].flags = 0;
		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
	}
}

#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK

phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
					phys_addr_t *addr)
{
	if (memblock.reserved.regions == memblock_reserved_init_regions)
		return 0;

	*addr = __pa(memblock.reserved.regions);

	return PAGE_ALIGN(sizeof(struct memblock_region) *
			  memblock.reserved.max);
}

phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
					phys_addr_t *addr)
{
	if (memblock.memory.regions == memblock_memory_init_regions)
		return 0;

	*addr = __pa(memblock.memory.regions);

	return PAGE_ALIGN(sizeof(struct memblock_region) *
			  memblock.memory.max);
}

#endif

/**
 * memblock_double_array - double the size of the memblock regions array
 * @type: memblock type of the regions array being doubled
 * @new_area_start: starting address of memory range to avoid overlap with
 * @new_area_size: size of memory range to avoid overlap with
 *
 * Double the size of the @type regions array. If memblock is being used to
 * allocate memory for a new reserved regions array and there is a previously
 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 * waiting to be reserved, ensure the memory used by the new array does
 * not overlap.
 *
 * RETURNS:
 * 0 on success, -1 on failure.
 */
static int __init_memblock memblock_double_array(struct memblock_type *type,
						phys_addr_t new_area_start,
						phys_addr_t new_area_size)
{
	struct memblock_region *new_array, *old_array;
	phys_addr_t old_alloc_size, new_alloc_size;
	phys_addr_t old_size, new_size, addr;
	int use_slab = slab_is_available();
	int *in_slab;

	/* We don't allow resizing until we know about the reserved regions
	 * of memory that aren't suitable for allocation
	 */
	if (!memblock_can_resize)
		return -1;

	/* Calculate new doubled size */
	old_size = type->max * sizeof(struct memblock_region);
	new_size = old_size << 1;
	/*
	 * We need to allocated new one align to PAGE_SIZE,
	 *   so we can free them completely later.
	 */
	old_alloc_size = PAGE_ALIGN(old_size);
	new_alloc_size = PAGE_ALIGN(new_size);

	/* Retrieve the slab flag */
	if (type == &memblock.memory)
		in_slab = &memblock_memory_in_slab;
	else
		in_slab = &memblock_reserved_in_slab;

	/* Try to find some space for it.
	 *
	 * WARNING: We assume that either slab_is_available() and we use it or
	 * we use MEMBLOCK for allocations. That means that this is unsafe to
	 * use when bootmem is currently active (unless bootmem itself is
	 * implemented on top of MEMBLOCK which isn't the case yet)
	 *
	 * This should however not be an issue for now, as we currently only
	 * call into MEMBLOCK while it's still active, or much later when slab
	 * is active for memory hotplug operations
	 */
	if (use_slab) {
		new_array = kmalloc(new_size, GFP_KERNEL);
		addr = new_array ? __pa(new_array) : 0;
	} else {
		/* only exclude range when trying to double reserved.regions */
		if (type != &memblock.reserved)
			new_area_start = new_area_size = 0;

		addr = memblock_find_in_range(new_area_start + new_area_size,
						memblock.current_limit,
						new_alloc_size, PAGE_SIZE);
		if (!addr && new_area_size)
			addr = memblock_find_in_range(0,
				min(new_area_start, memblock.current_limit),
				new_alloc_size, PAGE_SIZE);

		new_array = addr ? __va(addr) : NULL;
	}
	if (!addr) {
		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
		       memblock_type_name(type), type->max, type->max * 2);
		return -1;
	}

	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
			memblock_type_name(type), type->max * 2, (u64)addr,
			(u64)addr + new_size - 1);

	/*
	 * Found space, we now need to move the array over before we add the
	 * reserved region since it may be our reserved array itself that is
	 * full.
	 */
	memcpy(new_array, type->regions, old_size);
	memset(new_array + type->max, 0, old_size);
	old_array = type->regions;
	type->regions = new_array;
	type->max <<= 1;

	/* Free old array. We needn't free it if the array is the static one */
	if (*in_slab)
		kfree(old_array);
	else if (old_array != memblock_memory_init_regions &&
		 old_array != memblock_reserved_init_regions)
		memblock_free(__pa(old_array), old_alloc_size);

