summaryrefslogtreecommitdiff
path: root/kernel/rcutree.c
blob: ae4a553e37ce5c560e24c5e6c115473204fe251c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 * 	Documentation/RCU
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/nmi.h>
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>

#include "rcutree.h"

#ifdef CONFIG_DEBUG_LOCK_ALLOC
static struct lock_class_key rcu_lock_key;
struct lockdep_map rcu_lock_map =
	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
EXPORT_SYMBOL_GPL(rcu_lock_map);
#endif

/* Data structures. */

#define RCU_STATE_INITIALIZER(name) { \
	.level = { &name.node[0] }, \
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
		NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
	}, \
	.signaled = RCU_SIGNAL_INIT, \
	.gpnum = -300, \
	.completed = -300, \
	.onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
	.fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
}

struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);

struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);

extern long rcu_batches_completed_sched(void);
static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
			  struct rcu_node *rnp, unsigned long flags);
static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
#ifdef CONFIG_HOTPLUG_CPU
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
static void __rcu_process_callbacks(struct rcu_state *rsp,
				    struct rcu_data *rdp);
static void __call_rcu(struct rcu_head *head,
		       void (*func)(struct rcu_head *rcu),
		       struct rcu_state *rsp);
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
					   int preemptable);

#include "rcutree_plugin.h"

/*
 * Note a quiescent state.  Because we do not need to know
 * how many quiescent states passed, just if there was at least
 * one since the start of the grace period, this just sets a flag.
 */
void rcu_sched_qs(int cpu)
{
	struct rcu_data *rdp;

	rdp = &per_cpu(rcu_sched_data, cpu);
	rdp->passed_quiesc_completed = rdp->completed;
	barrier();
	rdp->passed_quiesc = 1;
	rcu_preempt_note_context_switch(cpu);
}

void rcu_bh_qs(int cpu)
{
	struct rcu_data *rdp;

	rdp = &per_cpu(rcu_bh_data, cpu);
	rdp->passed_quiesc_completed = rdp->completed;
	barrier();
	rdp->passed_quiesc = 1;
}

#ifdef CONFIG_NO_HZ
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
	.dynticks = 1,
};
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
static int rcu_pending(int cpu);

/*
 * Return the number of RCU-sched batches processed thus far for debug & stats.
 */
long rcu_batches_completed_sched(void)
{
	return rcu_sched_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* ACCESS_ONCE() because we are accessing outside of lock. */
	return *rdp->nxttail[RCU_DONE_TAIL] &&
	       ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

	/* If preemptable RCU, no point in sending reschedule IPI. */
	if (rdp->preemptable)
		return 0;

	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	rdtp->dynticks++;
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks & 0x1);
	local_irq_restore(flags);
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	rdtp->dynticks++;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
	local_irq_restore(flags);
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks & 0x1)
		return;
	rdtp->dynticks_nmi++;
	WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks & 0x1)
		return;
	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	rdtp->dynticks_nmi++;
	WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks_nesting++)
		return;
	rdtp->dynticks++;
	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (--rdtp->dynticks_nesting)
		return;
	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	rdtp->dynticks++;
	WARN_ON_ONCE(rdtp->dynticks & 0x1);

	/* If the interrupt queued a callback, get out of dyntick mode. */
	if (__get_cpu_var(rcu_sched_data).nxtlist ||
	    __get_cpu_var(rcu_bh_data).nxtlist)
		set_need_resched();
}

/*
 * Record the specified "completed" value, which is later used to validate
 * dynticks counter manipulations.  Specify "rsp->completed - 1" to
 * unconditionally invalidate any future dynticks manipulations (which is
 * useful at the beginning of a grace period).
 */
static void dyntick_record_completed(struct rcu_state *rsp, long comp)
{
	rsp->dynticks_completed = comp;
}

#ifdef CONFIG_SMP

/*
 * Recall the previously recorded value of the completion for dynticks.
 */
static long dyntick_recall_completed(struct rcu_state *rsp)
{
	return rsp->dynticks_completed;
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
 * is already in a quiescent state courtesy of dynticks idle mode.
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	int ret;
	int snap;
	int snap_nmi;

	snap = rdp->dynticks->dynticks;
	snap_nmi = rdp->dynticks->dynticks_nmi;
	smp_mb();	/* Order sampling of snap with end of grace period. */
	rdp->dynticks_snap = snap;
	rdp->dynticks_nmi_snap = snap_nmi;
	ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
	if (ret)
		rdp->dynticks_fqs++;
	return ret;
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	long curr;
	long curr_nmi;
	long snap;
	long snap_nmi;

	curr = rdp->dynticks->dynticks;
	snap = rdp->dynticks_snap;
	curr_nmi = rdp->dynticks->dynticks_nmi;
	snap_nmi = rdp->dynticks_nmi_snap;
	smp_mb(); /* force ordering with cpu entering/leaving dynticks. */

