summaryrefslogtreecommitdiff
path: root/lib/zstd/decompress/zstd_decompress_block.c
blob: 2d101d9a842ecaafd663be8f1d19b72cb7cc9a01 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
/*
 * Copyright (c) Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

/* zstd_decompress_block :
 * this module takes care of decompressing _compressed_ block */

/*-*******************************************************
*  Dependencies
*********************************************************/
#include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
#include "../common/compiler.h"    /* prefetch */
#include "../common/cpu.h"         /* bmi2 */
#include "../common/mem.h"         /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/zstd_internal.h"
#include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
#include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
#include "zstd_decompress_block.h"

/*_*******************************************************
*  Macros
**********************************************************/

/* These two optional macros force the use one way or another of the two
 * ZSTD_decompressSequences implementations. You can't force in both directions
 * at the same time.
 */
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
#endif


/*_*******************************************************
*  Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }


/*-*************************************************************
 *   Block decoding
 ***************************************************************/

/*! ZSTD_getcBlockSize() :
 *  Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
                          blockProperties_t* bpPtr)
{
    RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");

    {   U32 const cBlockHeader = MEM_readLE24(src);
        U32 const cSize = cBlockHeader >> 3;
        bpPtr->lastBlock = cBlockHeader & 1;
        bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
        bpPtr->origSize = cSize;   /* only useful for RLE */
        if (bpPtr->blockType == bt_rle) return 1;
        RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
        return cSize;
    }
}


/* Hidden declaration for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
                          const void* src, size_t srcSize);
/*! ZSTD_decodeLiteralsBlock() :
 * @return : nb of bytes read from src (< srcSize )
 *  note : symbol not declared but exposed for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
                          const void* src, size_t srcSize)   /* note : srcSize < BLOCKSIZE */
{
    DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
    RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");

    {   const BYTE* const istart = (const BYTE*) src;
        symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);

        switch(litEncType)
        {
        case set_repeat:
            DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
            RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
            ZSTD_FALLTHROUGH;

        case set_compressed:
            RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
            {   size_t lhSize, litSize, litCSize;
                U32 singleStream=0;
                U32 const lhlCode = (istart[0] >> 2) & 3;
                U32 const lhc = MEM_readLE32(istart);
                size_t hufSuccess;
                switch(lhlCode)
                {
                case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
                    /* 2 - 2 - 10 - 10 */
                    singleStream = !lhlCode;
                    lhSize = 3;
                    litSize  = (lhc >> 4) & 0x3FF;
                    litCSize = (lhc >> 14) & 0x3FF;
                    break;
                case 2:
                    /* 2 - 2 - 14 - 14 */
                    lhSize = 4;
                    litSize  = (lhc >> 4) & 0x3FFF;
                    litCSize = lhc >> 18;
                    break;
                case 3:
                    /* 2 - 2 - 18 - 18 */
                    lhSize = 5;
                    litSize  = (lhc >> 4) & 0x3FFFF;
                    litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
                    break;
                }
                RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
                RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");

                /* prefetch huffman table if cold */
                if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
                    PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
                }

                if (litEncType==set_repeat) {
                    if (singleStream) {
                        hufSuccess = HUF_decompress1X_usingDTable_bmi2(
                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
                            dctx->HUFptr, dctx->bmi2);
                    } else {
                        hufSuccess = HUF_decompress4X_usingDTable_bmi2(
                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
                            dctx->HUFptr, dctx->bmi2);
                    }
                } else {
                    if (singleStream) {
#if defined(HUF_FORCE_DECOMPRESS_X2)
                        hufSuccess = HUF_decompress1X_DCtx_wksp(
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
                            istart+lhSize, litCSize, dctx->workspace,
                            sizeof(dctx->workspace));
#else
                        hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
                            istart+lhSize, litCSize, dctx->workspace,
                            sizeof(dctx->workspace), dctx->bmi2);
#endif
                    } else {
                        hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
                            istart+lhSize, litCSize, dctx->workspace,
                            sizeof(dctx->workspace), dctx->bmi2);
                    }
                }

                RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");

                dctx->litPtr = dctx->litBuffer;
                dctx->litSize = litSize;
                dctx->litEntropy = 1;
                if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
                ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
                return litCSize + lhSize;
            }

        case set_basic:
            {   size_t litSize, lhSize;
                U32 const lhlCode = ((istart[0]) >> 2) & 3;
                switch(lhlCode)
                {
                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
                    lhSize = 1;
                    litSize = istart[0] >> 3;
                    break;
                case 1:
                    lhSize = 2;
                    litSize = MEM_readLE16(istart) >> 4;
                    break;
                case 3:
                    lhSize = 3;
                    litSize = MEM_readLE24(istart) >> 4;
                    break;
                }

                if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
                    RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
                    ZSTD_memcpy(dctx->litBuffer, istart+lhSize, litSize);
                    dctx->litPtr = dctx->litBuffer;
                    dctx->litSize = litSize;
                    ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
                    return lhSize+litSize;
                }
                /* direct reference into compressed stream */
                dctx->litPtr = istart+lhSize;
                dctx->litSize = litSize;
                return lhSize+litSize;
            }

        case set_rle:
            {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
                size_t litSize, lhSize;
                switch(lhlCode)
                {
                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
                    lhSize = 1;
                    litSize = istart[0] >> 3;
                    break;
                case 1:
                    lhSize = 2;
                    litSize = MEM_readLE16(istart) >> 4;
                    break;
                case 3:
                    lhSize = 3;
                    litSize = MEM_readLE24(istart) >> 4;
                    RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
                    break;
                }
                RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
                ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
                dctx->litPtr = dctx->litBuffer;
                dctx->litSize = litSize;
                return lhSize+1;
            }
        default:
            RETURN_ERROR(corruption_detected, "impossible");
        }
    }
}

