summaryrefslogtreecommitdiff
path: root/kernel/sched/deadline.c
blob: 6a73e41a20160bf760e09ca050a82657ccf95347 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
// SPDX-License-Identifier: GPL-2.0
/*
 * Deadline Scheduling Class (SCHED_DEADLINE)
 *
 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
 *
 * Tasks that periodically executes their instances for less than their
 * runtime won't miss any of their deadlines.
 * Tasks that are not periodic or sporadic or that tries to execute more
 * than their reserved bandwidth will be slowed down (and may potentially
 * miss some of their deadlines), and won't affect any other task.
 *
 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
 *                    Juri Lelli <juri.lelli@gmail.com>,
 *                    Michael Trimarchi <michael@amarulasolutions.com>,
 *                    Fabio Checconi <fchecconi@gmail.com>
 */
#include "sched.h"
#include "pelt.h"

struct dl_bandwidth def_dl_bandwidth;

static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
{
	return container_of(dl_se, struct task_struct, dl);
}

static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
{
	return container_of(dl_rq, struct rq, dl);
}

static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = task_rq(p);

	return &rq->dl;
}

static inline int on_dl_rq(struct sched_dl_entity *dl_se)
{
	return !RB_EMPTY_NODE(&dl_se->rb_node);
}

#ifdef CONFIG_SMP
static inline struct dl_bw *dl_bw_of(int i)
{
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
	return &cpu_rq(i)->rd->dl_bw;
}

static inline int dl_bw_cpus(int i)
{
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
}
#else
static inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

static inline int dl_bw_cpus(int i)
{
	return 1;
}
#endif

static inline
void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->running_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->running_bw += dl_bw;
	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
}

static inline
void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->running_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->running_bw -= dl_bw;
	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
	if (dl_rq->running_bw > old)
		dl_rq->running_bw = 0;
	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
}

static inline
void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->this_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->this_bw += dl_bw;
	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
}

static inline
void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
	u64 old = dl_rq->this_bw;

	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
	dl_rq->this_bw -= dl_bw;
	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
	if (dl_rq->this_bw > old)
		dl_rq->this_bw = 0;
	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
}

static inline
void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	if (!dl_entity_is_special(dl_se))
		__add_rq_bw(dl_se->dl_bw, dl_rq);
}

static inline
void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	if (!dl_entity_is_special(dl_se))
		__sub_rq_bw(dl_se->dl_bw, dl_rq);
}

static inline
void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	if (!dl_entity_is_special(dl_se))
		__add_running_bw(dl_se->dl_bw, dl_rq);
}

static inline
void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	if (!dl_entity_is_special(dl_se))
		__sub_running_bw(dl_se->dl_bw, dl_rq);
}

void dl_change_utilization(struct task_struct *p, u64 new_bw)
{
	struct rq *rq;

	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);

	if (task_on_rq_queued(p))
		return;

	rq = task_rq(p);
	if (p->dl.dl_non_contending) {
		sub_running_bw(&p->dl, &rq->dl);
		p->dl.dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
			put_task_struct(p);
	}
	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
	__add_rq_bw(new_bw, &rq->dl);
}

/*
 * The utilization of a task cannot be immediately removed from
 * the rq active utilization (running_bw) when the task blocks.
 * Instead, we have to wait for the so called "0-lag time".
 *
 * If a task blocks before the "0-lag time", a timer (the inactive
 * timer) is armed, and running_bw is decreased when the timer
 * fires.
 *
 * If the task wakes up again before the inactive timer fires,
 * the timer is cancelled, whereas if the task wakes up after the
 * inactive timer fired (and running_bw has been decreased) the
 * task's utilization has to be added to running_bw again.
 * A flag in the deadline scheduling entity (dl_non_contending)
 * is used to avoid race conditions between the inactive timer handler
 * and task wakeups.
 *
 * The following diagram shows how running_bw is updated. A task is
 * "ACTIVE" when its utilization contributes to running_bw; an
 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 * time already passed, which does not contribute to running_bw anymore.
 *                              +------------------+
 *             wakeup           |    ACTIVE        |
 *          +------------------>+   contending     |
 *          | add_running_bw    |                  |
 *          |                   +----+------+------+
 *          |                        |      ^
 *          |                dequeue |      |
 * +--------+-------+                |      |
 * |                |   t >= 0-lag   |      | wakeup
 * |    INACTIVE    |<---------------+      |
 * |                | sub_running_bw |      |
 * +--------+-------+                |      |
 *          ^                        |      |
 *          |              t < 0-lag |      |
 *          |                        |      |
 *          |                        V      |
 *          |                   +----+------+------+
 *          | sub_running_bw    |    ACTIVE        |
 *          +-------------------+                  |
 *            inactive timer    |  non contending  |
 *            fired             +------------------+
 *
 * The task_non_contending() function is invoked when a task
 * blocks, and checks if the 0-lag time already passed or
 * not (in the first case, it directly updates running_bw;
 * in the second case, it arms the inactive timer).
 *
 * The task_contending() function is invoked when a task wakes
 * up, and checks if the task is still in the "ACTIVE non contending"
 * state or not (in the second case, it updates running_bw).
 */
static void task_non_contending(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->inactive_timer;
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);
	s64 zerolag_time;

	/*
	 * If this is a non-deadline task that has been boosted,
	 * do nothing
	 */
	if (dl_se->dl_runtime == 0)
		return;

	if (dl_entity_is_special(dl_se))
		return;

	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
	WARN_ON(dl_se->dl_non_contending);

	zerolag_time = dl_se->deadline -
		 div64_long((dl_se->runtime * dl_se->dl_period),
			dl_se->dl_runtime);

	/*
	 * Using relative times instead of the absolute "0-lag time"
	 * allows to simplify the code
	 */
	zerolag_time -= rq_clock(rq);

	/*
	 * If the "0-lag time" already passed, decrease the active
	 * utilization now, instead of starting a timer
	 */
	if (zerolag_time < 0) {
		if (dl_task(p))
			sub_running_bw(dl_se, dl_rq);
		if (!dl_task(p) || p->state == TASK_DEAD) {
			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

			if (p->state == TASK_DEAD)
				sub_rq_bw(&p->dl, &rq->dl);
			raw_spin_lock(&dl_b->lock);
			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
			__dl_clear_params(p);
			raw_spin_unlock(&dl_b->lock);
		}

		return;
	}

	dl_se->dl_non_contending = 1;
	get_task_struct(p);
	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
}

static void task_contending(struct sched_dl_entity *dl_se, int flags)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	/*
	 * If this is a non-deadline task that has been boosted,
	 * do nothing
	 */
	if (dl_se->dl_runtime == 0)
		return;

	if (flags & ENQUEUE_MIGRATED)
		add_rq_bw(dl_se, dl_rq);

	if (dl_se->dl_non_contending) {
		dl_se->dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
			put_task_struct(dl_task_of(dl_se));
	} else {
		/*
		 * Since "dl_non_contending" is not set, the
		 * task's utilization has already been removed from
		 * active utilization (either when the task blocked,
		 * when the "inactive timer" fired).
		 * So, add it back.
		 */
		add_running_bw(dl_se, dl_rq);
	}
}

static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
{
	struct sched_dl_entity *dl_se = &p->dl;

	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
}

void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
{
	raw_spin_lock_init(&dl_b->dl_runtime_lock);
	dl_b->dl_period = period;
	dl_b->dl_runtime = runtime;
}

void init_dl_bw(struct dl_bw *dl_b)
{
	raw_spin_lock_init(&dl_b->lock);
	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
	if (global_rt_runtime() == RUNTIME_INF)
		dl_b->bw = -1;
	else
		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
	dl_b->total_bw = 0;
}

void init_dl_rq(struct dl_rq *dl_rq)
{
	dl_rq->root = RB_ROOT_CACHED;

