summaryrefslogtreecommitdiff
path: root/kernel/semaphore.c
blob: d5a72702f261b1fe93ea5e6b20e39f8e260537ef (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * Copyright (c) 2008 Intel Corporation
 * Author: Matthew Wilcox <willy@linux.intel.com>
 *
 * Distributed under the terms of the GNU GPL, version 2
 */

#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>

/*
 * Some notes on the implementation:
 *
 * down_trylock() and up() can be called from interrupt context.
 * So we have to disable interrupts when taking the lock.
 *
 * The ->count variable, if positive, defines how many more tasks can
 * acquire the semaphore.  If negative, it represents how many tasks are
 * waiting on the semaphore (*).  If zero, no tasks are waiting, and no more
 * tasks can acquire the semaphore.
 *
 * (*) Except for the window between one task calling up() and the task
 * sleeping in a __down_common() waking up.  In order to avoid a third task
 * coming in and stealing the second task's wakeup, we leave the ->count
 * negative.  If we have a more complex situation, the ->count may become
 * zero or negative (eg a semaphore with count = 2, three tasks attempt to
 * acquire it, one sleeps, two finish and call up(), the second task to call
 * up() notices that the list is empty and just increments count).
 */

static noinline void __down(struct semaphore *sem);
static noinline int __down_interruptible(struct semaphore *sem);
static noinline void __up(struct semaphore *sem);

void down(struct semaphore *sem)
{
	unsigned long flags;

	spin_lock_irqsave(&sem->lock, flags);
	if (unlikely(sem->count-- <= 0))
		__down(sem);
	spin_unlock_irqrestore(&sem->lock, flags);
}
EXPORT_SYMBOL(down);

int down_interruptible(struct semaphore *sem)
{
	unsigned long flags;
	int result = 0;

	spin_lock_irqsave(&sem->lock, flags);
	if (unlikely(sem->count-- <= 0))
		result = __down_interruptible(sem);
	spin_unlock_irqrestore(&sem->lock, flags);

	return result;
}
EXPORT_SYMBOL(down_interruptible);

/**
 * down_trylock - try to acquire the semaphore, without waiting
 * @sem: the semaphore to be acquired
 *
 * Try to acquire the semaphore atomically.  Returns 0 if the mutex has
 * been acquired successfully and 1 if it is contended.
 *
 * NOTE: This return value is inverted from both spin_trylock and
 * mutex_trylock!  Be careful about this when converting code.
 *
 * Unlike mutex_trylock, this function can be used from interrupt context,
 * and the semaphore can be released by any task or interrupt.
 */
int down_trylock(struct semaphore *sem)
{
	unsigned long flags;
	int count;

	spin_lock_irqsave(&sem->lock, flags);
	count = sem->count - 1;
	if (likely(count >= 0))
		sem->count = count;
	spin_unlock_irqrestore(&sem->lock, flags);

	return (count < 0);
}
EXPORT_SYMBOL(down_trylock);

void up(struct semaphore *sem)
{
	unsigned long flags;

	spin_lock_irqsave(&sem->lock, flags);
	if (likely(sem->count >= 0))
		sem->count++;
	else
		__up(sem);
	spin_unlock_irqrestore(&sem->lock, flags);
}
EXPORT_SYMBOL(up);

/* Functions for the contended case */

struct semaphore_waiter {
	struct list_head list;
	struct task_struct *task;
	int up;
};

/*
 * Wake up a process waiting on a semaphore.  We need to call this from both
 * __up and __down_common as it's possible to race a task into the semaphore
 * if it comes in at just the right time between two tasks calling up() and
 * a third task waking up.  This function assumes the wait_list is already
 * checked for being non-empty.
 */
static noinline void __sched __up_down_common(struct semaphore *sem)
{
	struct semaphore_waiter *waiter = list_first_entry(&sem->wait_list,
						struct semaphore_waiter, list);
	list_del(&waiter->list);
	waiter->up = 1;
	wake_up_process(waiter->task);
}

/*
 * Because this function is inlined, the 'state' parameter will be constant,
 * and thus optimised away by the compiler.
 */
static inline int __sched __down_common(struct semaphore *sem, long state)
{
	int result = 0;
	struct task_struct *task = current;
	struct semaphore_waiter waiter;

	list_add_tail(&waiter.list, &sem->wait_list);
	waiter.task = task;
	waiter.up = 0;

	for (;;) {
		if (state == TASK_INTERRUPTIBLE && signal_pending(task))
			goto interrupted;
		__set_task_state(task, state);
		spin_unlock_irq(&sem->lock);
		schedule();
		spin_lock_irq(&sem->lock);
		if (waiter.up)
			goto woken;
	}

 interrupted:
	list_del(&waiter.list);
	result = -EINTR;
 woken:
	/*
	 * Account for the process which woke us up.  For the case where
	 * we're interrupted, we need to increment the count on our own
	 * behalf.  I don't believe we can hit the case where the
	 * sem->count hits zero, *and* there's a second task sleeping,
	 * but it doesn't hurt, that's not a commonly exercised path and
	 * it's not a performance path either.
	 */
	if (unlikely((++sem->count >= 0) && !list_empty(&sem->wait_list)))
		__up_down_common(sem);
	return result;
}

static noinline void __sched __down(struct semaphore *sem)
{
	__down_common(sem, TASK_UNINTERRUPTIBLE);
}

static noinline int __sched __down_interruptible(struct semaphore *sem)
{
	return __down_common(sem, TASK_INTERRUPTIBLE);
}

static noinline void __sched __up(struct semaphore *sem)
{
	if (unlikely(list_empty(&sem->wait_list)))
		sem->count++;
	else
		__up_down_common(sem);
}