/* Default FSE distribution tables.
 * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
 * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
 * They were generated programmatically with following method :
 * - start from default distributions, present in /lib/common/zstd_internal.h
 * - generate tables normally, using ZSTD_buildFSETable()
 * - printout the content of tables
 * - pretify output, report below, test with fuzzer to ensure it's correct */

/* Default FSE distribution table for Literal Lengths */
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
     {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
     /* nextState, nbAddBits, nbBits, baseVal */
     {  0,  0,  4,    0},  { 16,  0,  4,    0},
     { 32,  0,  5,    1},  {  0,  0,  5,    3},
     {  0,  0,  5,    4},  {  0,  0,  5,    6},
     {  0,  0,  5,    7},  {  0,  0,  5,    9},
     {  0,  0,  5,   10},  {  0,  0,  5,   12},
     {  0,  0,  6,   14},  {  0,  1,  5,   16},
     {  0,  1,  5,   20},  {  0,  1,  5,   22},
     {  0,  2,  5,   28},  {  0,  3,  5,   32},
     {  0,  4,  5,   48},  { 32,  6,  5,   64},
     {  0,  7,  5,  128},  {  0,  8,  6,  256},
     {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
     { 32,  0,  4,    0},  {  0,  0,  4,    1},
     {  0,  0,  5,    2},  { 32,  0,  5,    4},
     {  0,  0,  5,    5},  { 32,  0,  5,    7},
     {  0,  0,  5,    8},  { 32,  0,  5,   10},
     {  0,  0,  5,   11},  {  0,  0,  6,   13},
     { 32,  1,  5,   16},  {  0,  1,  5,   18},
     { 32,  1,  5,   22},  {  0,  2,  5,   24},
     { 32,  3,  5,   32},  {  0,  3,  5,   40},
     {  0,  6,  4,   64},  { 16,  6,  4,   64},
     { 32,  7,  5,  128},  {  0,  9,  6,  512},
     {  0, 11,  6, 2048},  { 48,  0,  4,    0},
     { 16,  0,  4,    1},  { 32,  0,  5,    2},
     { 32,  0,  5,    3},  { 32,  0,  5,    5},
     { 32,  0,  5,    6},  { 32,  0,  5,    8},
     { 32,  0,  5,    9},  { 32,  0,  5,   11},
     { 32,  0,  5,   12},  {  0,  0,  6,   15},
     { 32,  1,  5,   18},  { 32,  1,  5,   20},
     { 32,  2,  5,   24},  { 32,  2,  5,   28},
     { 32,  3,  5,   40},  { 32,  4,  5,   48},
     {  0, 16,  6,65536},  {  0, 15,  6,32768},
     {  0, 14,  6,16384},  {  0, 13,  6, 8192},
};   /* LL_defaultDTable */

/* Default FSE distribution table for Offset Codes */
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
    {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
    /* nextState, nbAddBits, nbBits, baseVal */
    {  0,  0,  5,    0},     {  0,  6,  4,   61},
    {  0,  9,  5,  509},     {  0, 15,  5,32765},
    {  0, 21,  5,2097149},   {  0,  3,  5,    5},
    {  0,  7,  4,  125},     {  0, 12,  5, 4093},
    {  0, 18,  5,262141},    {  0, 23,  5,8388605},
    {  0,  5,  5,   29},     {  0,  8,  4,  253},
    {  0, 14,  5,16381},     {  0, 20,  5,1048573},
    {  0,  2,  5,    1},     { 16,  7,  4,  125},
    {  0, 11,  5, 2045},     {  0, 17,  5,131069},
    {  0, 22,  5,4194301},   {  0,  4,  5,   13},
    { 16,  8,  4,  253},     {  0, 13,  5, 8189},
    {  0, 19,  5,524285},    {  0,  1,  5,    1},
    { 16,  6,  4,   61},     {  0, 10,  5, 1021},
    {  0, 16,  5,65533},     {  0, 28,  5,268435453},
    {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
    {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
};   /* OF_defaultDTable */


/* Default FSE distribution table for Match Lengths */
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
    {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
    /* nextState, nbAddBits, nbBits, baseVal */
    {  0,  0,  6,    3},  {  0,  0,  4,    4},
    { 32,  0,  5,    5},  {  0,  0,  5,    6},
    {  0,  0,  5,    8},  {  0,  0,  5,    9},
    {  0,  0,  5,   11},  {  0,  0,  6,   13},
    {  0,  0,  6,   16},  {  0,  0,  6,   19},
    {  0,  0,  6,   22},  {  0,  0,  6,   25},
    {  0,  0,  6,   28},  {  0,  0,  6,   31},
    {  0,  0,  6,   34},  {  0,  1,  6,   37},
    {  0,  1,  6,   41},  {  0,  2,  6,   47},
    {  0,  3,  6,   59},  {  0,  4,  6,   83},
    {  0,  7,  6,  131},  {  0,  9,  6,  515},
    { 16,  0,  4,    4},  {  0,  0,  4,    5},
    { 32,  0,  5,    6},  {  0,  0,  5,    7},
    { 32,  0,  5,    9},  {  0,  0,  5,   10},
    {  0,  0,  6,   12},  {  0,  0,  6,   15},
    {  0,  0,  6,   18},  {  0,  0,  6,   21},
    {  0,  0,  6,   24},  {  0,  0,  6,   27},
    {  0,  0,  6,   30},  {  0,  0,  6,   33},
    {  0,  1,  6,   35},  {  0,  1,  6,   39},
    {  0,  2,  6,   43},  {  0,  3,  6,   51},
    {  0,  4,  6,   67},  {  0,  5,  6,   99},
    {  0,  8,  6,  259},  { 32,  0,  4,    4},
    { 48,  0,  4,    4},  { 16,  0,  4,    5},
    { 32,  0,  5,    7},  { 32,  0,  5,    8},
    { 32,  0,  5,   10},  { 32,  0,  5,   11},
    {  0,  0,  6,   14},  {  0,  0,  6,   17},
    {  0,  0,  6,   20},  {  0,  0,  6,   23},
    {  0,  0,  6,   26},  {  0,  0,  6,   29},
    {  0,  0,  6,   32},  {  0, 16,  6,65539},
    {  0, 15,  6,32771},  {  0, 14,  6,16387},
    {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
    {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
};   /* ML_defaultDTable */