#ifdef CONFIG_SMP
	/* zero means no -deadline tasks */
	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;

	dl_rq->dl_nr_migratory = 0;
	dl_rq->overloaded = 0;
	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
#else
	init_dl_bw(&dl_rq->dl_bw);
#endif

	dl_rq->running_bw = 0;
	dl_rq->this_bw = 0;
	init_dl_rq_bw_ratio(dl_rq);
}

#ifdef CONFIG_SMP

static inline int dl_overloaded(struct rq *rq)
{
	return atomic_read(&rq->rd->dlo_count);
}

static inline void dl_set_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
	/*
	 * Must be visible before the overload count is
	 * set (as in sched_rt.c).
	 *
	 * Matched by the barrier in pull_dl_task().
	 */
	smp_wmb();
	atomic_inc(&rq->rd->dlo_count);
}

static inline void dl_clear_overload(struct rq *rq)
{
	if (!rq->online)
		return;

	atomic_dec(&rq->rd->dlo_count);
	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
}

static void update_dl_migration(struct dl_rq *dl_rq)
{
	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
		if (!dl_rq->overloaded) {
			dl_set_overload(rq_of_dl_rq(dl_rq));
			dl_rq->overloaded = 1;
		}
	} else if (dl_rq->overloaded) {
		dl_clear_overload(rq_of_dl_rq(dl_rq));
		dl_rq->overloaded = 0;
	}
}

static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

	if (p->nr_cpus_allowed > 1)
		dl_rq->dl_nr_migratory++;

	update_dl_migration(dl_rq);
}

static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	struct task_struct *p = dl_task_of(dl_se);

	if (p->nr_cpus_allowed > 1)
		dl_rq->dl_nr_migratory--;

	update_dl_migration(dl_rq);
}

/*
 * The list of pushable -deadline task is not a plist, like in
 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 */
static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;
	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct task_struct *entry;
	bool leftmost = true;

	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct task_struct,
				 pushable_dl_tasks);
		if (dl_entity_preempt(&p->dl, &entry->dl))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = false;
		}
	}

	if (leftmost)
		dl_rq->earliest_dl.next = p->dl.deadline;

	rb_link_node(&p->pushable_dl_tasks, parent, link);
	rb_insert_color_cached(&p->pushable_dl_tasks,
			       &dl_rq->pushable_dl_tasks_root, leftmost);
}

static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
	struct dl_rq *dl_rq = &rq->dl;

	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
		return;

	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
		struct rb_node *next_node;

		next_node = rb_next(&p->pushable_dl_tasks);
		if (next_node) {
			dl_rq->earliest_dl.next = rb_entry(next_node,
				struct task_struct, pushable_dl_tasks)->dl.deadline;
		}
	}

	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
}

static inline int has_pushable_dl_tasks(struct rq *rq)
{
	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
}

static int push_dl_task(struct rq *rq);

static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return dl_task(prev);
}

static DEFINE_PER_CPU(struct callback_head, dl_push_head);
static DEFINE_PER_CPU(struct callback_head, dl_pull_head);

static void push_dl_tasks(struct rq *);
static void pull_dl_task(struct rq *);

static inline void deadline_queue_push_tasks(struct rq *rq)
{
	if (!has_pushable_dl_tasks(rq))
		return;

	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
}

static inline void deadline_queue_pull_task(struct rq *rq)
{
	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
}

static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);

static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
{
	struct rq *later_rq = NULL;

	later_rq = find_lock_later_rq(p, rq);
	if (!later_rq) {
		int cpu;

		/*
		 * If we cannot preempt any rq, fall back to pick any
		 * online CPU:
		 */
		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
		if (cpu >= nr_cpu_ids) {
			/*
			 * Failed to find any suitable CPU.
			 * The task will never come back!
			 */
			BUG_ON(dl_bandwidth_enabled());

			/*
			 * If admission control is disabled we
			 * try a little harder to let the task
			 * run.
			 */
			cpu = cpumask_any(cpu_active_mask);
		}
		later_rq = cpu_rq(cpu);
		double_lock_balance(rq, later_rq);
	}

	set_task_cpu(p, later_rq->cpu);
	double_unlock_balance(later_rq, rq);

	return later_rq;
}

#else

static inline
void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
{
}

static inline
void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

static inline
void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
}

static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

static inline void pull_dl_task(struct rq *rq)
{
}

static inline void deadline_queue_push_tasks(struct rq *rq)
{
}

static inline void deadline_queue_pull_task(struct rq *rq)
{
}
#endif /* CONFIG_SMP */

static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);

/*
 * We are being explicitly informed that a new instance is starting,
 * and this means that:
 *  - the absolute deadline of the entity has to be placed at
 *    current time + relative deadline;
 *  - the runtime of the entity has to be set to the maximum value.
 *
 * The capability of specifying such event is useful whenever a -deadline
 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 * one, and to (try to!) reconcile itself with its own scheduling
 * parameters.
 */
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	WARN_ON(dl_se->dl_boosted);
	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));

	/*
	 * We are racing with the deadline timer. So, do nothing because
	 * the deadline timer handler will take care of properly recharging
	 * the runtime and postponing the deadline
	 */
	if (dl_se->dl_throttled)
		return;

	/*
	 * We use the regular wall clock time to set deadlines in the
	 * future; in fact, we must consider execution overheads (time
	 * spent on hardirq context, etc.).
	 */
	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
	dl_se->runtime = dl_se->dl_runtime;
}

/*
 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 * possibility of a entity lasting more than what it declared, and thus
 * exhausting its runtime.
 *
 * Here we are interested in making runtime overrun possible, but we do
 * not want a entity which is misbehaving to affect the scheduling of all
 * other entities.
 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 * is used, in order to confine each entity within its own bandwidth.
 *
 * This function deals exactly with that, and ensures that when the runtime
 * of a entity is replenished, its deadline is also postponed. That ensures
 * the overrunning entity can't interfere with other entity in the system and
 * can't make them miss their deadlines. Reasons why this kind of overruns
 * could happen are, typically, a entity voluntarily trying to overcome its
 * runtime, or it just underestimated it during sched_setattr().
 */
static void replenish_dl_entity(struct sched_dl_entity *dl_se,
				struct sched_dl_entity *pi_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	BUG_ON(pi_se->dl_runtime <= 0);

	/*
	 * This could be the case for a !-dl task that is boosted.
	 * Just go with full inherited parameters.
	 */
	if (dl_se->dl_deadline == 0) {
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}

	if (dl_se->dl_yielded && dl_se->runtime > 0)
		dl_se->runtime = 0;

	/*
	 * We keep moving the deadline away until we get some
	 * available runtime for the entity. This ensures correct
	 * handling of situations where the runtime overrun is
	 * arbitrary large.
	 */
	while (dl_se->runtime <= 0) {
		dl_se->deadline += pi_se->dl_period;
		dl_se->runtime += pi_se->dl_runtime;
	}

	/*
	 * At this point, the deadline really should be "in
	 * the future" with respect to rq->clock. If it's
	 * not, we are, for some reason, lagging too much!
	 * Anyway, after having warn userspace abut that,
	 * we still try to keep the things running by
	 * resetting the deadline and the budget of the
	 * entity.
	 */
	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
		printk_deferred_once("sched: DL replenish lagged too much\n");
		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}

	if (dl_se->dl_yielded)
		dl_se->dl_yielded = 0;
	if (dl_se->dl_throttled)
		dl_se->dl_throttled = 0;
}

