summaryrefslogtreecommitdiff
path: root/lib/raid6/test/test.c
blob: 5a485b7a7d3c3f8004924f638ad9db77b35ebf5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* -*- linux-c -*- ------------------------------------------------------- *
 *
 *   Copyright 2002-2007 H. Peter Anvin - All Rights Reserved
 *
 *   This file is part of the Linux kernel, and is made available under
 *   the terms of the GNU General Public License version 2 or (at your
 *   option) any later version; incorporated herein by reference.
 *
 * ----------------------------------------------------------------------- */

/*
 * raid6test.c
 *
 * Test RAID-6 recovery with various algorithms
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <linux/raid/pq.h>

#define NDISKS		16	/* Including P and Q */

const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
struct raid6_calls raid6_call;

char *dataptrs[NDISKS];
char data[NDISKS][PAGE_SIZE];
char recovi[PAGE_SIZE], recovj[PAGE_SIZE];

static void makedata(void)
{
	int i, j;

	for (i = 0; i < NDISKS; i++) {
		for (j = 0; j < PAGE_SIZE; j++)
			data[i][j] = rand();

		dataptrs[i] = data[i];
	}
}

static char disk_type(int d)
{
	switch (d) {
	case NDISKS-2:
		return 'P';
	case NDISKS-1:
		return 'Q';
	default:
		return 'D';
	}
}

static int test_disks(int i, int j)
{
	int erra, errb;

	memset(recovi, 0xf0, PAGE_SIZE);
	memset(recovj, 0xba, PAGE_SIZE);

	dataptrs[i] = recovi;
	dataptrs[j] = recovj;

	raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs);

	erra = memcmp(data[i], recovi, PAGE_SIZE);
	errb = memcmp(data[j], recovj, PAGE_SIZE);

	if (i < NDISKS-2 && j == NDISKS-1) {
		/* We don't implement the DQ failure scenario, since it's
		   equivalent to a RAID-5 failure (XOR, then recompute Q) */
		erra = errb = 0;
	} else {
		printf("algo=%-8s  faila=%3d(%c)  failb=%3d(%c)  %s\n",
		       raid6_call.name,
		       i, disk_type(i),
		       j, disk_type(j),
		       (!erra && !errb) ? "OK" :
		       !erra ? "ERRB" :
		       !errb ? "ERRA" : "ERRAB");
	}

	dataptrs[i] = data[i];
	dataptrs[j] = data[j];

	return erra || errb;
}

int main(int argc, char *argv[])
{
	const struct raid6_calls *const *algo;
	const struct raid6_recov_calls *const *ra;
	int i, j;
	int err = 0;

	makedata();

	for (ra = raid6_recov_algos; *ra; ra++) {
		if ((*ra)->valid  && !(*ra)->valid())
			continue;
		raid6_2data_recov = (*ra)->data2;
		raid6_datap_recov = (*ra)->datap;

		printf("using recovery %s\n", (*ra)->name);

		for (algo = raid6_algos; *algo; algo++) {
			if (!(*algo)->valid || (*algo)->valid()) {
				raid6_call = **algo;

				/* Nuke syndromes */
				memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE);

				/* Generate assumed good syndrome */
				raid6_call.gen_syndrome(NDISKS, PAGE_SIZE,
							(void **)&dataptrs);

				for (i = 0; i < NDISKS-1; i++)
					for (j = i+1; j < NDISKS; j++)
						err += test_disks(i, j);
			}
		}
		printf("\n");
	}

	printf("\n");
	/* Pick the best algorithm test */
	raid6_select_algo();

	if (err)
		printf("\n*** ERRORS FOUND ***\n");

	return err;
}