	/*
	 * Reserve the new array if that comes from the memblock.  Otherwise, we
	 * needn't do it
	 */
	if (!use_slab)
		BUG_ON(memblock_reserve(addr, new_alloc_size));

	/* Update slab flag */
	*in_slab = use_slab;

	return 0;
}

/**
 * memblock_merge_regions - merge neighboring compatible regions
 * @type: memblock type to scan
 *
 * Scan @type and merge neighboring compatible regions.
 */
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
{
	int i = 0;

	/* cnt never goes below 1 */
	while (i < type->cnt - 1) {
		struct memblock_region *this = &type->regions[i];
		struct memblock_region *next = &type->regions[i + 1];

		if (this->base + this->size != next->base ||
		    memblock_get_region_node(this) !=
		    memblock_get_region_node(next) ||
		    this->flags != next->flags) {
			BUG_ON(this->base + this->size > next->base);
			i++;
			continue;
		}

		this->size += next->size;
		/* move forward from next + 1, index of which is i + 2 */
		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
		type->cnt--;
	}
}

/**
 * memblock_insert_region - insert new memblock region
 * @type:	memblock type to insert into
 * @idx:	index for the insertion point
 * @base:	base address of the new region
 * @size:	size of the new region
 * @nid:	node id of the new region
 * @flags:	flags of the new region
 *
 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 * @type must already have extra room to accomodate the new region.
 */
static void __init_memblock memblock_insert_region(struct memblock_type *type,
						   int idx, phys_addr_t base,
						   phys_addr_t size,
						   int nid, unsigned long flags)
{
	struct memblock_region *rgn = &type->regions[idx];

	BUG_ON(type->cnt >= type->max);
	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
	rgn->base = base;
	rgn->size = size;
	rgn->flags = flags;
	memblock_set_region_node(rgn, nid);
	type->cnt++;
	type->total_size += size;
}

/**
 * memblock_add_range - add new memblock region
 * @type: memblock type to add new region into
 * @base: base address of the new region
 * @size: size of the new region
 * @nid: nid of the new region
 * @flags: flags of the new region
 *
 * Add new memblock region [@base,@base+@size) into @type.  The new region
 * is allowed to overlap with existing ones - overlaps don't affect already
 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 * compatible regions are merged) after the addition.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init_memblock memblock_add_range(struct memblock_type *type,
				phys_addr_t base, phys_addr_t size,
				int nid, unsigned long flags)
{
	bool insert = false;
	phys_addr_t obase = base;
	phys_addr_t end = base + memblock_cap_size(base, &size);
	int i, nr_new;

	if (!size)
		return 0;

	/* special case for empty array */
	if (type->regions[0].size == 0) {
		WARN_ON(type->cnt != 1 || type->total_size);
		type->regions[0].base = base;
		type->regions[0].size = size;
		type->regions[0].flags = flags;
		memblock_set_region_node(&type->regions[0], nid);
		type->total_size = size;
		return 0;
	}
repeat:
	/*
	 * The following is executed twice.  Once with %false @insert and
	 * then with %true.  The first counts the number of regions needed
	 * to accomodate the new area.  The second actually inserts them.
	 */
	base = obase;
	nr_new = 0;

	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
			break;
		if (rend <= base)
			continue;
		/*
		 * @rgn overlaps.  If it separates the lower part of new
		 * area, insert that portion.
		 */
		if (rbase > base) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			WARN_ON(nid != memblock_get_region_node(rgn));
#endif
			WARN_ON(flags != rgn->flags);
			nr_new++;
			if (insert)
				memblock_insert_region(type, i++, base,
						       rbase - base, nid,
						       flags);
		}
		/* area below @rend is dealt with, forget about it */
		base = min(rend, end);
	}

	/* insert the remaining portion */
	if (base < end) {
		nr_new++;
		if (insert)
			memblock_insert_region(type, i, base, end - base,
					       nid, flags);
	}