/*
 * Here we check if --at time t-- an entity (which is probably being
 * [re]activated or, in general, enqueued) can use its remaining runtime
 * and its current deadline _without_ exceeding the bandwidth it is
 * assigned (function returns true if it can't). We are in fact applying
 * one of the CBS rules: when a task wakes up, if the residual runtime
 * over residual deadline fits within the allocated bandwidth, then we
 * can keep the current (absolute) deadline and residual budget without
 * disrupting the schedulability of the system. Otherwise, we should
 * refill the runtime and set the deadline a period in the future,
 * because keeping the current (absolute) deadline of the task would
 * result in breaking guarantees promised to other tasks (refer to
 * Documentation/scheduler/sched-deadline.txt for more information).
 *
 * This function returns true if:
 *
 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 *
 * IOW we can't recycle current parameters.
 *
 * Notice that the bandwidth check is done against the deadline. For
 * task with deadline equal to period this is the same of using
 * dl_period instead of dl_deadline in the equation above.
 */
static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
			       struct sched_dl_entity *pi_se, u64 t)
{
	u64 left, right;

	/*
	 * left and right are the two sides of the equation above,
	 * after a bit of shuffling to use multiplications instead
	 * of divisions.
	 *
	 * Note that none of the time values involved in the two
	 * multiplications are absolute: dl_deadline and dl_runtime
	 * are the relative deadline and the maximum runtime of each
	 * instance, runtime is the runtime left for the last instance
	 * and (deadline - t), since t is rq->clock, is the time left
	 * to the (absolute) deadline. Even if overflowing the u64 type
	 * is very unlikely to occur in both cases, here we scale down
	 * as we want to avoid that risk at all. Scaling down by 10
	 * means that we reduce granularity to 1us. We are fine with it,
	 * since this is only a true/false check and, anyway, thinking
	 * of anything below microseconds resolution is actually fiction
	 * (but still we want to give the user that illusion >;).
	 */
	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
	right = ((dl_se->deadline - t) >> DL_SCALE) *
		(pi_se->dl_runtime >> DL_SCALE);

	return dl_time_before(right, left);
}

/*
 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 * re-initializing task's runtime and deadline, the revised wakeup
 * rule adjusts the task's runtime to avoid the task to overrun its
 * density.
 *
 * Reasoning: a task may overrun the density if:
 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 *
 * Therefore, runtime can be adjusted to:
 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 *
 * In such way that runtime will be equal to the maximum density
 * the task can use without breaking any rule.
 *
 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 */
static void
update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
{
	u64 laxity = dl_se->deadline - rq_clock(rq);

	/*
	 * If the task has deadline < period, and the deadline is in the past,
	 * it should already be throttled before this check.
	 *
	 * See update_dl_entity() comments for further details.
	 */
	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));

	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
}

/*
 * Regarding the deadline, a task with implicit deadline has a relative
 * deadline == relative period. A task with constrained deadline has a
 * relative deadline <= relative period.
 *
 * We support constrained deadline tasks. However, there are some restrictions
 * applied only for tasks which do not have an implicit deadline. See
 * update_dl_entity() to know more about such restrictions.
 *
 * The dl_is_implicit() returns true if the task has an implicit deadline.
 */
static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
{
	return dl_se->dl_deadline == dl_se->dl_period;
}

/*
 * When a deadline entity is placed in the runqueue, its runtime and deadline
 * might need to be updated. This is done by a CBS wake up rule. There are two
 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 *
 * When the task is starting a new period, the Original CBS is used. In this
 * case, the runtime is replenished and a new absolute deadline is set.
 *
 * When a task is queued before the begin of the next period, using the
 * remaining runtime and deadline could make the entity to overflow, see
 * dl_entity_overflow() to find more about runtime overflow. When such case
 * is detected, the runtime and deadline need to be updated.
 *
 * If the task has an implicit deadline, i.e., deadline == period, the Original
 * CBS is applied. the runtime is replenished and a new absolute deadline is
 * set, as in the previous cases.
 *
 * However, the Original CBS does not work properly for tasks with
 * deadline < period, which are said to have a constrained deadline. By
 * applying the Original CBS, a constrained deadline task would be able to run
 * runtime/deadline in a period. With deadline < period, the task would
 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 *
 * In order to prevent this misbehave, the Revisited CBS is used for
 * constrained deadline tasks when a runtime overflow is detected. In the
 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 * the remaining runtime of the task is reduced to avoid runtime overflow.
 * Please refer to the comments update_dl_revised_wakeup() function to find
 * more about the Revised CBS rule.
 */
static void update_dl_entity(struct sched_dl_entity *dl_se,
			     struct sched_dl_entity *pi_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {

		if (unlikely(!dl_is_implicit(dl_se) &&
			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
			     !dl_se->dl_boosted)){
			update_dl_revised_wakeup(dl_se, rq);
			return;
		}

		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
		dl_se->runtime = pi_se->dl_runtime;
	}
}

static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
{
	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
}

/*
 * If the entity depleted all its runtime, and if we want it to sleep
 * while waiting for some new execution time to become available, we
 * set the bandwidth replenishment timer to the replenishment instant
 * and try to activate it.
 *
 * Notice that it is important for the caller to know if the timer
 * actually started or not (i.e., the replenishment instant is in
 * the future or in the past).
 */
static int start_dl_timer(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;
	struct hrtimer *timer = &dl_se->dl_timer;
	struct rq *rq = task_rq(p);
	ktime_t now, act;
	s64 delta;

	lockdep_assert_held(&rq->lock);

	/*
	 * We want the timer to fire at the deadline, but considering
	 * that it is actually coming from rq->clock and not from
	 * hrtimer's time base reading.
	 */
	act = ns_to_ktime(dl_next_period(dl_se));
	now = hrtimer_cb_get_time(timer);
	delta = ktime_to_ns(now) - rq_clock(rq);
	act = ktime_add_ns(act, delta);

	/*
	 * If the expiry time already passed, e.g., because the value
	 * chosen as the deadline is too small, don't even try to
	 * start the timer in the past!
	 */
	if (ktime_us_delta(act, now) < 0)
		return 0;

	/*
	 * !enqueued will guarantee another callback; even if one is already in
	 * progress. This ensures a balanced {get,put}_task_struct().
	 *
	 * The race against __run_timer() clearing the enqueued state is
	 * harmless because we're holding task_rq()->lock, therefore the timer
	 * expiring after we've done the check will wait on its task_rq_lock()
	 * and observe our state.
	 */
	if (!hrtimer_is_queued(timer)) {
		get_task_struct(p);
		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
	}

	return 1;
}

/*
 * This is the bandwidth enforcement timer callback. If here, we know
 * a task is not on its dl_rq, since the fact that the timer was running
 * means the task is throttled and needs a runtime replenishment.
 *
 * However, what we actually do depends on the fact the task is active,
 * (it is on its rq) or has been removed from there by a call to
 * dequeue_task_dl(). In the former case we must issue the runtime
 * replenishment and add the task back to the dl_rq; in the latter, we just
 * do nothing but clearing dl_throttled, so that runtime and deadline
 * updating (and the queueing back to dl_rq) will be done by the
 * next call to enqueue_task_dl().
 */
static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     dl_timer);
	struct task_struct *p = dl_task_of(dl_se);
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(p, &rf);

	/*
	 * The task might have changed its scheduling policy to something
	 * different than SCHED_DEADLINE (through switched_from_dl()).
	 */
	if (!dl_task(p))
		goto unlock;

	/*
	 * The task might have been boosted by someone else and might be in the
	 * boosting/deboosting path, its not throttled.
	 */
	if (dl_se->dl_boosted)
		goto unlock;

	/*
	 * Spurious timer due to start_dl_timer() race; or we already received
	 * a replenishment from rt_mutex_setprio().
	 */
	if (!dl_se->dl_throttled)
		goto unlock;

	sched_clock_tick();
	update_rq_clock(rq);

	/*
	 * If the throttle happened during sched-out; like:
	 *
	 *   schedule()
	 *     deactivate_task()
	 *       dequeue_task_dl()
	 *         update_curr_dl()
	 *           start_dl_timer()
	 *         __dequeue_task_dl()
	 *     prev->on_rq = 0;
	 *
	 * We can be both throttled and !queued. Replenish the counter
	 * but do not enqueue -- wait for our wakeup to do that.
	 */
	if (!task_on_rq_queued(p)) {
		replenish_dl_entity(dl_se, dl_se);
		goto unlock;
	}

