summaryrefslogtreecommitdiff
path: root/lib/refcount.c
blob: 4bd842f20749a1abda9cfd1b232877e4a3a12b1f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// SPDX-License-Identifier: GPL-2.0
/*
 * Variant of atomic_t specialized for reference counts.
 *
 * The interface matches the atomic_t interface (to aid in porting) but only
 * provides the few functions one should use for reference counting.
 *
 * It differs in that the counter saturates at UINT_MAX and will not move once
 * there. This avoids wrapping the counter and causing 'spurious'
 * use-after-free issues.
 *
 * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
 * and provide only what is strictly required for refcounts.
 *
 * The increments are fully relaxed; these will not provide ordering. The
 * rationale is that whatever is used to obtain the object we're increasing the
 * reference count on will provide the ordering. For locked data structures,
 * its the lock acquire, for RCU/lockless data structures its the dependent
 * load.
 *
 * Do note that inc_not_zero() provides a control dependency which will order
 * future stores against the inc, this ensures we'll never modify the object
 * if we did not in fact acquire a reference.
 *
 * The decrements will provide release order, such that all the prior loads and
 * stores will be issued before, it also provides a control dependency, which
 * will order us against the subsequent free().
 *
 * The control dependency is against the load of the cmpxchg (ll/sc) that
 * succeeded. This means the stores aren't fully ordered, but this is fine
 * because the 1->0 transition indicates no concurrency.
 *
 * Note that the allocator is responsible for ordering things between free()
 * and alloc().
 *
 */

#include <linux/mutex.h>
#include <linux/refcount.h>
#include <linux/spinlock.h>
#include <linux/bug.h>

#ifdef CONFIG_REFCOUNT_FULL

/**
 * refcount_add_not_zero - add a value to a refcount unless it is 0
 * @i: the value to add to the refcount
 * @r: the refcount
 *
 * Will saturate at UINT_MAX and WARN.
 *
 * Provides no memory ordering, it is assumed the caller has guaranteed the
 * object memory to be stable (RCU, etc.). It does provide a control dependency
 * and thereby orders future stores. See the comment on top.
 *
 * Use of this function is not recommended for the normal reference counting
 * use case in which references are taken and released one at a time.  In these
 * cases, refcount_inc(), or one of its variants, should instead be used to
 * increment a reference count.
 *
 * Return: false if the passed refcount is 0, true otherwise
 */
bool refcount_add_not_zero(unsigned int i, refcount_t *r)
{
	unsigned int new, val = atomic_read(&r->refs);

	do {
		if (!val)
			return false;

		if (unlikely(val == UINT_MAX))
			return true;

		new = val + i;
		if (new < val)
			new = UINT_MAX;

	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new));

	WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n");

	return true;
}
EXPORT_SYMBOL(refcount_add_not_zero);

/**
 * refcount_add - add a value to a refcount
 * @i: the value to add to the refcount
 * @r: the refcount
 *
 * Similar to atomic_add(), but will saturate at UINT_MAX and WARN.
 *
 * Provides no memory ordering, it is assumed the caller has guaranteed the
 * object memory to be stable (RCU, etc.). It does provide a control dependency
 * and thereby orders future stores. See the comment on top.
 *
 * Use of this function is not recommended for the normal reference counting
 * use case in which references are taken and released one at a time.  In these
 * cases, refcount_inc(), or one of its variants, should instead be used to
 * increment a reference count.
 */
void refcount_add(unsigned int i, refcount_t *r)
{
	WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n");
}
EXPORT_SYMBOL(refcount_add);

/**
 * refcount_inc_not_zero - increment a refcount unless it is 0
 * @r: the refcount to increment
 *
 * Similar to atomic_inc_not_zero(), but will saturate at UINT_MAX and WARN.
 *
 * Provides no memory ordering, it is assumed the caller has guaranteed the
 * object memory to be stable (RCU, etc.). It does provide a control dependency
 * and thereby orders future stores. See the comment on top.
 *
 * Return: true if the increment was successful, false otherwise
 */
bool refcount_inc_not_zero(refcount_t *r)
{
	unsigned int new, val = atomic_read(&r->refs);

	do {
		new = val + 1;

		if (!val)
			return false;

		if (unlikely(!new))
			return true;

	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &val, new));

	WARN_ONCE(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n");

	return true;
}
EXPORT_SYMBOL(refcount_inc_not_zero);

/**
 * refcount_inc - increment a refcount
 * @r: the refcount to increment
 *
 * Similar to atomic_inc(), but will saturate at UINT_MAX and WARN.
 *
 * Provides no memory ordering, it is assumed the caller already has a
 * reference on the object.
 *
 * Will WARN if the refcount is 0, as this represents a possible use-after-free
 * condition.
 */
void refcount_inc(refcount_t *r)
{
	WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n");
}
EXPORT_SYMBOL(refcount_inc);