	/*
	 * If this was the first round, resize array and repeat for actual
	 * insertions; otherwise, merge and return.
	 */
	if (!insert) {
		while (type->cnt + nr_new > type->max)
			if (memblock_double_array(type, obase, size) < 0)
				return -ENOMEM;
		insert = true;
		goto repeat;
	} else {
		memblock_merge_regions(type);
		return 0;
	}
}

int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
				       int nid)
{
	return memblock_add_range(&memblock.memory, base, size, nid, 0);
}

static int __init_memblock memblock_add_region(phys_addr_t base,
						phys_addr_t size,
						int nid,
						unsigned long flags)
{
	struct memblock_type *_rgn = &memblock.memory;

	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
		     (unsigned long long)base,
		     (unsigned long long)base + size - 1,
		     flags, (void *)_RET_IP_);

	return memblock_add_range(_rgn, base, size, nid, flags);
}

int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
{
	return memblock_add_region(base, size, MAX_NUMNODES, 0);
}

/**
 * memblock_isolate_range - isolate given range into disjoint memblocks
 * @type: memblock type to isolate range for
 * @base: base of range to isolate
 * @size: size of range to isolate
 * @start_rgn: out parameter for the start of isolated region
 * @end_rgn: out parameter for the end of isolated region
 *
 * Walk @type and ensure that regions don't cross the boundaries defined by
 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 * which may create at most two more regions.  The index of the first
 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
					phys_addr_t base, phys_addr_t size,
					int *start_rgn, int *end_rgn)
{
	phys_addr_t end = base + memblock_cap_size(base, &size);
	int i;

	*start_rgn = *end_rgn = 0;

	if (!size)
		return 0;

	/* we'll create at most two more regions */
	while (type->cnt + 2 > type->max)
		if (memblock_double_array(type, base, size) < 0)
			return -ENOMEM;

	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		phys_addr_t rbase = rgn->base;
		phys_addr_t rend = rbase + rgn->size;

		if (rbase >= end)
			break;
		if (rend <= base)
			continue;

		if (rbase < base) {
			/*
			 * @rgn intersects from below.  Split and continue
			 * to process the next region - the new top half.
			 */
			rgn->base = base;
			rgn->size -= base - rbase;
			type->total_size -= base - rbase;
			memblock_insert_region(type, i, rbase, base - rbase,
					       memblock_get_region_node(rgn),
					       rgn->flags);
		} else if (rend > end) {
			/*
			 * @rgn intersects from above.  Split and redo the
			 * current region - the new bottom half.
			 */
			rgn->base = end;
			rgn->size -= end - rbase;
			type->total_size -= end - rbase;
			memblock_insert_region(type, i--, rbase, end - rbase,
					       memblock_get_region_node(rgn),
					       rgn->flags);
		} else {
			/* @rgn is fully contained, record it */
			if (!*end_rgn)
				*start_rgn = i;
			*end_rgn = i + 1;
		}
	}

	return 0;
}

int __init_memblock memblock_remove_range(struct memblock_type *type,
					  phys_addr_t base, phys_addr_t size)
{
	int start_rgn, end_rgn;
	int i, ret;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = end_rgn - 1; i >= start_rgn; i--)
		memblock_remove_region(type, i);
	return 0;
}

int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
{
	return memblock_remove_range(&memblock.memory, base, size);
}


int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
{
	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
		     (unsigned long long)base,
		     (unsigned long long)base + size - 1,
		     (void *)_RET_IP_);

	kmemleak_free_part(__va(base), size);
	return memblock_remove_range(&memblock.reserved, base, size);
}

static int __init_memblock memblock_reserve_region(phys_addr_t base,
						   phys_addr_t size,
						   int nid,
						   unsigned long flags)
{
	struct memblock_type *type = &memblock.reserved;

	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
		     (unsigned long long)base,
		     (unsigned long long)base + size - 1,
		     flags, (void *)_RET_IP_);

	return memblock_add_range(type, base, size, nid, flags);
}

int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
{
	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
}

/**
 *
 * This function isolates region [@base, @base + @size), and sets/clears flag
 *
 * Return 0 on succees, -errno on failure.
 */
static int __init_memblock memblock_setclr_flag(phys_addr_t base,
				phys_addr_t size, int set, int flag)
{
	struct memblock_type *type = &memblock.memory;
	int i, ret, start_rgn, end_rgn;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
		if (set)
			memblock_set_region_flags(&type->regions[i], flag);
		else
			memblock_clear_region_flags(&type->regions[i], flag);

	memblock_merge_regions(type);
	return 0;
}

/**
 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
{
	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
}