#ifdef CONFIG_SMP
	if (unlikely(!rq->online)) {
		/*
		 * If the runqueue is no longer available, migrate the
		 * task elsewhere. This necessarily changes rq.
		 */
		lockdep_unpin_lock(&rq->lock, rf.cookie);
		rq = dl_task_offline_migration(rq, p);
		rf.cookie = lockdep_pin_lock(&rq->lock);
		update_rq_clock(rq);

		/*
		 * Now that the task has been migrated to the new RQ and we
		 * have that locked, proceed as normal and enqueue the task
		 * there.
		 */
	}
#endif

	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
	if (dl_task(rq->curr))
		check_preempt_curr_dl(rq, p, 0);
	else
		resched_curr(rq);

#ifdef CONFIG_SMP
	/*
	 * Queueing this task back might have overloaded rq, check if we need
	 * to kick someone away.
	 */
	if (has_pushable_dl_tasks(rq)) {
		/*
		 * Nothing relies on rq->lock after this, so its safe to drop
		 * rq->lock.
		 */
		rq_unpin_lock(rq, &rf);
		push_dl_task(rq);
		rq_repin_lock(rq, &rf);
	}
#endif

unlock:
	task_rq_unlock(rq, p, &rf);

	/*
	 * This can free the task_struct, including this hrtimer, do not touch
	 * anything related to that after this.
	 */
	put_task_struct(p);

	return HRTIMER_NORESTART;
}

void init_dl_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->dl_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = dl_task_timer;
}

/*
 * During the activation, CBS checks if it can reuse the current task's
 * runtime and period. If the deadline of the task is in the past, CBS
 * cannot use the runtime, and so it replenishes the task. This rule
 * works fine for implicit deadline tasks (deadline == period), and the
 * CBS was designed for implicit deadline tasks. However, a task with
 * constrained deadline (deadine < period) might be awakened after the
 * deadline, but before the next period. In this case, replenishing the
 * task would allow it to run for runtime / deadline. As in this case
 * deadline < period, CBS enables a task to run for more than the
 * runtime / period. In a very loaded system, this can cause a domino
 * effect, making other tasks miss their deadlines.
 *
 * To avoid this problem, in the activation of a constrained deadline
 * task after the deadline but before the next period, throttle the
 * task and set the replenishing timer to the begin of the next period,
 * unless it is boosted.
 */
static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
{
	struct task_struct *p = dl_task_of(dl_se);
	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));

	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
			return;
		dl_se->dl_throttled = 1;
		if (dl_se->runtime > 0)
			dl_se->runtime = 0;
	}
}

static
int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
{
	return (dl_se->runtime <= 0);
}

extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

/*
 * This function implements the GRUB accounting rule:
 * according to the GRUB reclaiming algorithm, the runtime is
 * not decreased as "dq = -dt", but as
 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
 * where u is the utilization of the task, Umax is the maximum reclaimable
 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
 * as the difference between the "total runqueue utilization" and the
 * runqueue active utilization, and Uextra is the (per runqueue) extra
 * reclaimable utilization.
 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
 * BW_SHIFT.
 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
 * Since delta is a 64 bit variable, to have an overflow its value
 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
 * So, overflow is not an issue here.
 */
static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
{
	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
	u64 u_act;
	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;

	/*
	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
	 * we compare u_inact + rq->dl.extra_bw with
	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
	 * u_inact + rq->dl.extra_bw can be larger than
	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
	 * leading to wrong results)
	 */
	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
		u_act = u_act_min;
	else
		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;

	return (delta * u_act) >> BW_SHIFT;
}

/*
 * Update the current task's runtime statistics (provided it is still
 * a -deadline task and has not been removed from the dl_rq).
 */
static void update_curr_dl(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct sched_dl_entity *dl_se = &curr->dl;
	u64 delta_exec, scaled_delta_exec;
	int cpu = cpu_of(rq);
	u64 now;

	if (!dl_task(curr) || !on_dl_rq(dl_se))
		return;

	/*
	 * Consumed budget is computed considering the time as
	 * observed by schedulable tasks (excluding time spent
	 * in hardirq context, etc.). Deadlines are instead
	 * computed using hard walltime. This seems to be the more
	 * natural solution, but the full ramifications of this
	 * approach need further study.
	 */
	now = rq_clock_task(rq);
	delta_exec = now - curr->se.exec_start;
	if (unlikely((s64)delta_exec <= 0)) {
		if (unlikely(dl_se->dl_yielded))
			goto throttle;
		return;
	}

	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));

	curr->se.sum_exec_runtime += delta_exec;
	account_group_exec_runtime(curr, delta_exec);

	curr->se.exec_start = now;
	cgroup_account_cputime(curr, delta_exec);

	if (dl_entity_is_special(dl_se))
		return;

	/*
	 * For tasks that participate in GRUB, we implement GRUB-PA: the
	 * spare reclaimed bandwidth is used to clock down frequency.
	 *
	 * For the others, we still need to scale reservation parameters
	 * according to current frequency and CPU maximum capacity.
	 */
	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
		scaled_delta_exec = grub_reclaim(delta_exec,
						 rq,
						 &curr->dl);
	} else {
		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
		unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
	}

	dl_se->runtime -= scaled_delta_exec;

throttle:
	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
		dl_se->dl_throttled = 1;

		/* If requested, inform the user about runtime overruns. */
		if (dl_runtime_exceeded(dl_se) &&
		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
			dl_se->dl_overrun = 1;

		__dequeue_task_dl(rq, curr, 0);
		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);

		if (!is_leftmost(curr, &rq->dl))
			resched_curr(rq);
	}

	/*
	 * Because -- for now -- we share the rt bandwidth, we need to
	 * account our runtime there too, otherwise actual rt tasks
	 * would be able to exceed the shared quota.
	 *
	 * Account to the root rt group for now.
	 *
	 * The solution we're working towards is having the RT groups scheduled
	 * using deadline servers -- however there's a few nasties to figure
	 * out before that can happen.
	 */
	if (rt_bandwidth_enabled()) {
		struct rt_rq *rt_rq = &rq->rt;

		raw_spin_lock(&rt_rq->rt_runtime_lock);
		/*
		 * We'll let actual RT tasks worry about the overflow here, we
		 * have our own CBS to keep us inline; only account when RT
		 * bandwidth is relevant.
		 */
		if (sched_rt_bandwidth_account(rt_rq))
			rt_rq->rt_time += delta_exec;
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
	}
}

static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
{
	struct sched_dl_entity *dl_se = container_of(timer,
						     struct sched_dl_entity,
						     inactive_timer);
	struct task_struct *p = dl_task_of(dl_se);
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(p, &rf);

	sched_clock_tick();
	update_rq_clock(rq);

	if (!dl_task(p) || p->state == TASK_DEAD) {
		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));

		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
			dl_se->dl_non_contending = 0;
		}

		raw_spin_lock(&dl_b->lock);
		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
		raw_spin_unlock(&dl_b->lock);
		__dl_clear_params(p);

		goto unlock;
	}
	if (dl_se->dl_non_contending == 0)
		goto unlock;

	sub_running_bw(dl_se, &rq->dl);
	dl_se->dl_non_contending = 0;
unlock:
	task_rq_unlock(rq, p, &rf);
	put_task_struct(p);

	return HRTIMER_NORESTART;
}

void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
{
	struct hrtimer *timer = &dl_se->inactive_timer;

	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	timer->function = inactive_task_timer;
}

#ifdef CONFIG_SMP

static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	if (dl_rq->earliest_dl.curr == 0 ||
	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
		dl_rq->earliest_dl.curr = deadline;
		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
	}
}

static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
{
	struct rq *rq = rq_of_dl_rq(dl_rq);