static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
{
    void* ptr = dt;
    ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
    ZSTD_seqSymbol* const cell = dt + 1;

    DTableH->tableLog = 0;
    DTableH->fastMode = 0;

    cell->nbBits = 0;
    cell->nextState = 0;
    assert(nbAddBits < 255);
    cell->nbAdditionalBits = (BYTE)nbAddBits;
    cell->baseValue = baseValue;
}


/* ZSTD_buildFSETable() :
 * generate FSE decoding table for one symbol (ll, ml or off)
 * cannot fail if input is valid =>
 * all inputs are presumed validated at this stage */
FORCE_INLINE_TEMPLATE
void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
            const short* normalizedCounter, unsigned maxSymbolValue,
            const U32* baseValue, const U32* nbAdditionalBits,
            unsigned tableLog, void* wksp, size_t wkspSize)
{
    ZSTD_seqSymbol* const tableDecode = dt+1;
    U32 const maxSV1 = maxSymbolValue + 1;
    U32 const tableSize = 1 << tableLog;

    U16* symbolNext = (U16*)wksp;
    BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
    U32 highThreshold = tableSize - 1;


    /* Sanity Checks */
    assert(maxSymbolValue <= MaxSeq);
    assert(tableLog <= MaxFSELog);
    assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
    (void)wkspSize;
    /* Init, lay down lowprob symbols */
    {   ZSTD_seqSymbol_header DTableH;
        DTableH.tableLog = tableLog;
        DTableH.fastMode = 1;
        {   S16 const largeLimit= (S16)(1 << (tableLog-1));
            U32 s;
            for (s=0; s<maxSV1; s++) {
                if (normalizedCounter[s]==-1) {
                    tableDecode[highThreshold--].baseValue = s;
                    symbolNext[s] = 1;
                } else {
                    if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
                    assert(normalizedCounter[s]>=0);
                    symbolNext[s] = (U16)normalizedCounter[s];
        }   }   }
        ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
    }

    /* Spread symbols */
    assert(tableSize <= 512);
    /* Specialized symbol spreading for the case when there are
     * no low probability (-1 count) symbols. When compressing
     * small blocks we avoid low probability symbols to hit this
     * case, since header decoding speed matters more.
     */
    if (highThreshold == tableSize - 1) {
        size_t const tableMask = tableSize-1;
        size_t const step = FSE_TABLESTEP(tableSize);
        /* First lay down the symbols in order.
         * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
         * misses since small blocks generally have small table logs, so nearly
         * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
         * our buffer to handle the over-write.
         */
        {
            U64 const add = 0x0101010101010101ull;
            size_t pos = 0;
            U64 sv = 0;
            U32 s;
            for (s=0; s<maxSV1; ++s, sv += add) {
                int i;
                int const n = normalizedCounter[s];
                MEM_write64(spread + pos, sv);
                for (i = 8; i < n; i += 8) {
                    MEM_write64(spread + pos + i, sv);
                }
                pos += n;
            }
        }
        /* Now we spread those positions across the table.
         * The benefit of doing it in two stages is that we avoid the the
         * variable size inner loop, which caused lots of branch misses.
         * Now we can run through all the positions without any branch misses.
         * We unroll the loop twice, since that is what emperically worked best.
         */
        {
            size_t position = 0;
            size_t s;
            size_t const unroll = 2;
            assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
            for (s = 0; s < (size_t)tableSize; s += unroll) {
                size_t u;
                for (u = 0; u < unroll; ++u) {
                    size_t const uPosition = (position + (u * step)) & tableMask;
                    tableDecode[uPosition].baseValue = spread[s + u];
                }
                position = (position + (unroll * step)) & tableMask;
            }
            assert(position == 0);
        }
    } else {
        U32 const tableMask = tableSize-1;
        U32 const step = FSE_TABLESTEP(tableSize);
        U32 s, position = 0;
        for (s=0; s<maxSV1; s++) {
            int i;
            int const n = normalizedCounter[s];
            for (i=0; i<n; i++) {
                tableDecode[position].baseValue = s;
                position = (position + step) & tableMask;
                while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
        }   }
        assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
    }

    /* Build Decoding table */
    {
        U32 u;
        for (u=0; u<tableSize; u++) {
            U32 const symbol = tableDecode[u].baseValue;
            U32 const nextState = symbolNext[symbol]++;
            tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
            tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
            assert(nbAdditionalBits[symbol] < 255);
            tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
            tableDecode[u].baseValue = baseValue[symbol];
        }
    }
}