/**
 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
{
	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
}

/**
 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 * @base: the base phys addr of the region
 * @size: the size of the region
 *
 * Return 0 on succees, -errno on failure.
 */
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
{
	system_has_some_mirror = true;

	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
}


/**
 * __next_reserved_mem_region - next function for for_each_reserved_region()
 * @idx: pointer to u64 loop variable
 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 *
 * Iterate over all reserved memory regions.
 */
void __init_memblock __next_reserved_mem_region(u64 *idx,
					   phys_addr_t *out_start,
					   phys_addr_t *out_end)
{
	struct memblock_type *rsv = &memblock.reserved;

	if (*idx >= 0 && *idx < rsv->cnt) {
		struct memblock_region *r = &rsv->regions[*idx];
		phys_addr_t base = r->base;
		phys_addr_t size = r->size;

		if (out_start)
			*out_start = base;
		if (out_end)
			*out_end = base + size - 1;

		*idx += 1;
		return;
	}

	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

/**
 * __next__mem_range - next function for for_each_free_mem_range() etc.
 * @idx: pointer to u64 loop variable
 * @nid: node selector, %NUMA_NO_NODE for all nodes
 * @flags: pick from blocks based on memory attributes
 * @type_a: pointer to memblock_type from where the range is taken
 * @type_b: pointer to memblock_type which excludes memory from being taken
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
 *
 * Find the first area from *@idx which matches @nid, fill the out
 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 * *@idx contains index into type_a and the upper 32bit indexes the
 * areas before each region in type_b.	For example, if type_b regions
 * look like the following,
 *
 *	0:[0-16), 1:[32-48), 2:[128-130)
 *
 * The upper 32bit indexes the following regions.
 *
 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 *
 * As both region arrays are sorted, the function advances the two indices
 * in lockstep and returns each intersection.
 */
void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
				      struct memblock_type *type_a,
				      struct memblock_type *type_b,
				      phys_addr_t *out_start,
				      phys_addr_t *out_end, int *out_nid)
{
	int idx_a = *idx & 0xffffffff;
	int idx_b = *idx >> 32;

	if (WARN_ONCE(nid == MAX_NUMNODES,
	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;

	for (; idx_a < type_a->cnt; idx_a++) {
		struct memblock_region *m = &type_a->regions[idx_a];

		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;
		int	    m_nid = memblock_get_region_node(m);

		/* only memory regions are associated with nodes, check it */
		if (nid != NUMA_NO_NODE && nid != m_nid)
			continue;

		/* skip hotpluggable memory regions if needed */
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
			continue;

		/* if we want mirror memory skip non-mirror memory regions */
		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
			continue;

		if (!type_b) {
			if (out_start)
				*out_start = m_start;
			if (out_end)
				*out_end = m_end;
			if (out_nid)
				*out_nid = m_nid;
			idx_a++;
			*idx = (u32)idx_a | (u64)idx_b << 32;
			return;
		}

		/* scan areas before each reservation */
		for (; idx_b < type_b->cnt + 1; idx_b++) {
			struct memblock_region *r;
			phys_addr_t r_start;
			phys_addr_t r_end;

			r = &type_b->regions[idx_b];
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
			r_end = idx_b < type_b->cnt ?
				r->base : ULLONG_MAX;

			/*
			 * if idx_b advanced past idx_a,
			 * break out to advance idx_a
			 */
			if (r_start >= m_end)
				break;
			/* if the two regions intersect, we're done */
			if (m_start < r_end) {
				if (out_start)
					*out_start =
						max(m_start, r_start);
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
					*out_nid = m_nid;
				/*
				 * The region which ends first is
				 * advanced for the next iteration.
				 */
				if (m_end <= r_end)
					idx_a++;
				else
					idx_b++;
				*idx = (u32)idx_a | (u64)idx_b << 32;
				return;
			}
		}
	}