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
	if ((curr != snap || (curr & 0x1) == 0) &&
	    (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

static void dyntick_record_completed(struct rcu_state *rsp, long comp)
{
}

#ifdef CONFIG_SMP

/*
 * If there are no dynticks, then the only way that a CPU can passively
 * be in a quiescent state is to be offline.  Unlike dynticks idle, which
 * is a point in time during the prior (already finished) grace period,
 * an offline CPU is always in a quiescent state, and thus can be
 * unconditionally applied.  So just return the current value of completed.
 */
static long dyntick_recall_completed(struct rcu_state *rsp)
{
	return rsp->completed;
}

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
	struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];

	/* Only let one CPU complain about others per time interval. */

	spin_lock_irqsave(&rnp->lock, flags);
	delta = jiffies - rsp->jiffies_stall;
	if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
	spin_unlock_irqrestore(&rnp->lock, flags);

	/* OK, time to rat on our buddy... */

	printk(KERN_ERR "INFO: RCU detected CPU stalls:");
	for (; rnp_cur < rnp_end; rnp_cur++) {
		rcu_print_task_stall(rnp);
		if (rnp_cur->qsmask == 0)
			continue;
		for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
			if (rnp_cur->qsmask & (1UL << cpu))
				printk(" %d", rnp_cur->grplo + cpu);
	}
	printk(" (detected by %d, t=%ld jiffies)\n",
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
	trigger_all_cpu_backtrace();

	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
			smp_processor_id(), jiffies - rsp->gp_start);
	trigger_all_cpu_backtrace();

	spin_lock_irqsave(&rnp->lock, flags);
	if ((long)(jiffies - rsp->jiffies_stall) >= 0)
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
	spin_unlock_irqrestore(&rnp->lock, flags);

	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
	long delta;
	struct rcu_node *rnp;

	delta = jiffies - rsp->jiffies_stall;
	rnp = rdp->mynode;
	if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

	} else if (rsp->gpnum != rsp->completed &&
		   delta >= RCU_STALL_RAT_DELAY) {

		/* They had two time units to dump stack, so complain. */
		print_other_cpu_stall(rsp);
	}
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
 * that someone else started the grace period.
 */
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
	rdp->qs_pending = 1;
	rdp->passed_quiesc = 0;
	rdp->gpnum = rsp->gpnum;
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
	struct rcu_data *rdp = rsp->rda[smp_processor_id()];
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_node *rnp_cur;
	struct rcu_node *rnp_end;

	if (!cpu_needs_another_gp(rsp, rdp)) {
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
	dyntick_record_completed(rsp, rsp->completed - 1);
	note_new_gpnum(rsp, rdp);

	/*
	 * Because we are first, we know that all our callbacks will
	 * be covered by this upcoming grace period, even the ones
	 * that were registered arbitrarily recently.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	spin_unlock(&rnp->lock);  /* leave irqs disabled. */


	/* Exclude any concurrent CPU-hotplug operations. */
	spin_lock(&rsp->onofflock);  /* irqs already disabled. */

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
	 */
	rnp_end = &rsp->node[NUM_RCU_NODES];
	for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) {
		spin_lock(&rnp_cur->lock);	/* irqs already disabled. */
		rcu_preempt_check_blocked_tasks(rnp);
		rnp_cur->qsmask = rnp_cur->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
		spin_unlock(&rnp_cur->lock);	/* irqs already disabled. */
	}

	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
	spin_unlock_irqrestore(&rsp->onofflock, flags);
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	long completed_snap;
	unsigned long flags;

	local_irq_save(flags);
	completed_snap = ACCESS_ONCE(rsp->completed);  /* outside of lock. */

	/* Did another grace period end? */
	if (rdp->completed != completed_snap) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = completed_snap;
	}
	local_irq_restore(flags);
}