	/*
	 * Since we may have removed our earliest (and/or next earliest)
	 * task we must recompute them.
	 */
	if (!dl_rq->dl_nr_running) {
		dl_rq->earliest_dl.curr = 0;
		dl_rq->earliest_dl.next = 0;
		cpudl_clear(&rq->rd->cpudl, rq->cpu);
	} else {
		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
		struct sched_dl_entity *entry;

		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
		dl_rq->earliest_dl.curr = entry->deadline;
		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
	}
}

#else

static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}

#endif /* CONFIG_SMP */

static inline
void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;
	u64 deadline = dl_se->deadline;

	WARN_ON(!dl_prio(prio));
	dl_rq->dl_nr_running++;
	add_nr_running(rq_of_dl_rq(dl_rq), 1);

	inc_dl_deadline(dl_rq, deadline);
	inc_dl_migration(dl_se, dl_rq);
}

static inline
void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
{
	int prio = dl_task_of(dl_se)->prio;

	WARN_ON(!dl_prio(prio));
	WARN_ON(!dl_rq->dl_nr_running);
	dl_rq->dl_nr_running--;
	sub_nr_running(rq_of_dl_rq(dl_rq), 1);

	dec_dl_deadline(dl_rq, dl_se->deadline);
	dec_dl_migration(dl_se, dl_rq);
}

static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct sched_dl_entity *entry;
	int leftmost = 1;

	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));

	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
		if (dl_time_before(dl_se->deadline, entry->deadline))
			link = &parent->rb_left;
		else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	rb_link_node(&dl_se->rb_node, parent, link);
	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);

	inc_dl_tasks(dl_se, dl_rq);
}

static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);

	if (RB_EMPTY_NODE(&dl_se->rb_node))
		return;

	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
	RB_CLEAR_NODE(&dl_se->rb_node);

	dec_dl_tasks(dl_se, dl_rq);
}

static void
enqueue_dl_entity(struct sched_dl_entity *dl_se,
		  struct sched_dl_entity *pi_se, int flags)
{
	BUG_ON(on_dl_rq(dl_se));

	/*
	 * If this is a wakeup or a new instance, the scheduling
	 * parameters of the task might need updating. Otherwise,
	 * we want a replenishment of its runtime.
	 */
	if (flags & ENQUEUE_WAKEUP) {
		task_contending(dl_se, flags);
		update_dl_entity(dl_se, pi_se);
	} else if (flags & ENQUEUE_REPLENISH) {
		replenish_dl_entity(dl_se, pi_se);
	} else if ((flags & ENQUEUE_RESTORE) &&
		  dl_time_before(dl_se->deadline,
				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
		setup_new_dl_entity(dl_se);
	}

	__enqueue_dl_entity(dl_se);
}

static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
{
	__dequeue_dl_entity(dl_se);
}

static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);
	struct sched_dl_entity *pi_se = &p->dl;

	/*
	 * Use the scheduling parameters of the top pi-waiter task if:
	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
	 *   boosted due to a SCHED_DEADLINE pi-waiter).
	 * Otherwise we keep our runtime and deadline.
	 */
	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
		pi_se = &pi_task->dl;
	} else if (!dl_prio(p->normal_prio)) {
		/*
		 * Special case in which we have a !SCHED_DEADLINE task
		 * that is going to be deboosted, but exceeds its
		 * runtime while doing so. No point in replenishing
		 * it, as it's going to return back to its original
		 * scheduling class after this.
		 */
		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
		return;
	}

	/*
	 * Check if a constrained deadline task was activated
	 * after the deadline but before the next period.
	 * If that is the case, the task will be throttled and
	 * the replenishment timer will be set to the next period.
	 */
	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
		dl_check_constrained_dl(&p->dl);

	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
		add_rq_bw(&p->dl, &rq->dl);
		add_running_bw(&p->dl, &rq->dl);
	}

	/*
	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
	 * its budget it needs a replenishment and, since it now is on
	 * its rq, the bandwidth timer callback (which clearly has not
	 * run yet) will take care of this.
	 * However, the active utilization does not depend on the fact
	 * that the task is on the runqueue or not (but depends on the
	 * task's state - in GRUB parlance, "inactive" vs "active contending").
	 * In other words, even if a task is throttled its utilization must
	 * be counted in the active utilization; hence, we need to call
	 * add_running_bw().
	 */
	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
		if (flags & ENQUEUE_WAKEUP)
			task_contending(&p->dl, flags);

		return;
	}

	enqueue_dl_entity(&p->dl, pi_se, flags);

	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
		enqueue_pushable_dl_task(rq, p);
}

static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	dequeue_dl_entity(&p->dl);
	dequeue_pushable_dl_task(rq, p);
}

static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
	update_curr_dl(rq);
	__dequeue_task_dl(rq, p, flags);

	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
		sub_running_bw(&p->dl, &rq->dl);
		sub_rq_bw(&p->dl, &rq->dl);
	}

	/*
	 * This check allows to start the inactive timer (or to immediately
	 * decrease the active utilization, if needed) in two cases:
	 * when the task blocks and when it is terminating
	 * (p->state == TASK_DEAD). We can handle the two cases in the same
	 * way, because from GRUB's point of view the same thing is happening
	 * (the task moves from "active contending" to "active non contending"
	 * or "inactive")
	 */
	if (flags & DEQUEUE_SLEEP)
		task_non_contending(p);
}

/*
 * Yield task semantic for -deadline tasks is:
 *
 *   get off from the CPU until our next instance, with
 *   a new runtime. This is of little use now, since we
 *   don't have a bandwidth reclaiming mechanism. Anyway,
 *   bandwidth reclaiming is planned for the future, and
 *   yield_task_dl will indicate that some spare budget
 *   is available for other task instances to use it.
 */
static void yield_task_dl(struct rq *rq)
{
	/*
	 * We make the task go to sleep until its current deadline by
	 * forcing its runtime to zero. This way, update_curr_dl() stops
	 * it and the bandwidth timer will wake it up and will give it
	 * new scheduling parameters (thanks to dl_yielded=1).
	 */
	rq->curr->dl.dl_yielded = 1;

	update_rq_clock(rq);
	update_curr_dl(rq);
	/*
	 * Tell update_rq_clock() that we've just updated,
	 * so we don't do microscopic update in schedule()
	 * and double the fastpath cost.
	 */
	rq_clock_skip_update(rq);
}

#ifdef CONFIG_SMP

static int find_later_rq(struct task_struct *task);

static int
select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
{
	struct task_struct *curr;
	struct rq *rq;

	if (sd_flag != SD_BALANCE_WAKE)
		goto out;

	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = READ_ONCE(rq->curr); /* unlocked access */

	/*
	 * If we are dealing with a -deadline task, we must
	 * decide where to wake it up.
	 * If it has a later deadline and the current task
	 * on this rq can't move (provided the waking task
	 * can!) we prefer to send it somewhere else. On the
	 * other hand, if it has a shorter deadline, we
	 * try to make it stay here, it might be important.
	 */
	if (unlikely(dl_task(curr)) &&
	    (curr->nr_cpus_allowed < 2 ||
	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
	    (p->nr_cpus_allowed > 1)) {
		int target = find_later_rq(p);

		if (target != -1 &&
				(dl_time_before(p->dl.deadline,
					cpu_rq(target)->dl.earliest_dl.curr) ||
				(cpu_rq(target)->dl.dl_nr_running == 0)))
			cpu = target;
	}
	rcu_read_unlock();

out:
	return cpu;
}

static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
{
	struct rq *rq;

	if (p->state != TASK_WAKING)
		return;

	rq = task_rq(p);
	/*
	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
	 * rq->lock is not... So, lock it
	 */
	raw_spin_lock(&rq->lock);
	if (p->dl.dl_non_contending) {
		sub_running_bw(&p->dl, &rq->dl);
		p->dl.dl_non_contending = 0;
		/*
		 * If the timer handler is currently running and the
		 * timer cannot be cancelled, inactive_task_timer()
		 * will see that dl_not_contending is not set, and
		 * will not touch the rq's active utilization,
		 * so we are still safe.
		 */
		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
			put_task_struct(p);
	}
	sub_rq_bw(&p->dl, &rq->dl);
	raw_spin_unlock(&rq->lock);
}

static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
{
	/*
	 * Current can't be migrated, useless to reschedule,
	 * let's hope p can move out.
	 */
	if (rq->curr->nr_cpus_allowed == 1 ||
	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
		return;