	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

/**
 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 *
 * Finds the next range from type_a which is not marked as unsuitable
 * in type_b.
 *
 * @idx: pointer to u64 loop variable
 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
 * @flags: pick from blocks based on memory attributes
 * @type_a: pointer to memblock_type from where the range is taken
 * @type_b: pointer to memblock_type which excludes memory from being taken
 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 * @out_nid: ptr to int for nid of the range, can be %NULL
 *
 * Reverse of __next_mem_range().
 */
void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
					  struct memblock_type *type_a,
					  struct memblock_type *type_b,
					  phys_addr_t *out_start,
					  phys_addr_t *out_end, int *out_nid)
{
	int idx_a = *idx & 0xffffffff;
	int idx_b = *idx >> 32;

	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;

	if (*idx == (u64)ULLONG_MAX) {
		idx_a = type_a->cnt - 1;
		idx_b = type_b->cnt;
	}

	for (; idx_a >= 0; idx_a--) {
		struct memblock_region *m = &type_a->regions[idx_a];

		phys_addr_t m_start = m->base;
		phys_addr_t m_end = m->base + m->size;
		int m_nid = memblock_get_region_node(m);

		/* only memory regions are associated with nodes, check it */
		if (nid != NUMA_NO_NODE && nid != m_nid)
			continue;

		/* skip hotpluggable memory regions if needed */
		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
			continue;

		/* if we want mirror memory skip non-mirror memory regions */
		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
			continue;

		if (!type_b) {
			if (out_start)
				*out_start = m_start;
			if (out_end)
				*out_end = m_end;
			if (out_nid)
				*out_nid = m_nid;
			idx_a++;
			*idx = (u32)idx_a | (u64)idx_b << 32;
			return;
		}

		/* scan areas before each reservation */
		for (; idx_b >= 0; idx_b--) {
			struct memblock_region *r;
			phys_addr_t r_start;
			phys_addr_t r_end;

			r = &type_b->regions[idx_b];
			r_start = idx_b ? r[-1].base + r[-1].size : 0;
			r_end = idx_b < type_b->cnt ?
				r->base : ULLONG_MAX;
			/*
			 * if idx_b advanced past idx_a,
			 * break out to advance idx_a
			 */

			if (r_end <= m_start)
				break;
			/* if the two regions intersect, we're done */
			if (m_end > r_start) {
				if (out_start)
					*out_start = max(m_start, r_start);
				if (out_end)
					*out_end = min(m_end, r_end);
				if (out_nid)
					*out_nid = m_nid;
				if (m_start >= r_start)
					idx_a--;
				else
					idx_b--;
				*idx = (u32)idx_a | (u64)idx_b << 32;
				return;
			}
		}
	}
	/* signal end of iteration */
	*idx = ULLONG_MAX;
}

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
 * Common iterator interface used to define for_each_mem_range().
 */
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
				unsigned long *out_start_pfn,
				unsigned long *out_end_pfn, int *out_nid)
{
	struct memblock_type *type = &memblock.memory;
	struct memblock_region *r;

	while (++*idx < type->cnt) {
		r = &type->regions[*idx];

		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
			continue;
		if (nid == MAX_NUMNODES || nid == r->nid)
			break;
	}
	if (*idx >= type->cnt) {
		*idx = -1;
		return;
	}

	if (out_start_pfn)
		*out_start_pfn = PFN_UP(r->base);
	if (out_end_pfn)
		*out_end_pfn = PFN_DOWN(r->base + r->size);
	if (out_nid)
		*out_nid = r->nid;
}

/**
 * memblock_set_node - set node ID on memblock regions
 * @base: base of area to set node ID for
 * @size: size of area to set node ID for
 * @type: memblock type to set node ID for
 * @nid: node ID to set
 *
 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
 * Regions which cross the area boundaries are split as necessary.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
				      struct memblock_type *type, int nid)
{
	int start_rgn, end_rgn;
	int i, ret;

