summaryrefslogtreecommitdiff
path: root/lib/rbtree.c
blob: 61cdd0e3e5383f7488f4b0d7aae0bfdaceef5767 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

#include <linux/rbtree.h>
#include <linux/export.h>

/*
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 *
 *  1) A node is either red or black
 *  2) The root is black
 *  3) All leaves (NULL) are black
 *  4) Both children of every red node are black
 *  5) Every simple path from root to leaves contains the same number
 *     of black nodes.
 *
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 *  consecutive red nodes in a path and every red node is therefore followed by
 *  a black. So if B is the number of black nodes on every simple path (as per
 *  5), then the longest possible path due to 4 is 2B.
 *
 *  We shall indicate color with case, where black nodes are uppercase and red
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 *  parentheses and have some accompanying text comment.
 */

#define	RB_RED		0
#define	RB_BLACK	1

#define rb_color(r)   ((r)->__rb_parent_color & 1)
#define rb_is_red(r)   (!rb_color(r))
#define rb_is_black(r) rb_color(r)

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
	rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
}

static inline void rb_set_parent_color(struct rb_node *rb,
				       struct rb_node *p, int color)
{
	rb->__rb_parent_color = (unsigned long)p | color;
}

static inline struct rb_node *rb_red_parent(struct rb_node *red)
{
	return (struct rb_node *)red->__rb_parent_color;
}

/*
 * Helper function for rotations:
 * - old's parent and color get assigned to new
 * - old gets assigned new as a parent and 'color' as a color.
 */
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
			struct rb_root *root, int color)
{
	struct rb_node *parent = rb_parent(old);
	new->__rb_parent_color = old->__rb_parent_color;
	rb_set_parent_color(old, new, color);
	if (parent) {
		if (parent->rb_left == old)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else
		root->rb_node = new;
}

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;

	while (true) {
		/*
		 * Loop invariant: node is red
		 *
		 * If there is a black parent, we are done.
		 * Otherwise, take some corrective action as we don't
		 * want a red root or two consecutive red nodes.
		 */
		if (!parent) {
			rb_set_parent_color(node, NULL, RB_BLACK);
			break;
		} else if (rb_is_black(parent))
			break;

		gparent = rb_red_parent(parent);

		tmp = gparent->rb_right;
		if (parent != tmp) {	/* parent == gparent->rb_left */
			if (tmp && rb_is_red(tmp)) {
				/*
				 * Case 1 - color flips
				 *
				 *       G            g
				 *      / \          / \
				 *     p   u  -->   P   U
				 *    /            /
				 *   n            N
				 *
				 * However, since g's parent might be red, and
				 * 4) does not allow this, we need to recurse
				 * at g.
				 */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			tmp = parent->rb_right;
			if (node == tmp) {
				/*
				 * Case 2 - left rotate at parent
				 *
				 *      G             G
				 *     / \           / \
				 *    p   U  -->    n   U
				 *     \           /
				 *      n         p
				 *
				 * This still leaves us in violation of 4), the
				 * continuation into Case 3 will fix that.
				 */
				parent->rb_right = tmp = node->rb_left;
				node->rb_left = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				parent = node;
				tmp = node->rb_right;
			}

			/*
			 * Case 3 - right rotate at gparent
			 *
			 *        G           P
			 *       / \         / \
			 *      p   U  -->  n   g
			 *     /                 \
			 *    n                   U
			 */
			gparent->rb_left = tmp;  /* == parent->rb_right */
			parent->rb_right = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			break;
		} else {
			tmp = gparent->rb_left;
			if (tmp && rb_is_red(tmp)) {
				/* Case 1 - color flips */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			tmp = parent->rb_left;
			if (node == tmp) {
				/* Case 2 - right rotate at parent */
				parent->rb_left = tmp = node->rb_right;
				node->rb_right = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				parent = node;
				tmp = node->rb_left;
			}