/* Avoids the FORCE_INLINE of the _body() function. */
static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
            const short* normalizedCounter, unsigned maxSymbolValue,
            const U32* baseValue, const U32* nbAdditionalBits,
            unsigned tableLog, void* wksp, size_t wkspSize)
{
    ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
}

#if DYNAMIC_BMI2
TARGET_ATTRIBUTE("bmi2") static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
            const short* normalizedCounter, unsigned maxSymbolValue,
            const U32* baseValue, const U32* nbAdditionalBits,
            unsigned tableLog, void* wksp, size_t wkspSize)
{
    ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
}
#endif

void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
            const short* normalizedCounter, unsigned maxSymbolValue,
            const U32* baseValue, const U32* nbAdditionalBits,
            unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
{
#if DYNAMIC_BMI2
    if (bmi2) {
        ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
                baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
        return;
    }
#endif
    (void)bmi2;
    ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
            baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
}


/*! ZSTD_buildSeqTable() :
 * @return : nb bytes read from src,
 *           or an error code if it fails */
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
                                 symbolEncodingType_e type, unsigned max, U32 maxLog,
                                 const void* src, size_t srcSize,
                                 const U32* baseValue, const U32* nbAdditionalBits,
                                 const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
                                 int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
                                 int bmi2)
{
    switch(type)
    {
    case set_rle :
        RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
        RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
        {   U32 const symbol = *(const BYTE*)src;
            U32 const baseline = baseValue[symbol];
            U32 const nbBits = nbAdditionalBits[symbol];
            ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
        }
        *DTablePtr = DTableSpace;
        return 1;
    case set_basic :
        *DTablePtr = defaultTable;
        return 0;
    case set_repeat:
        RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
        /* prefetch FSE table if used */
        if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
            const void* const pStart = *DTablePtr;
            size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
            PREFETCH_AREA(pStart, pSize);
        }
        return 0;
    case set_compressed :
        {   unsigned tableLog;
            S16 norm[MaxSeq+1];
            size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
            RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
            RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
            ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
            *DTablePtr = DTableSpace;
            return headerSize;
        }
    default :
        assert(0);
        RETURN_ERROR(GENERIC, "impossible");
    }
}

size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
                             const void* src, size_t srcSize)
{
    const BYTE* const istart = (const BYTE*)src;
    const BYTE* const iend = istart + srcSize;
    const BYTE* ip = istart;
    int nbSeq;
    DEBUGLOG(5, "ZSTD_decodeSeqHeaders");

    /* check */
    RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");

    /* SeqHead */
    nbSeq = *ip++;
    if (!nbSeq) {
        *nbSeqPtr=0;
        RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
        return 1;
    }
    if (nbSeq > 0x7F) {
        if (nbSeq == 0xFF) {
            RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
            nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
            ip+=2;
        } else {
            RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
            nbSeq = ((nbSeq-0x80)<<8) + *ip++;
        }
    }
    *nbSeqPtr = nbSeq;

    /* FSE table descriptors */
    RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
    {   symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
        symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
        symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
        ip++;

        /* Build DTables */
        {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
                                                      LLtype, MaxLL, LLFSELog,
                                                      ip, iend-ip,
                                                      LL_base, LL_bits,
                                                      LL_defaultDTable, dctx->fseEntropy,
                                                      dctx->ddictIsCold, nbSeq,
                                                      dctx->workspace, sizeof(dctx->workspace),
                                                      dctx->bmi2);
            RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
            ip += llhSize;
        }

        {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
                                                      OFtype, MaxOff, OffFSELog,
                                                      ip, iend-ip,
                                                      OF_base, OF_bits,
                                                      OF_defaultDTable, dctx->fseEntropy,
                                                      dctx->ddictIsCold, nbSeq,
                                                      dctx->workspace, sizeof(dctx->workspace),
                                                      dctx->bmi2);
            RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
            ip += ofhSize;
        }

        {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
                                                      MLtype, MaxML, MLFSELog,
                                                      ip, iend-ip,
                                                      ML_base, ML_bits,
                                                      ML_defaultDTable, dctx->fseEntropy,
                                                      dctx->ddictIsCold, nbSeq,
                                                      dctx->workspace, sizeof(dctx->workspace),
                                                      dctx->bmi2);
            RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
            ip += mlhSize;
        }
    }

    return ip-istart;
}


typedef struct {
    size_t litLength;
    size_t matchLength;
    size_t offset;
    const BYTE* match;
} seq_t;

typedef struct {
    size_t state;
    const ZSTD_seqSymbol* table;
} ZSTD_fseState;

typedef struct {
    BIT_DStream_t DStream;
    ZSTD_fseState stateLL;
    ZSTD_fseState stateOffb;
    ZSTD_fseState stateML;
    size_t prevOffset[ZSTD_REP_NUM];
    const BYTE* prefixStart;
    const BYTE* dictEnd;
    size_t pos;
} seqState_t;

/*! ZSTD_overlapCopy8() :
 *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
 *  If the offset is < 8 then the offset is spread to at least 8 bytes.
 *
 *  Precondition: *ip <= *op
 *  Postcondition: *op - *op >= 8
 */
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
    assert(*ip <= *op);
    if (offset < 8) {
        /* close range match, overlap */
        static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
        static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
        int const sub2 = dec64table[offset];
        (*op)[0] = (*ip)[0];
        (*op)[1] = (*ip)[1];
        (*op)[2] = (*ip)[2];
        (*op)[3] = (*ip)[3];
        *ip += dec32table[offset];
        ZSTD_copy4(*op+4, *ip);
        *ip -= sub2;
    } else {
        ZSTD_copy8(*op, *ip);
    }
    *ip += 8;
    *op += 8;
    assert(*op - *ip >= 8);
}