	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
	if (ret)
		return ret;

	for (i = start_rgn; i < end_rgn; i++)
		memblock_set_region_node(&type->regions[i], nid);

	memblock_merge_regions(type);
	return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */

static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
					phys_addr_t align, phys_addr_t start,
					phys_addr_t end, int nid, ulong flags)
{
	phys_addr_t found;

	if (!align)
		align = SMP_CACHE_BYTES;

	found = memblock_find_in_range_node(size, align, start, end, nid,
					    flags);
	if (found && !memblock_reserve(found, size)) {
		/*
		 * The min_count is set to 0 so that memblock allocations are
		 * never reported as leaks.
		 */
		kmemleak_alloc(__va(found), size, 0, 0);
		return found;
	}
	return 0;
}

phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
					phys_addr_t start, phys_addr_t end,
					ulong flags)
{
	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
					flags);
}

static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
					phys_addr_t align, phys_addr_t max_addr,
					int nid, ulong flags)
{
	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
}

phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	ulong flags = choose_memblock_flags();
	phys_addr_t ret;

again:
	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
				      nid, flags);

	if (!ret && (flags & MEMBLOCK_MIRROR)) {
		flags &= ~MEMBLOCK_MIRROR;
		goto again;
	}
	return ret;
}

phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
				       MEMBLOCK_NONE);
}

phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
{
	phys_addr_t alloc;

	alloc = __memblock_alloc_base(size, align, max_addr);

	if (alloc == 0)
		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
		      (unsigned long long) size, (unsigned long long) max_addr);

	return alloc;
}

phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
{
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}

phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
	phys_addr_t res = memblock_alloc_nid(size, align, nid);

	if (res)
		return res;
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
}

/**
 * memblock_virt_alloc_internal - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region to allocate (phys address)
 * @max_addr: the upper bound of the memory region to allocate (phys address)
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * The @min_addr limit is dropped if it can not be satisfied and the allocation
 * will fall back to memory below @min_addr. Also, allocation may fall back
 * to any node in the system if the specified node can not
 * hold the requested memory.
 *
 * The allocation is performed from memory region limited by
 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
 *
 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
 *
 * The phys address of allocated boot memory block is converted to virtual and
 * allocated memory is reset to 0.
 *
 * In addition, function sets the min_count to 0 using kmemleak_alloc for
 * allocated boot memory block, so that it is never reported as leaks.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
static void * __init memblock_virt_alloc_internal(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	phys_addr_t alloc;
	void *ptr;
	ulong flags = choose_memblock_flags();

	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
		nid = NUMA_NO_NODE;

	/*
	 * Detect any accidental use of these APIs after slab is ready, as at
	 * this moment memblock may be deinitialized already and its
	 * internal data may be destroyed (after execution of free_all_bootmem)
	 */
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, nid);

	if (!align)
		align = SMP_CACHE_BYTES;

	if (max_addr > memblock.current_limit)
		max_addr = memblock.current_limit;

again:
	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
					    nid, flags);
	if (alloc)
		goto done;

	if (nid != NUMA_NO_NODE) {
		alloc = memblock_find_in_range_node(size, align, min_addr,
						    max_addr, NUMA_NO_NODE,
						    flags);
		if (alloc)
			goto done;
	}

	if (min_addr) {
		min_addr = 0;
		goto again;
	}

	if (flags & MEMBLOCK_MIRROR) {
		flags &= ~MEMBLOCK_MIRROR;
		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
			&size);
		goto again;
	}

	return NULL;
done:
	memblock_reserve(alloc, size);
	ptr = phys_to_virt(alloc);
	memset(ptr, 0, size);

	/*
	 * The min_count is set to 0 so that bootmem allocated blocks
	 * are never reported as leaks. This is because many of these blocks
	 * are only referred via the physical address which is not
	 * looked up by kmemleak.
	 */
	kmemleak_alloc(ptr, size, 0, 0);

	return ptr;
}

/**
 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
 * additional debug information (including caller info), if enabled.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid_nopanic(
				phys_addr_t size, phys_addr_t align,
				phys_addr_t min_addr, phys_addr_t max_addr,
				int nid)
{
	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
		     (u64)max_addr, (void *)_RET_IP_);
	return memblock_virt_alloc_internal(size, align, min_addr,
					     max_addr, nid);
}