			/* Case 3 - left rotate at gparent */
			gparent->rb_right = tmp;  /* == parent->rb_left */
			parent->rb_left = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			break;
		}
	}
}
EXPORT_SYMBOL(rb_insert_color);

static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
			     struct rb_root *root)
{
	struct rb_node *sibling, *tmp1, *tmp2;

	while (true) {
		/*
		 * Loop invariant: all leaf paths going through node have a
		 * black node count that is 1 lower than other leaf paths.
		 *
		 * If node is red, we can flip it to black to adjust.
		 * If node is the root, all leaf paths go through it.
		 * Otherwise, we need to adjust the tree through color flips
		 * and tree rotations as per one of the 4 cases below.
		 */
		if (node && rb_is_red(node)) {
			rb_set_parent_color(node, parent, RB_BLACK);
			break;
		} else if (!parent) {
			break;
		}
		sibling = parent->rb_right;
		if (node != sibling) {	/* node == parent->rb_left */
			if (rb_is_red(sibling)) {
				/*
				 * Case 1 - left rotate at parent
				 *
				 *     P               S
				 *    / \             / \
				 *   N   s    -->    p   Sr
				 *      / \         / \
				 *     Sl  Sr      N   Sl
				 */
				parent->rb_right = tmp1 = sibling->rb_left;
				sibling->rb_left = parent;
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
				sibling = tmp1;
			}
			tmp1 = sibling->rb_right;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_left;
				if (!tmp2 || rb_is_black(tmp2)) {
					/*
					 * Case 2 - sibling color flip
					 * (p could be either color here)
					 *
					 *    (p)           (p)
					 *    / \           / \
					 *   N   S    -->  N   s
					 *      / \           / \
					 *     Sl  Sr        Sl  Sr
					 *
					 * This leaves us violating 5), so
					 * recurse at p. If p is red, the
					 * recursion will just flip it to black
					 * and exit. If coming from Case 1,
					 * p is known to be red.
					 */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
					node = parent;
					parent = rb_parent(node);
					continue;
				}
				/*
				 * Case 3 - right rotate at sibling
				 * (p could be either color here)
				 *
				 *   (p)           (p)
				 *   / \           / \
				 *  N   S    -->  N   Sl
				 *     / \             \
				 *    sl  Sr            s
				 *                       \
				 *                        Sr
				 */
				sibling->rb_left = tmp1 = tmp2->rb_right;
				tmp2->rb_right = sibling;
				parent->rb_right = tmp2;
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
				tmp1 = sibling;
				sibling = tmp2;
			}
			/*
			 * Case 4 - left rotate at parent + color flips
			 * (p and sl could be either color here.
			 *  After rotation, p becomes black, s acquires
			 *  p's color, and sl keeps its color)
			 *
			 *      (p)             (s)
			 *      / \             / \
			 *     N   S     -->   P   Sr
			 *        / \         / \
			 *      (sl) sr      N  (sl)
			 */
			parent->rb_right = tmp2 = sibling->rb_left;
			sibling->rb_left = parent;
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
			break;
		} else {
			sibling = parent->rb_left;
			if (rb_is_red(sibling)) {
				/* Case 1 - right rotate at parent */
				parent->rb_left = tmp1 = sibling->rb_right;
				sibling->rb_right = parent;
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
				sibling = tmp1;
			}
			tmp1 = sibling->rb_left;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_right;
				if (!tmp2 || rb_is_black(tmp2)) {
					/* Case 2 - sibling color flip */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
					node = parent;
					parent = rb_parent(node);
					continue;
				}
				/* Case 3 - right rotate at sibling */
				sibling->rb_right = tmp1 = tmp2->rb_left;
				tmp2->rb_left = sibling;
				parent->rb_left = tmp2;
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
				tmp1 = sibling;
				sibling = tmp2;
			}
			/* Case 4 - left rotate at parent + color flips */
			parent->rb_left = tmp2 = sibling->rb_right;
			sibling->rb_right = parent;
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
			break;
		}
	}
}

void rb_erase(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *child, *parent;
	int color;

	if (!node->rb_left)
		child = node->rb_right;
	else if (!node->rb_right)
		child = node->rb_left;
	else {
		struct rb_node *old = node, *left;

		node = node->rb_right;
		while ((left = node->rb_left) != NULL)
			node = left;

		if (rb_parent(old)) {
			if (rb_parent(old)->rb_left == old)
				rb_parent(old)->rb_left = node;
			else
				rb_parent(old)->rb_right = node;
		} else
			root->rb_node = node;