/*! ZSTD_safecopy() :
 *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
 *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
 *  This function is only called in the uncommon case where the sequence is near the end of the block. It
 *  should be fast for a single long sequence, but can be slow for several short sequences.
 *
 *  @param ovtype controls the overlap detection
 *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
 *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
 *           The src buffer must be before the dst buffer.
 */
static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
    ptrdiff_t const diff = op - ip;
    BYTE* const oend = op + length;

    assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
           (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));

    if (length < 8) {
        /* Handle short lengths. */
        while (op < oend) *op++ = *ip++;
        return;
    }
    if (ovtype == ZSTD_overlap_src_before_dst) {
        /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
        assert(length >= 8);
        ZSTD_overlapCopy8(&op, &ip, diff);
        assert(op - ip >= 8);
        assert(op <= oend);
    }

    if (oend <= oend_w) {
        /* No risk of overwrite. */
        ZSTD_wildcopy(op, ip, length, ovtype);
        return;
    }
    if (op <= oend_w) {
        /* Wildcopy until we get close to the end. */
        assert(oend > oend_w);
        ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
        ip += oend_w - op;
        op = oend_w;
    }
    /* Handle the leftovers. */
    while (op < oend) *op++ = *ip++;
}

/* ZSTD_execSequenceEnd():
 * This version handles cases that are near the end of the output buffer. It requires
 * more careful checks to make sure there is no overflow. By separating out these hard
 * and unlikely cases, we can speed up the common cases.
 *
 * NOTE: This function needs to be fast for a single long sequence, but doesn't need
 * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
 */
FORCE_NOINLINE
size_t ZSTD_execSequenceEnd(BYTE* op,
                            BYTE* const oend, seq_t sequence,
                            const BYTE** litPtr, const BYTE* const litLimit,
                            const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
    BYTE* const oLitEnd = op + sequence.litLength;
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
    const BYTE* match = oLitEnd - sequence.offset;
    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;

    /* bounds checks : careful of address space overflow in 32-bit mode */
    RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
    RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
    assert(op < op + sequenceLength);
    assert(oLitEnd < op + sequenceLength);

    /* copy literals */
    ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
    op = oLitEnd;
    *litPtr = iLitEnd;

    /* copy Match */
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
        /* offset beyond prefix */
        RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
        match = dictEnd - (prefixStart-match);
        if (match + sequence.matchLength <= dictEnd) {
            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
            return sequenceLength;
        }
        /* span extDict & currentPrefixSegment */
        {   size_t const length1 = dictEnd - match;
            ZSTD_memmove(oLitEnd, match, length1);
            op = oLitEnd + length1;
            sequence.matchLength -= length1;
            match = prefixStart;
    }   }
    ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
    return sequenceLength;
}

HINT_INLINE
size_t ZSTD_execSequence(BYTE* op,
                         BYTE* const oend, seq_t sequence,
                         const BYTE** litPtr, const BYTE* const litLimit,
                         const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
    BYTE* const oLitEnd = op + sequence.litLength;
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
    const BYTE* match = oLitEnd - sequence.offset;

    assert(op != NULL /* Precondition */);
    assert(oend_w < oend /* No underflow */);
    /* Handle edge cases in a slow path:
     *   - Read beyond end of literals
     *   - Match end is within WILDCOPY_OVERLIMIT of oend
     *   - 32-bit mode and the match length overflows
     */
    if (UNLIKELY(
            iLitEnd > litLimit ||
            oMatchEnd > oend_w ||
            (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
        return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);

    /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
    assert(op <= oLitEnd /* No overflow */);
    assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
    assert(oMatchEnd <= oend /* No underflow */);
    assert(iLitEnd <= litLimit /* Literal length is in bounds */);
    assert(oLitEnd <= oend_w /* Can wildcopy literals */);
    assert(oMatchEnd <= oend_w /* Can wildcopy matches */);

    /* Copy Literals:
     * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
     * We likely don't need the full 32-byte wildcopy.
     */
    assert(WILDCOPY_OVERLENGTH >= 16);
    ZSTD_copy16(op, (*litPtr));
    if (UNLIKELY(sequence.litLength > 16)) {
        ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
    }
    op = oLitEnd;
    *litPtr = iLitEnd;   /* update for next sequence */

    /* Copy Match */
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
        /* offset beyond prefix -> go into extDict */
        RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
        match = dictEnd + (match - prefixStart);
        if (match + sequence.matchLength <= dictEnd) {
            ZSTD_memmove(oLitEnd, match, sequence.matchLength);
            return sequenceLength;
        }
        /* span extDict & currentPrefixSegment */
        {   size_t const length1 = dictEnd - match;
            ZSTD_memmove(oLitEnd, match, length1);
            op = oLitEnd + length1;
            sequence.matchLength -= length1;
            match = prefixStart;
    }   }
    /* Match within prefix of 1 or more bytes */
    assert(op <= oMatchEnd);
    assert(oMatchEnd <= oend_w);
    assert(match >= prefixStart);
    assert(sequence.matchLength >= 1);

    /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
     * without overlap checking.
     */
    if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
        /* We bet on a full wildcopy for matches, since we expect matches to be
         * longer than literals (in general). In silesia, ~10% of matches are longer
         * than 16 bytes.
         */
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
        return sequenceLength;
    }
    assert(sequence.offset < WILDCOPY_VECLEN);