/**
 * refcount_sub_and_test - subtract from a refcount and test if it is 0
 * @i: amount to subtract from the refcount
 * @r: the refcount
 *
 * Similar to atomic_dec_and_test(), but it will WARN, return false and
 * ultimately leak on underflow and will fail to decrement when saturated
 * at UINT_MAX.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before, and provides a control dependency such that free() must come after.
 * See the comment on top.
 *
 * Use of this function is not recommended for the normal reference counting
 * use case in which references are taken and released one at a time.  In these
 * cases, refcount_dec(), or one of its variants, should instead be used to
 * decrement a reference count.
 *
 * Return: true if the resulting refcount is 0, false otherwise
 */
bool refcount_sub_and_test(unsigned int i, refcount_t *r)
{
	unsigned int new, val = atomic_read(&r->refs);

	do {
		if (unlikely(val == UINT_MAX))
			return false;

		new = val - i;
		if (new > val) {
			WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n");
			return false;
		}

	} while (!atomic_try_cmpxchg_release(&r->refs, &val, new));

	return !new;
}
EXPORT_SYMBOL(refcount_sub_and_test);

/**
 * refcount_dec_and_test - decrement a refcount and test if it is 0
 * @r: the refcount
 *
 * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
 * decrement when saturated at UINT_MAX.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before, and provides a control dependency such that free() must come after.
 * See the comment on top.
 *
 * Return: true if the resulting refcount is 0, false otherwise
 */
bool refcount_dec_and_test(refcount_t *r)
{
	return refcount_sub_and_test(1, r);
}
EXPORT_SYMBOL(refcount_dec_and_test);

/**
 * refcount_dec - decrement a refcount
 * @r: the refcount
 *
 * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
 * when saturated at UINT_MAX.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before.
 */
void refcount_dec(refcount_t *r)
{
	WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n");
}
EXPORT_SYMBOL(refcount_dec);
#endif /* CONFIG_REFCOUNT_FULL */

/**
 * refcount_dec_if_one - decrement a refcount if it is 1
 * @r: the refcount
 *
 * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the
 * success thereof.
 *
 * Like all decrement operations, it provides release memory order and provides
 * a control dependency.
 *
 * It can be used like a try-delete operator; this explicit case is provided
 * and not cmpxchg in generic, because that would allow implementing unsafe
 * operations.
 *
 * Return: true if the resulting refcount is 0, false otherwise
 */
bool refcount_dec_if_one(refcount_t *r)
{
	int val = 1;

	return atomic_try_cmpxchg_release(&r->refs, &val, 0);
}
EXPORT_SYMBOL(refcount_dec_if_one);

/**
 * refcount_dec_not_one - decrement a refcount if it is not 1
 * @r: the refcount
 *
 * No atomic_t counterpart, it decrements unless the value is 1, in which case
 * it will return false.
 *
 * Was often done like: atomic_add_unless(&var, -1, 1)
 *
 * Return: true if the decrement operation was successful, false otherwise
 */
bool refcount_dec_not_one(refcount_t *r)
{
	unsigned int new, val = atomic_read(&r->refs);

	do {
		if (unlikely(val == UINT_MAX))
			return true;

		if (val == 1)
			return false;

		new = val - 1;
		if (new > val) {
			WARN_ONCE(new > val, "refcount_t: underflow; use-after-free.\n");
			return true;
		}

	} while (!atomic_try_cmpxchg_release(&r->refs, &val, new));

	return true;
}
EXPORT_SYMBOL(refcount_dec_not_one);

/**
 * refcount_dec_and_mutex_lock - return holding mutex if able to decrement
 *                               refcount to 0
 * @r: the refcount
 * @lock: the mutex to be locked
 *
 * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail
 * to decrement when saturated at UINT_MAX.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before, and provides a control dependency such that free() must come after.
 * See the comment on top.
 *
 * Return: true and hold mutex if able to decrement refcount to 0, false
 *         otherwise
 */
bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock)
{
	if (refcount_dec_not_one(r))
		return false;

	mutex_lock(lock);
	if (!refcount_dec_and_test(r)) {
		mutex_unlock(lock);
		return false;
	}

	return true;
}
EXPORT_SYMBOL(refcount_dec_and_mutex_lock);

/**
 * refcount_dec_and_lock - return holding spinlock if able to decrement
 *                         refcount to 0
 * @r: the refcount
 * @lock: the spinlock to be locked
 *
 * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to
 * decrement when saturated at UINT_MAX.
 *
 * Provides release memory ordering, such that prior loads and stores are done
 * before, and provides a control dependency such that free() must come after.
 * See the comment on top.
 *
 * Return: true and hold spinlock if able to decrement refcount to 0, false
 *         otherwise
 */
bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock)
{
	if (refcount_dec_not_one(r))
		return false;

	spin_lock(lock);
	if (!refcount_dec_and_test(r)) {
		spin_unlock(lock);
		return false;
	}

	return true;
}
EXPORT_SYMBOL(refcount_dec_and_lock);