/**
 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
 * @size: size of memory block to be allocated in bytes
 * @align: alignment of the region and block's size
 * @min_addr: the lower bound of the memory region from where the allocation
 *	  is preferred (phys address)
 * @max_addr: the upper bound of the memory region from where the allocation
 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 *	      allocate only from memory limited by memblock.current_limit value
 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 *
 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
 * which provides debug information (including caller info), if enabled,
 * and panics if the request can not be satisfied.
 *
 * RETURNS:
 * Virtual address of allocated memory block on success, NULL on failure.
 */
void * __init memblock_virt_alloc_try_nid(
			phys_addr_t size, phys_addr_t align,
			phys_addr_t min_addr, phys_addr_t max_addr,
			int nid)
{
	void *ptr;

	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
		     (u64)max_addr, (void *)_RET_IP_);
	ptr = memblock_virt_alloc_internal(size, align,
					   min_addr, max_addr, nid);
	if (ptr)
		return ptr;

	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
	      (u64)max_addr);
	return NULL;
}

/**
 * __memblock_free_early - free boot memory block
 * @base: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
 * The freeing memory will not be released to the buddy allocator.
 */
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
{
	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
		     __func__, (u64)base, (u64)base + size - 1,
		     (void *)_RET_IP_);
	kmemleak_free_part(__va(base), size);
	memblock_remove_range(&memblock.reserved, base, size);
}

/*
 * __memblock_free_late - free bootmem block pages directly to buddy allocator
 * @addr: phys starting address of the  boot memory block
 * @size: size of the boot memory block in bytes
 *
 * This is only useful when the bootmem allocator has already been torn
 * down, but we are still initializing the system.  Pages are released directly
 * to the buddy allocator, no bootmem metadata is updated because it is gone.
 */
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
{
	u64 cursor, end;

	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
		     __func__, (u64)base, (u64)base + size - 1,
		     (void *)_RET_IP_);
	kmemleak_free_part(__va(base), size);
	cursor = PFN_UP(base);
	end = PFN_DOWN(base + size);

	for (; cursor < end; cursor++) {
		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
		totalram_pages++;
	}
}

/*
 * Remaining API functions
 */

phys_addr_t __init memblock_phys_mem_size(void)
{
	return memblock.memory.total_size;
}

phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
{
	unsigned long pages = 0;
	struct memblock_region *r;
	unsigned long start_pfn, end_pfn;

	for_each_memblock(memory, r) {
		start_pfn = memblock_region_memory_base_pfn(r);
		end_pfn = memblock_region_memory_end_pfn(r);
		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
		pages += end_pfn - start_pfn;
	}

	return PFN_PHYS(pages);
}

/* lowest address */
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
{
	return memblock.memory.regions[0].base;
}

phys_addr_t __init_memblock memblock_end_of_DRAM(void)
{
	int idx = memblock.memory.cnt - 1;

	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
}

void __init memblock_enforce_memory_limit(phys_addr_t limit)
{
	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
	struct memblock_region *r;

	if (!limit)
		return;

	/* find out max address */
	for_each_memblock(memory, r) {
		if (limit <= r->size) {
			max_addr = r->base + limit;
			break;
		}
		limit -= r->size;
	}

	/* truncate both memory and reserved regions */
	memblock_remove_range(&memblock.memory, max_addr,
			      (phys_addr_t)ULLONG_MAX);
	memblock_remove_range(&memblock.reserved, max_addr,
			      (phys_addr_t)ULLONG_MAX);
}

static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
{
	unsigned int left = 0, right = type->cnt;

	do {
		unsigned int mid = (right + left) / 2;

		if (addr < type->regions[mid].base)
			right = mid;
		else if (addr >= (type->regions[mid].base +
				  type->regions[mid].size))
			left = mid + 1;
		else
			return mid;
	} while (left < right);
	return -1;
}

int __init memblock_is_reserved(phys_addr_t addr)
{
	return memblock_search(&memblock.reserved, addr) != -1;
}

int __init_memblock memblock_is_memory(phys_addr_t addr)
{
	return memblock_search(&memblock.memory, addr) != -1;
}

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
			 unsigned long *start_pfn, unsigned long *end_pfn)
{
	struct memblock_type *type = &memblock.memory;
	int mid = memblock_search(type, PFN_PHYS(pfn));

	if (mid == -1)
		return -1;