    /* Copy 8 bytes and spread the offset to be >= 8. */
    ZSTD_overlapCopy8(&op, &match, sequence.offset);

    /* If the match length is > 8 bytes, then continue with the wildcopy. */
    if (sequence.matchLength > 8) {
        assert(op < oMatchEnd);
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
    }
    return sequenceLength;
}

static void
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
{
    const void* ptr = dt;
    const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
    DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
    DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
                (U32)DStatePtr->state, DTableH->tableLog);
    BIT_reloadDStream(bitD);
    DStatePtr->table = dt + 1;
}

FORCE_INLINE_TEMPLATE void
ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
{
    ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
    U32 const nbBits = DInfo.nbBits;
    size_t const lowBits = BIT_readBits(bitD, nbBits);
    DStatePtr->state = DInfo.nextState + lowBits;
}

FORCE_INLINE_TEMPLATE void
ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, ZSTD_seqSymbol const DInfo)
{
    U32 const nbBits = DInfo.nbBits;
    size_t const lowBits = BIT_readBits(bitD, nbBits);
    DStatePtr->state = DInfo.nextState + lowBits;
}

/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
 * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
 * bits before reloading. This value is the maximum number of bytes we read
 * after reloading when we are decoding long offsets.
 */
#define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
    (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
        ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
        : 0)

typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
typedef enum { ZSTD_p_noPrefetch=0, ZSTD_p_prefetch=1 } ZSTD_prefetch_e;

FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const ZSTD_prefetch_e prefetch)
{
    seq_t seq;
    ZSTD_seqSymbol const llDInfo = seqState->stateLL.table[seqState->stateLL.state];
    ZSTD_seqSymbol const mlDInfo = seqState->stateML.table[seqState->stateML.state];
    ZSTD_seqSymbol const ofDInfo = seqState->stateOffb.table[seqState->stateOffb.state];
    U32 const llBase = llDInfo.baseValue;
    U32 const mlBase = mlDInfo.baseValue;
    U32 const ofBase = ofDInfo.baseValue;
    BYTE const llBits = llDInfo.nbAdditionalBits;
    BYTE const mlBits = mlDInfo.nbAdditionalBits;
    BYTE const ofBits = ofDInfo.nbAdditionalBits;
    BYTE const totalBits = llBits+mlBits+ofBits;

    /* sequence */
    {   size_t offset;
        if (ofBits > 1) {
            ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
            ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
            assert(ofBits <= MaxOff);
            if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
                U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
                offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
                BIT_reloadDStream(&seqState->DStream);
                if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
                assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32);   /* to avoid another reload */
            } else {
                offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
                if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
            }
            seqState->prevOffset[2] = seqState->prevOffset[1];
            seqState->prevOffset[1] = seqState->prevOffset[0];
            seqState->prevOffset[0] = offset;
        } else {
            U32 const ll0 = (llBase == 0);
            if (LIKELY((ofBits == 0))) {
                if (LIKELY(!ll0))
                    offset = seqState->prevOffset[0];
                else {
                    offset = seqState->prevOffset[1];
                    seqState->prevOffset[1] = seqState->prevOffset[0];
                    seqState->prevOffset[0] = offset;
                }
            } else {
                offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
                {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
                    temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
                    if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
                    seqState->prevOffset[1] = seqState->prevOffset[0];
                    seqState->prevOffset[0] = offset = temp;
        }   }   }
        seq.offset = offset;
    }

    seq.matchLength = mlBase;
    if (mlBits > 0)
        seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);

    if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
        BIT_reloadDStream(&seqState->DStream);
    if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
        BIT_reloadDStream(&seqState->DStream);
    /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
    ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);

    seq.litLength = llBase;
    if (llBits > 0)
        seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);

    if (MEM_32bits())
        BIT_reloadDStream(&seqState->DStream);

    DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
                (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);

    if (prefetch == ZSTD_p_prefetch) {
        size_t const pos = seqState->pos + seq.litLength;
        const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
        seq.match = matchBase + pos - seq.offset;  /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
                                                    * No consequence though : no memory access will occur, offset is only used for prefetching */
        seqState->pos = pos + seq.matchLength;
    }

    /* ANS state update
     * gcc-9.0.0 does 2.5% worse with ZSTD_updateFseStateWithDInfo().
     * clang-9.2.0 does 7% worse with ZSTD_updateFseState().
     * Naturally it seems like ZSTD_updateFseStateWithDInfo() should be the
     * better option, so it is the default for other compilers. But, if you
     * measure that it is worse, please put up a pull request.
     */
    {
#if !defined(__clang__)
        const int kUseUpdateFseState = 1;
#else
        const int kUseUpdateFseState = 0;
#endif
        if (kUseUpdateFseState) {
            ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream);    /* <=  9 bits */
            ZSTD_updateFseState(&seqState->stateML, &seqState->DStream);    /* <=  9 bits */
            if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
            ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream);  /* <=  8 bits */
        } else {
            ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llDInfo);    /* <=  9 bits */
            ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlDInfo);    /* <=  9 bits */
            if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
            ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofDInfo);  /* <=  8 bits */
        }
    }

    return seq;
}

#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
{
    size_t const windowSize = dctx->fParams.windowSize;
    /* No dictionary used. */
    if (dctx->dictContentEndForFuzzing == NULL) return 0;
    /* Dictionary is our prefix. */
    if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
    /* Dictionary is not our ext-dict. */
    if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
    /* Dictionary is not within our window size. */
    if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
    /* Dictionary is active. */
    return 1;
}