		child = node->rb_right;
		parent = rb_parent(node);
		color = rb_color(node);

		if (parent == old) {
			parent = node;
		} else {
			if (child)
				rb_set_parent(child, parent);
			parent->rb_left = child;

			node->rb_right = old->rb_right;
			rb_set_parent(old->rb_right, node);
		}

		node->__rb_parent_color = old->__rb_parent_color;
		node->rb_left = old->rb_left;
		rb_set_parent(old->rb_left, node);

		goto color;
	}

	parent = rb_parent(node);
	color = rb_color(node);

	if (child)
		rb_set_parent(child, parent);
	if (parent) {
		if (parent->rb_left == node)
			parent->rb_left = child;
		else
			parent->rb_right = child;
	} else
		root->rb_node = child;

color:
	if (color == RB_BLACK)
		__rb_erase_color(child, parent, root);
}
EXPORT_SYMBOL(rb_erase);

static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
{
	struct rb_node *parent;

up:
	func(node, data);
	parent = rb_parent(node);
	if (!parent)
		return;

	if (node == parent->rb_left && parent->rb_right)
		func(parent->rb_right, data);
	else if (parent->rb_left)
		func(parent->rb_left, data);

	node = parent;
	goto up;
}

/*
 * after inserting @node into the tree, update the tree to account for
 * both the new entry and any damage done by rebalance
 */
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node->rb_left)
		node = node->rb_left;
	else if (node->rb_right)
		node = node->rb_right;

	rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_insert);

/*
 * before removing the node, find the deepest node on the rebalance path
 * that will still be there after @node gets removed
 */
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
{
	struct rb_node *deepest;

	if (!node->rb_right && !node->rb_left)
		deepest = rb_parent(node);
	else if (!node->rb_right)
		deepest = node->rb_left;
	else if (!node->rb_left)
		deepest = node->rb_right;
	else {
		deepest = rb_next(node);
		if (deepest->rb_right)
			deepest = deepest->rb_right;
		else if (rb_parent(deepest) != node)
			deepest = rb_parent(deepest);
	}

	return deepest;
}
EXPORT_SYMBOL(rb_augment_erase_begin);

/*
 * after removal, update the tree to account for the removed entry
 * and any rebalance damage.
 */
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
{
	if (node)
		rb_augment_path(node, func, data);
}
EXPORT_SYMBOL(rb_augment_erase_end);

/*
 * This function returns the first node (in sort order) of the tree.
 */
struct rb_node *rb_first(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}
EXPORT_SYMBOL(rb_first);

struct rb_node *rb_last(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}
EXPORT_SYMBOL(rb_last);

struct rb_node *rb_next(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/*
	 * If we have a right-hand child, go down and then left as far
	 * as we can.
	 */
	if (node->rb_right) {
		node = node->rb_right; 
		while (node->rb_left)
			node=node->rb_left;
		return (struct rb_node *)node;
	}

	/*
	 * No right-hand children. Everything down and left is smaller than us,
	 * so any 'next' node must be in the general direction of our parent.
	 * Go up the tree; any time the ancestor is a right-hand child of its
	 * parent, keep going up. First time it's a left-hand child of its
	 * parent, said parent is our 'next' node.
	 */
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_next);

struct rb_node *rb_prev(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/*
	 * If we have a left-hand child, go down and then right as far
	 * as we can.
	 */
	if (node->rb_left) {
		node = node->rb_left; 
		while (node->rb_right)
			node=node->rb_right;
		return (struct rb_node *)node;
	}

	/*
	 * No left-hand children. Go up till we find an ancestor which
	 * is a right-hand child of its parent.
	 */
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;

	return parent;
}
EXPORT_SYMBOL(rb_prev);

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
	struct rb_node *parent = rb_parent(victim);

	/* Set the surrounding nodes to point to the replacement */
	if (parent) {
		if (victim == parent->rb_left)
			parent->rb_left = new;
		else
			parent->rb_right = new;
	} else {
		root->rb_node = new;
	}
	if (victim->rb_left)
		rb_set_parent(victim->rb_left, new);
	if (victim->rb_right)
		rb_set_parent(victim->rb_right, new);

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;
}
EXPORT_SYMBOL(rb_replace_node);