	*start_pfn = PFN_DOWN(type->regions[mid].base);
	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);

	return type->regions[mid].nid;
}
#endif

/**
 * memblock_is_region_memory - check if a region is a subset of memory
 * @base: base of region to check
 * @size: size of region to check
 *
 * Check if the region [@base, @base+@size) is a subset of a memory block.
 *
 * RETURNS:
 * 0 if false, non-zero if true
 */
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
{
	int idx = memblock_search(&memblock.memory, base);
	phys_addr_t end = base + memblock_cap_size(base, &size);

	if (idx == -1)
		return 0;
	return memblock.memory.regions[idx].base <= base &&
		(memblock.memory.regions[idx].base +
		 memblock.memory.regions[idx].size) >= end;
}

/**
 * memblock_is_region_reserved - check if a region intersects reserved memory
 * @base: base of region to check
 * @size: size of region to check
 *
 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 *
 * RETURNS:
 * 0 if false, non-zero if true
 */
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
{
	memblock_cap_size(base, &size);
	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
}

void __init_memblock memblock_trim_memory(phys_addr_t align)
{
	phys_addr_t start, end, orig_start, orig_end;
	struct memblock_region *r;

	for_each_memblock(memory, r) {
		orig_start = r->base;
		orig_end = r->base + r->size;
		start = round_up(orig_start, align);
		end = round_down(orig_end, align);

		if (start == orig_start && end == orig_end)
			continue;

		if (start < end) {
			r->base = start;
			r->size = end - start;
		} else {
			memblock_remove_region(&memblock.memory,
					       r - memblock.memory.regions);
			r--;
		}
	}
}

void __init_memblock memblock_set_current_limit(phys_addr_t limit)
{
	memblock.current_limit = limit;
}

phys_addr_t __init_memblock memblock_get_current_limit(void)
{
	return memblock.current_limit;
}

static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
{
	unsigned long long base, size;
	unsigned long flags;
	int i;

	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);

	for (i = 0; i < type->cnt; i++) {
		struct memblock_region *rgn = &type->regions[i];
		char nid_buf[32] = "";

		base = rgn->base;
		size = rgn->size;
		flags = rgn->flags;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
				 memblock_get_region_node(rgn));
#endif
		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
			name, i, base, base + size - 1, size, nid_buf, flags);
	}
}

void __init_memblock __memblock_dump_all(void)
{
	pr_info("MEMBLOCK configuration:\n");
	pr_info(" memory size = %#llx reserved size = %#llx\n",
		(unsigned long long)memblock.memory.total_size,
		(unsigned long long)memblock.reserved.total_size);

	memblock_dump(&memblock.memory, "memory");
	memblock_dump(&memblock.reserved, "reserved");
}

void __init memblock_allow_resize(void)
{
	memblock_can_resize = 1;
}

static int __init early_memblock(char *p)
{
	if (p && strstr(p, "debug"))
		memblock_debug = 1;
	return 0;
}
early_param("memblock", early_memblock);

#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)

static int memblock_debug_show(struct seq_file *m, void *private)
{
	struct memblock_type *type = m->private;
	struct memblock_region *reg;
	int i;

	for (i = 0; i < type->cnt; i++) {
		reg = &type->regions[i];
		seq_printf(m, "%4d: ", i);
		if (sizeof(phys_addr_t) == 4)
			seq_printf(m, "0x%08lx..0x%08lx\n",
				   (unsigned long)reg->base,
				   (unsigned long)(reg->base + reg->size - 1));
		else
			seq_printf(m, "0x%016llx..0x%016llx\n",
				   (unsigned long long)reg->base,
				   (unsigned long long)(reg->base + reg->size - 1));

	}
	return 0;
}

static int memblock_debug_open(struct inode *inode, struct file *file)
{
	return single_open(file, memblock_debug_show, inode->i_private);
}

static const struct file_operations memblock_debug_fops = {
	.open = memblock_debug_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int __init memblock_init_debugfs(void)
{
	struct dentry *root = debugfs_create_dir("memblock", NULL);
	if (!root)
		return -ENXIO;
	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
#endif

	return 0;
}
__initcall(memblock_init_debugfs);

#endif /* CONFIG_DEBUG_FS */