MEM_STATIC void ZSTD_assertValidSequence(
        ZSTD_DCtx const* dctx,
        BYTE const* op, BYTE const* oend,
        seq_t const seq,
        BYTE const* prefixStart, BYTE const* virtualStart)
{
#if DEBUGLEVEL >= 1
    size_t const windowSize = dctx->fParams.windowSize;
    size_t const sequenceSize = seq.litLength + seq.matchLength;
    BYTE const* const oLitEnd = op + seq.litLength;
    DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
            (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
    assert(op <= oend);
    assert((size_t)(oend - op) >= sequenceSize);
    assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
    if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
        size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
        /* Offset must be within the dictionary. */
        assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
        assert(seq.offset <= windowSize + dictSize);
    } else {
        /* Offset must be within our window. */
        assert(seq.offset <= windowSize);
    }
#else
    (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
#endif
}
#endif

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
FORCE_INLINE_TEMPLATE size_t
DONT_VECTORIZE
ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
                               void* dst, size_t maxDstSize,
                         const void* seqStart, size_t seqSize, int nbSeq,
                         const ZSTD_longOffset_e isLongOffset,
                         const int frame)
{
    const BYTE* ip = (const BYTE*)seqStart;
    const BYTE* const iend = ip + seqSize;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + maxDstSize;
    BYTE* op = ostart;
    const BYTE* litPtr = dctx->litPtr;
    const BYTE* const litEnd = litPtr + dctx->litSize;
    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
    const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
    DEBUGLOG(5, "ZSTD_decompressSequences_body");
    (void)frame;

    /* Regen sequences */
    if (nbSeq) {
        seqState_t seqState;
        size_t error = 0;
        dctx->fseEntropy = 1;
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
        RETURN_ERROR_IF(
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
            corruption_detected, "");
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
        assert(dst != NULL);

        ZSTD_STATIC_ASSERT(
                BIT_DStream_unfinished < BIT_DStream_completed &&
                BIT_DStream_endOfBuffer < BIT_DStream_completed &&
                BIT_DStream_completed < BIT_DStream_overflow);

#if defined(__x86_64__)
        /* Align the decompression loop to 32 + 16 bytes.
         *
         * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
         * speed swings based on the alignment of the decompression loop. This
         * performance swing is caused by parts of the decompression loop falling
         * out of the DSB. The entire decompression loop should fit in the DSB,
         * when it can't we get much worse performance. You can measure if you've
         * hit the good case or the bad case with this perf command for some
         * compressed file test.zst:
         *
         *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
         *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
         *
         * If you see most cycles served out of the MITE you've hit the bad case.
         * If you see most cycles served out of the DSB you've hit the good case.
         * If it is pretty even then you may be in an okay case.
         *
         * I've been able to reproduce this issue on the following CPUs:
         *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
         *               Use Instruments->Counters to get DSB/MITE cycles.
         *               I never got performance swings, but I was able to
         *               go from the good case of mostly DSB to half of the
         *               cycles served from MITE.
         *   - Coffeelake: Intel i9-9900k
         *
         * I haven't been able to reproduce the instability or DSB misses on any
         * of the following CPUS:
         *   - Haswell
         *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
         *   - Skylake
         *
         * If you are seeing performance stability this script can help test.
         * It tests on 4 commits in zstd where I saw performance change.
         *
         *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
         */
        __asm__(".p2align 5");
        __asm__("nop");
        __asm__(".p2align 4");
#endif
        for ( ; ; ) {
            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_noPrefetch);
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
            assert(!ZSTD_isError(oneSeqSize));
            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
            DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
            BIT_reloadDStream(&(seqState.DStream));
            op += oneSeqSize;
            /* gcc and clang both don't like early returns in this loop.
             * Instead break and check for an error at the end of the loop.
             */
            if (UNLIKELY(ZSTD_isError(oneSeqSize))) {
                error = oneSeqSize;
                break;
            }
            if (UNLIKELY(!--nbSeq)) break;
        }

        /* check if reached exact end */
        DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
        if (ZSTD_isError(error)) return error;
        RETURN_ERROR_IF(nbSeq, corruption_detected, "");
        RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
        /* save reps for next block */
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
    }

    /* last literal segment */
    {   size_t const lastLLSize = litEnd - litPtr;
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
        if (op != NULL) {
            ZSTD_memcpy(op, litPtr, lastLLSize);
            op += lastLLSize;
        }
    }

    return op-ostart;
}

static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequencesLong_body(
                               ZSTD_DCtx* dctx,
                               void* dst, size_t maxDstSize,
                         const void* seqStart, size_t seqSize, int nbSeq,
                         const ZSTD_longOffset_e isLongOffset,
                         const int frame)
{
    const BYTE* ip = (const BYTE*)seqStart;
    const BYTE* const iend = ip + seqSize;
    BYTE* const ostart = (BYTE*)dst;
    BYTE* const oend = ostart + maxDstSize;
    BYTE* op = ostart;
    const BYTE* litPtr = dctx->litPtr;
    const BYTE* const litEnd = litPtr + dctx->litSize;
    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
    const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
    (void)frame;