	/*
	 * p is migratable, so let's not schedule it and
	 * see if it is pushed or pulled somewhere else.
	 */
	if (p->nr_cpus_allowed != 1 &&
	    cpudl_find(&rq->rd->cpudl, p, NULL))
		return;

	resched_curr(rq);
}

#endif /* CONFIG_SMP */

/*
 * Only called when both the current and waking task are -deadline
 * tasks.
 */
static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
				  int flags)
{
	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
		resched_curr(rq);
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * In the unlikely case current and p have the same deadline
	 * let us try to decide what's the best thing to do...
	 */
	if ((p->dl.deadline == rq->curr->dl.deadline) &&
	    !test_tsk_need_resched(rq->curr))
		check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
}

#ifdef CONFIG_SCHED_HRTICK
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
	hrtick_start(rq, p->dl.runtime);
}
#else /* !CONFIG_SCHED_HRTICK */
static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
{
}
#endif

static inline void set_next_task(struct rq *rq, struct task_struct *p)
{
	p->se.exec_start = rq_clock_task(rq);

	/* You can't push away the running task */
	dequeue_pushable_dl_task(rq, p);
}

static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
						   struct dl_rq *dl_rq)
{
	struct rb_node *left = rb_first_cached(&dl_rq->root);

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_dl_entity, rb_node);
}

static struct task_struct *
pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
	struct sched_dl_entity *dl_se;
	struct task_struct *p;
	struct dl_rq *dl_rq;

	dl_rq = &rq->dl;

	if (need_pull_dl_task(rq, prev)) {
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we're
		 * being very careful to re-start the picking loop.
		 */
		rq_unpin_lock(rq, rf);
		pull_dl_task(rq);
		rq_repin_lock(rq, rf);
		/*
		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
		 * means a stop task can slip in, in which case we need to
		 * re-start task selection.
		 */
		if (rq->stop && task_on_rq_queued(rq->stop))
			return RETRY_TASK;
	}

	/*
	 * When prev is DL, we may throttle it in put_prev_task().
	 * So, we update time before we check for dl_nr_running.
	 */
	if (prev->sched_class == &dl_sched_class)
		update_curr_dl(rq);

	if (unlikely(!dl_rq->dl_nr_running))
		return NULL;

	put_prev_task(rq, prev);

	dl_se = pick_next_dl_entity(rq, dl_rq);
	BUG_ON(!dl_se);

	p = dl_task_of(dl_se);

	set_next_task(rq, p);

	if (hrtick_enabled(rq))
		start_hrtick_dl(rq, p);

	deadline_queue_push_tasks(rq);

	if (rq->curr->sched_class != &dl_sched_class)
		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);

	return p;
}

static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
	update_curr_dl(rq);

	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
		enqueue_pushable_dl_task(rq, p);
}

/*
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
 */
static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{
	update_curr_dl(rq);

	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
	/*
	 * Even when we have runtime, update_curr_dl() might have resulted in us
	 * not being the leftmost task anymore. In that case NEED_RESCHED will
	 * be set and schedule() will start a new hrtick for the next task.
	 */
	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
	    is_leftmost(p, &rq->dl))
		start_hrtick_dl(rq, p);
}

static void task_fork_dl(struct task_struct *p)
{
	/*
	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
	 * sched_fork()
	 */
}

static void set_curr_task_dl(struct rq *rq)
{
	set_next_task(rq, rq->curr);
}

#ifdef CONFIG_SMP

/* Only try algorithms three times */
#define DL_MAX_TRIES 3

static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
	    cpumask_test_cpu(cpu, &p->cpus_allowed))
		return 1;
	return 0;
}

/*
 * Return the earliest pushable rq's task, which is suitable to be executed
 * on the CPU, NULL otherwise:
 */
static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
{
	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
	struct task_struct *p = NULL;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

next_node:
	if (next_node) {
		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);

		if (pick_dl_task(rq, p, cpu))
			return p;

		next_node = rb_next(next_node);
		goto next_node;
	}

	return NULL;
}

static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);

static int find_later_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
	int this_cpu = smp_processor_id();
	int cpu = task_cpu(task);

	/* Make sure the mask is initialized first */
	if (unlikely(!later_mask))
		return -1;

	if (task->nr_cpus_allowed == 1)
		return -1;

	/*
	 * We have to consider system topology and task affinity
	 * first, then we can look for a suitable CPU.
	 */
	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
		return -1;

	/*
	 * If we are here, some targets have been found, including
	 * the most suitable which is, among the runqueues where the
	 * current tasks have later deadlines than the task's one, the
	 * rq with the latest possible one.
	 *
	 * Now we check how well this matches with task's
	 * affinity and system topology.
	 *
	 * The last CPU where the task run is our first
	 * guess, since it is most likely cache-hot there.
	 */
	if (cpumask_test_cpu(cpu, later_mask))
		return cpu;
	/*
	 * Check if this_cpu is to be skipped (i.e., it is
	 * not in the mask) or not.
	 */
	if (!cpumask_test_cpu(this_cpu, later_mask))
		this_cpu = -1;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;

			/*
			 * If possible, preempting this_cpu is
			 * cheaper than migrating.
			 */
			if (this_cpu != -1 &&
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
				return this_cpu;
			}

			best_cpu = cpumask_first_and(later_mask,
							sched_domain_span(sd));
			/*
			 * Last chance: if a CPU being in both later_mask
			 * and current sd span is valid, that becomes our
			 * choice. Of course, the latest possible CPU is
			 * already under consideration through later_mask.
			 */
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
				return best_cpu;
			}
		}
	}
	rcu_read_unlock();

	/*
	 * At this point, all our guesses failed, we just return
	 * 'something', and let the caller sort the things out.
	 */
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(later_mask);
	if (cpu < nr_cpu_ids)
		return cpu;

	return -1;
}

/* Locks the rq it finds */
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
{
	struct rq *later_rq = NULL;
	int tries;
	int cpu;

	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
		cpu = find_later_rq(task);

		if ((cpu == -1) || (cpu == rq->cpu))
			break;

		later_rq = cpu_rq(cpu);

		if (later_rq->dl.dl_nr_running &&
		    !dl_time_before(task->dl.deadline,
					later_rq->dl.earliest_dl.curr)) {
			/*
			 * Target rq has tasks of equal or earlier deadline,
			 * retrying does not release any lock and is unlikely
			 * to yield a different result.
			 */
			later_rq = NULL;
			break;
		}

		/* Retry if something changed. */
		if (double_lock_balance(rq, later_rq)) {
			if (unlikely(task_rq(task) != rq ||
				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
				     task_running(rq, task) ||
				     !dl_task(task) ||
				     !task_on_rq_queued(task))) {
				double_unlock_balance(rq, later_rq);
				later_rq = NULL;
				break;
			}
		}

		/*
		 * If the rq we found has no -deadline task, or
		 * its earliest one has a later deadline than our
		 * task, the rq is a good one.
		 */
		if (!later_rq->dl.dl_nr_running ||
		    dl_time_before(task->dl.deadline,
				   later_rq->dl.earliest_dl.curr))
			break;

		/* Otherwise we try again. */
		double_unlock_balance(rq, later_rq);
		later_rq = NULL;
	}

	return later_rq;
}

static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_dl_tasks(rq))
		return NULL;

	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
		     struct task_struct, pushable_dl_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->nr_cpus_allowed <= 1);

	BUG_ON(!task_on_rq_queued(p));
	BUG_ON(!dl_task(p));

	return p;
}

/*
 * See if the non running -deadline tasks on this rq
 * can be sent to some other CPU where they can preempt
 * and start executing.
 */
static int push_dl_task(struct rq *rq)
{
	struct task_struct *next_task;
	struct rq *later_rq;
	int ret = 0;

	if (!rq->dl.overloaded)
		return 0;

	next_task = pick_next_pushable_dl_task(rq);
	if (!next_task)
		return 0;

retry:
	if (WARN_ON(next_task == rq->curr))
		return 0;

	/*
	 * If next_task preempts rq->curr, and rq->curr
	 * can move away, it makes sense to just reschedule
	 * without going further in pushing next_task.
	 */
	if (dl_task(rq->curr) &&
	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
	    rq->curr->nr_cpus_allowed > 1) {
		resched_curr(rq);
		return 0;
	}

	/* We might release rq lock */
	get_task_struct(next_task);

	/* Will lock the rq it'll find */
	later_rq = find_lock_later_rq(next_task, rq);
	if (!later_rq) {
		struct task_struct *task;

		/*
		 * We must check all this again, since
		 * find_lock_later_rq releases rq->lock and it is
		 * then possible that next_task has migrated.
		 */
		task = pick_next_pushable_dl_task(rq);
		if (task == next_task) {
			/*
			 * The task is still there. We don't try
			 * again, some other CPU will pull it when ready.
			 */
			goto out;
		}

		if (!task)
			/* No more tasks */
			goto out;

		put_task_struct(next_task);
		next_task = task;
		goto retry;
	}

	deactivate_task(rq, next_task, 0);
	sub_running_bw(&next_task->dl, &rq->dl);
	sub_rq_bw(&next_task->dl, &rq->dl);
	set_task_cpu(next_task, later_rq->cpu);
	add_rq_bw(&next_task->dl, &later_rq->dl);

	/*
	 * Update the later_rq clock here, because the clock is used
	 * by the cpufreq_update_util() inside __add_running_bw().
	 */
	update_rq_clock(later_rq);
	add_running_bw(&next_task->dl, &later_rq->dl);
	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
	ret = 1;

	resched_curr(later_rq);

	double_unlock_balance(rq, later_rq);

out:
	put_task_struct(next_task);

	return ret;
}

static void push_dl_tasks(struct rq *rq)
{
	/* push_dl_task() will return true if it moved a -deadline task */
	while (push_dl_task(rq))
		;
}

static void pull_dl_task(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu, cpu;
	struct task_struct *p;
	bool resched = false;
	struct rq *src_rq;
	u64 dmin = LONG_MAX;

	if (likely(!dl_overloaded(this_rq)))
		return;

	/*
	 * Match the barrier from dl_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the dlo_mask bit.
	 */
	smp_rmb();

	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);

		/*
		 * It looks racy, abd it is! However, as in sched_rt.c,
		 * we are fine with this.
		 */
		if (this_rq->dl.dl_nr_running &&
		    dl_time_before(this_rq->dl.earliest_dl.curr,
				   src_rq->dl.earliest_dl.next))
			continue;

		/* Might drop this_rq->lock */
		double_lock_balance(this_rq, src_rq);

		/*
		 * If there are no more pullable tasks on the
		 * rq, we're done with it.
		 */
		if (src_rq->dl.dl_nr_running <= 1)
			goto skip;

		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);

		/*
		 * We found a task to be pulled if:
		 *  - it preempts our current (if there's one),
		 *  - it will preempt the last one we pulled (if any).
		 */
		if (p && dl_time_before(p->dl.deadline, dmin) &&
		    (!this_rq->dl.dl_nr_running ||
		     dl_time_before(p->dl.deadline,
				    this_rq->dl.earliest_dl.curr))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!task_on_rq_queued(p));

			/*
			 * Then we pull iff p has actually an earlier
			 * deadline than the current task of its runqueue.
			 */
			if (dl_time_before(p->dl.deadline,
					   src_rq->curr->dl.deadline))
				goto skip;

			resched = true;

			deactivate_task(src_rq, p, 0);
			sub_running_bw(&p->dl, &src_rq->dl);
			sub_rq_bw(&p->dl, &src_rq->dl);
			set_task_cpu(p, this_cpu);
			add_rq_bw(&p->dl, &this_rq->dl);
			add_running_bw(&p->dl, &this_rq->dl);
			activate_task(this_rq, p, 0);
			dmin = p->dl.deadline;

			/* Is there any other task even earlier? */
		}
skip:
		double_unlock_balance(this_rq, src_rq);
	}

	if (resched)
		resched_curr(this_rq);
}

/*
 * Since the task is not running and a reschedule is not going to happen
 * anytime soon on its runqueue, we try pushing it away now.
 */
static void task_woken_dl(struct rq *rq, struct task_struct *p)
{
	if (!task_running(rq, p) &&
	    !test_tsk_need_resched(rq->curr) &&
	    p->nr_cpus_allowed > 1 &&
	    dl_task(rq->curr) &&
	    (rq->curr->nr_cpus_allowed < 2 ||
	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
		push_dl_tasks(rq);
	}
}

static void set_cpus_allowed_dl(struct task_struct *p,
				const struct cpumask *new_mask)
{
	struct root_domain *src_rd;
	struct rq *rq;

	BUG_ON(!dl_task(p));

	rq = task_rq(p);
	src_rd = rq->rd;
	/*
	 * Migrating a SCHED_DEADLINE task between exclusive
	 * cpusets (different root_domains) entails a bandwidth
	 * update. We already made space for us in the destination
	 * domain (see cpuset_can_attach()).
	 */
	if (!cpumask_intersects(src_rd->span, new_mask)) {
		struct dl_bw *src_dl_b;

		src_dl_b = dl_bw_of(cpu_of(rq));
		/*
		 * We now free resources of the root_domain we are migrating
		 * off. In the worst case, sched_setattr() may temporary fail
		 * until we complete the update.
		 */
		raw_spin_lock(&src_dl_b->lock);
		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
		raw_spin_unlock(&src_dl_b->lock);
	}

	set_cpus_allowed_common(p, new_mask);
}

/* Assumes rq->lock is held */
static void rq_online_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_set_overload(rq);

	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
	if (rq->dl.dl_nr_running > 0)
		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
}

/* Assumes rq->lock is held */
static void rq_offline_dl(struct rq *rq)
{
	if (rq->dl.overloaded)
		dl_clear_overload(rq);

	cpudl_clear(&rq->rd->cpudl, rq->cpu);
	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
}

void __init init_sched_dl_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
					GFP_KERNEL, cpu_to_node(i));
}

#endif /* CONFIG_SMP */

static void switched_from_dl(struct rq *rq, struct task_struct *p)
{
	/*
	 * task_non_contending() can start the "inactive timer" (if the 0-lag
	 * time is in the future). If the task switches back to dl before
	 * the "inactive timer" fires, it can continue to consume its current
	 * runtime using its current deadline. If it stays outside of
	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
	 * will reset the task parameters.
	 */
	if (task_on_rq_queued(p) && p->dl.dl_runtime)
		task_non_contending(p);

	if (!task_on_rq_queued(p)) {
		/*
		 * Inactive timer is armed. However, p is leaving DEADLINE and
		 * might migrate away from this rq while continuing to run on
		 * some other class. We need to remove its contribution from
		 * this rq running_bw now, or sub_rq_bw (below) will complain.
		 */
		if (p->dl.dl_non_contending)
			sub_running_bw(&p->dl, &rq->dl);
		sub_rq_bw(&p->dl, &rq->dl);
	}