    /* Regen sequences */
    if (nbSeq) {
#define STORED_SEQS 4
#define STORED_SEQS_MASK (STORED_SEQS-1)
#define ADVANCED_SEQS 4
        seq_t sequences[STORED_SEQS];
        int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
        seqState_t seqState;
        int seqNb;
        dctx->fseEntropy = 1;
        { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
        seqState.prefixStart = prefixStart;
        seqState.pos = (size_t)(op-prefixStart);
        seqState.dictEnd = dictEnd;
        assert(dst != NULL);
        assert(iend >= ip);
        RETURN_ERROR_IF(
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
            corruption_detected, "");
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);

        /* prepare in advance */
        for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
            sequences[seqNb] = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
            PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
        }
        RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");

        /* decode and decompress */
        for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
            assert(!ZSTD_isError(oneSeqSize));
            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
#endif
            if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
            PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
            sequences[seqNb & STORED_SEQS_MASK] = sequence;
            op += oneSeqSize;
        }
        RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");

        /* finish queue */
        seqNb -= seqAdvance;
        for ( ; seqNb<nbSeq ; seqNb++) {
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
            assert(!ZSTD_isError(oneSeqSize));
            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
#endif
            if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
            op += oneSeqSize;
        }

        /* save reps for next block */
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
    }

    /* last literal segment */
    {   size_t const lastLLSize = litEnd - litPtr;
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
        if (op != NULL) {
            ZSTD_memcpy(op, litPtr, lastLLSize);
            op += lastLLSize;
        }
    }

    return op-ostart;
}

static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */



#if DYNAMIC_BMI2

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static TARGET_ATTRIBUTE("bmi2") size_t
DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */

#endif /* DYNAMIC_BMI2 */

typedef size_t (*ZSTD_decompressSequences_t)(
                            ZSTD_DCtx* dctx,
                            void* dst, size_t maxDstSize,
                            const void* seqStart, size_t seqSize, int nbSeq,
                            const ZSTD_longOffset_e isLongOffset,
                            const int frame);

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static size_t
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
                   const void* seqStart, size_t seqSize, int nbSeq,
                   const ZSTD_longOffset_e isLongOffset,
                   const int frame)
{
    DEBUGLOG(5, "ZSTD_decompressSequences");
#if DYNAMIC_BMI2
    if (dctx->bmi2) {
        return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
    }
#endif
  return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */


#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
/* ZSTD_decompressSequencesLong() :
 * decompression function triggered when a minimum share of offsets is considered "long",
 * aka out of cache.
 * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
 * This function will try to mitigate main memory latency through the use of prefetching */
static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
                             void* dst, size_t maxDstSize,
                             const void* seqStart, size_t seqSize, int nbSeq,
                             const ZSTD_longOffset_e isLongOffset,
                             const int frame)
{
    DEBUGLOG(5, "ZSTD_decompressSequencesLong");
#if DYNAMIC_BMI2
    if (dctx->bmi2) {
        return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
    }
#endif
  return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */



#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
/* ZSTD_getLongOffsetsShare() :
 * condition : offTable must be valid
 * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
 *           compared to maximum possible of (1<<OffFSELog) */
static unsigned
ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
{
    const void* ptr = offTable;
    U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
    const ZSTD_seqSymbol* table = offTable + 1;
    U32 const max = 1 << tableLog;
    U32 u, total = 0;
    DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);

    assert(max <= (1 << OffFSELog));  /* max not too large */
    for (u=0; u<max; u++) {
        if (table[u].nbAdditionalBits > 22) total += 1;
    }

    assert(tableLog <= OffFSELog);
    total <<= (OffFSELog - tableLog);  /* scale to OffFSELog */

    return total;
}
#endif

size_t
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
                              void* dst, size_t dstCapacity,
                        const void* src, size_t srcSize, const int frame)
{   /* blockType == blockCompressed */
    const BYTE* ip = (const BYTE*)src;
    /* isLongOffset must be true if there are long offsets.
     * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
     * We don't expect that to be the case in 64-bit mode.
     * In block mode, window size is not known, so we have to be conservative.
     * (note: but it could be evaluated from current-lowLimit)
     */
    ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
    DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);

    RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");

    /* Decode literals section */
    {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
        DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
        if (ZSTD_isError(litCSize)) return litCSize;
        ip += litCSize;
        srcSize -= litCSize;
    }

    /* Build Decoding Tables */
    {
        /* These macros control at build-time which decompressor implementation
         * we use. If neither is defined, we do some inspection and dispatch at
         * runtime.
         */
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
        int usePrefetchDecoder = dctx->ddictIsCold;
#endif
        int nbSeq;
        size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
        if (ZSTD_isError(seqHSize)) return seqHSize;
        ip += seqHSize;
        srcSize -= seqHSize;

        RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");

#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
        if ( !usePrefetchDecoder
          && (!frame || (dctx->fParams.windowSize > (1<<24)))
          && (nbSeq>ADVANCED_SEQS) ) {  /* could probably use a larger nbSeq limit */
            U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
            U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
            usePrefetchDecoder = (shareLongOffsets >= minShare);
        }
#endif

        dctx->ddictIsCold = 0;

#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
        if (usePrefetchDecoder)
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
            return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
        /* else */
        return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif
    }
}


void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
{
    if (dst != dctx->previousDstEnd && dstSize > 0) {   /* not contiguous */
        dctx->dictEnd = dctx->previousDstEnd;
        dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
        dctx->prefixStart = dst;
        dctx->previousDstEnd = dst;
    }
}


size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
                            void* dst, size_t dstCapacity,
                      const void* src, size_t srcSize)
{
    size_t dSize;
    ZSTD_checkContinuity(dctx, dst, dstCapacity);
    dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
    dctx->previousDstEnd = (char*)dst + dSize;
    return dSize;
}