	/*
	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
	 * at the 0-lag time, because the task could have been migrated
	 * while SCHED_OTHER in the meanwhile.
	 */
	if (p->dl.dl_non_contending)
		p->dl.dl_non_contending = 0;

	/*
	 * Since this might be the only -deadline task on the rq,
	 * this is the right place to try to pull some other one
	 * from an overloaded CPU, if any.
	 */
	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
		return;

	deadline_queue_pull_task(rq);
}

/*
 * When switching to -deadline, we may overload the rq, then
 * we try to push someone off, if possible.
 */
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
		put_task_struct(p);

	/* If p is not queued we will update its parameters at next wakeup. */
	if (!task_on_rq_queued(p)) {
		add_rq_bw(&p->dl, &rq->dl);

		return;
	}

	if (rq->curr != p) {
#ifdef CONFIG_SMP
		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
			deadline_queue_push_tasks(rq);
#endif
		if (dl_task(rq->curr))
			check_preempt_curr_dl(rq, p, 0);
		else
			resched_curr(rq);
	}
}

/*
 * If the scheduling parameters of a -deadline task changed,
 * a push or pull operation might be needed.
 */
static void prio_changed_dl(struct rq *rq, struct task_struct *p,
			    int oldprio)
{
	if (task_on_rq_queued(p) || rq->curr == p) {
#ifdef CONFIG_SMP
		/*
		 * This might be too much, but unfortunately
		 * we don't have the old deadline value, and
		 * we can't argue if the task is increasing
		 * or lowering its prio, so...
		 */
		if (!rq->dl.overloaded)
			deadline_queue_pull_task(rq);

		/*
		 * If we now have a earlier deadline task than p,
		 * then reschedule, provided p is still on this
		 * runqueue.
		 */
		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
			resched_curr(rq);
#else
		/*
		 * Again, we don't know if p has a earlier
		 * or later deadline, so let's blindly set a
		 * (maybe not needed) rescheduling point.
		 */
		resched_curr(rq);
#endif /* CONFIG_SMP */
	}
}

const struct sched_class dl_sched_class = {
	.next			= &rt_sched_class,
	.enqueue_task		= enqueue_task_dl,
	.dequeue_task		= dequeue_task_dl,
	.yield_task		= yield_task_dl,

	.check_preempt_curr	= check_preempt_curr_dl,

	.pick_next_task		= pick_next_task_dl,
	.put_prev_task		= put_prev_task_dl,

#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_dl,
	.migrate_task_rq	= migrate_task_rq_dl,
	.set_cpus_allowed       = set_cpus_allowed_dl,
	.rq_online              = rq_online_dl,
	.rq_offline             = rq_offline_dl,
	.task_woken		= task_woken_dl,
#endif

	.set_curr_task		= set_curr_task_dl,
	.task_tick		= task_tick_dl,
	.task_fork              = task_fork_dl,

	.prio_changed           = prio_changed_dl,
	.switched_from		= switched_from_dl,
	.switched_to		= switched_to_dl,

	.update_curr		= update_curr_dl,
};

int sched_dl_global_validate(void)
{
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
	u64 new_bw = to_ratio(period, runtime);
	struct dl_bw *dl_b;
	int cpu, ret = 0;
	unsigned long flags;

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
	for_each_possible_cpu(cpu) {
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);

		raw_spin_lock_irqsave(&dl_b->lock, flags);
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);

		rcu_read_unlock_sched();

		if (ret)
			break;
	}

	return ret;
}

void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
{
	if (global_rt_runtime() == RUNTIME_INF) {
		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
		dl_rq->extra_bw = 1 << BW_SHIFT;
	} else {
		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
		dl_rq->extra_bw = to_ratio(global_rt_period(),
						    global_rt_runtime());
	}
}

void sched_dl_do_global(void)
{
	u64 new_bw = -1;
	struct dl_bw *dl_b;
	int cpu;
	unsigned long flags;

	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);

		raw_spin_lock_irqsave(&dl_b->lock, flags);
		dl_b->bw = new_bw;
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);

		rcu_read_unlock_sched();
		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
	}
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
int sched_dl_overflow(struct task_struct *p, int policy,
		      const struct sched_attr *attr)
{
	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
	u64 period = attr->sched_period ?: attr->sched_deadline;
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
	int cpus, err = -1;

	if (attr->sched_flags & SCHED_FLAG_SUGOV)
		return 0;

	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
	cpus = dl_bw_cpus(task_cpu(p));
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		if (hrtimer_active(&p->dl.inactive_timer))
			__dl_sub(dl_b, p->dl.dl_bw, cpus);
		__dl_add(dl_b, new_bw, cpus);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		/*
		 * XXX this is slightly incorrect: when the task
		 * utilization decreases, we should delay the total
		 * utilization change until the task's 0-lag point.
		 * But this would require to set the task's "inactive
		 * timer" when the task is not inactive.
		 */
		__dl_sub(dl_b, p->dl.dl_bw, cpus);
		__dl_add(dl_b, new_bw, cpus);
		dl_change_utilization(p, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		/*
		 * Do not decrease the total deadline utilization here,
		 * switched_from_dl() will take care to do it at the correct
		 * (0-lag) time.
		 */
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
	dl_se->flags = attr->sched_flags;
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
}

void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
	attr->sched_period = dl_se->dl_period;
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
 * than the runtime, as well as the period of being zero or
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
 */
bool __checkparam_dl(const struct sched_attr *attr)
{
	/* special dl tasks don't actually use any parameter */
	if (attr->sched_flags & SCHED_FLAG_SUGOV)
		return true;

	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
}

/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime		= 0;
	dl_se->dl_deadline		= 0;
	dl_se->dl_period		= 0;
	dl_se->flags			= 0;
	dl_se->dl_bw			= 0;
	dl_se->dl_density		= 0;

	dl_se->dl_throttled		= 0;
	dl_se->dl_yielded		= 0;
	dl_se->dl_non_contending	= 0;
	dl_se->dl_overrun		= 0;
}

bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
	    dl_se->dl_deadline != attr->sched_deadline ||
	    dl_se->dl_period != attr->sched_period ||
	    dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

#ifdef CONFIG_SMP
int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
{
	unsigned int dest_cpu;
	struct dl_bw *dl_b;
	bool overflow;
	int cpus, ret;
	unsigned long flags;

	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);

	rcu_read_lock_sched();
	dl_b = dl_bw_of(dest_cpu);
	raw_spin_lock_irqsave(&dl_b->lock, flags);
	cpus = dl_bw_cpus(dest_cpu);
	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
	if (overflow) {
		ret = -EBUSY;
	} else {
		/*
		 * We reserve space for this task in the destination
		 * root_domain, as we can't fail after this point.
		 * We will free resources in the source root_domain
		 * later on (see set_cpus_allowed_dl()).
		 */
		__dl_add(dl_b, p->dl.dl_bw, cpus);
		ret = 0;
	}
	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
	rcu_read_unlock_sched();

	return ret;
}

int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
				 const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

	rcu_read_lock_sched();
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
	rcu_read_unlock_sched();

	return ret;
}

bool dl_cpu_busy(unsigned int cpu)
{
	unsigned long flags;
	struct dl_bw *dl_b;
	bool overflow;
	int cpus;

	rcu_read_lock_sched();
	dl_b = dl_bw_of(cpu);
	raw_spin_lock_irqsave(&dl_b->lock, flags);
	cpus = dl_bw_cpus(cpu);
	overflow = __dl_overflow(dl_b, cpus, 0, 0);
	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
	rcu_read_unlock_sched();

	return overflow;
}
#endif

#ifdef CONFIG_SCHED_DEBUG
void print_dl_stats(struct seq_file *m, int cpu)
{
	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
}
#endif /* CONFIG_SCHED_DEBUG */