/*
 * Clean up after the prior grace period and let rcu_start_gp() start up
 * the next grace period if one is needed.  Note that the caller must
 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
 */
static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
	__releases(rnp->lock)
{
	WARN_ON_ONCE(rsp->completed == rsp->gpnum);
	rsp->completed = rsp->gpnum;
	rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

/*
 * Similar to cpu_quiet(), for which it is a helper function.  Allows
 * a group of CPUs to be quieted at one go, though all the CPUs in the
 * group must be represented by the same leaf rcu_node structure.
 * That structure's lock must be held upon entry, and it is released
 * before return.
 */
static void
cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
	      unsigned long flags)
	__releases(rnp->lock)
{
	struct rcu_node *rnp_c;

	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
			spin_unlock_irqrestore(&rnp->lock, flags);
			return;
		}
		rnp->qsmask &= ~mask;
		if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {

			/* Other bits still set at this level, so done. */
			spin_unlock_irqrestore(&rnp->lock, flags);
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
		spin_unlock_irqrestore(&rnp->lock, flags);
		rnp_c = rnp;
		rnp = rnp->parent;
		spin_lock_irqsave(&rnp->lock, flags);
		WARN_ON_ONCE(rnp_c->qsmask);
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
	 * state for this grace period.  Invoke cpu_quiet_msk_finish()
	 * to clean up and start the next grace period if one is needed.
	 */
	cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
}

/*
 * Record a quiescent state for the specified CPU, which must either be
 * the current CPU.  The lastcomp argument is used to make sure we are
 * still in the grace period of interest.  We don't want to end the current
 * grace period based on quiescent states detected in an earlier grace
 * period!
 */
static void
cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
	spin_lock_irqsave(&rnp->lock, flags);
	if (lastcomp != ACCESS_ONCE(rsp->completed)) {

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
		 * CPU's bit already cleared in cpu_quiet_msk() if this race
		 * occurred.
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
		spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
		spin_unlock_irqrestore(&rnp->lock, flags);
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

	/* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
	cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
}

#ifdef CONFIG_HOTPLUG_CPU

/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	int i;
	unsigned long flags;
	long lastcomp;
	unsigned long mask;
	struct rcu_data *rdp = rsp->rda[cpu];
	struct rcu_data *rdp_me;
	struct rcu_node *rnp;

	/* Exclude any attempts to start a new grace period. */
	spin_lock_irqsave(&rsp->onofflock, flags);

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		spin_lock(&rnp->lock);		/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		rcu_preempt_offline_tasks(rsp, rnp, rdp);
		mask = rnp->grpmask;
		spin_unlock(&rnp->lock);	/* irqs remain disabled. */
		rnp = rnp->parent;
	} while (rnp != NULL);
	lastcomp = rsp->completed;

	spin_unlock(&rsp->onofflock);		/* irqs remain disabled. */

	/*
	 * Move callbacks from the outgoing CPU to the running CPU.
	 * Note that the outgoing CPU is now quiscent, so it is now
	 * (uncharacteristically) safe to access its rcu_data structure.
	 * Note also that we must carefully retain the order of the
	 * outgoing CPU's callbacks in order for rcu_barrier() to work
	 * correctly.  Finally, note that we start all the callbacks
	 * afresh, even those that have passed through a grace period
	 * and are therefore ready to invoke.  The theory is that hotplug
	 * events are rare, and that if they are frequent enough to
	 * indefinitely delay callbacks, you have far worse things to
	 * be worrying about.
	 */
	rdp_me = rsp->rda[smp_processor_id()];
	if (rdp->nxtlist != NULL) {
		*rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
		rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtlist = NULL;
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			rdp->nxttail[i] = &rdp->nxtlist;
		rdp_me->qlen += rdp->qlen;
		rdp->qlen = 0;
	}
	local_irq_restore(flags);
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
	__rcu_offline_cpu(cpu, &rcu_sched_state);
	__rcu_offline_cpu(cpu, &rcu_bh_state);
	rcu_preempt_offline_cpu(cpu);
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
static void rcu_do_batch(struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
		list->func(list);
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
		raise_softirq(RCU_SOFTIRQ);
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
	if (!rcu_pending(cpu))
		return; /* if nothing for RCU to do. */
	if (user ||
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
		 * a quiescent state, so note it.
		 *
		 * No memory barrier is required here because both
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
		 */

		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
		 * critical section, so note it.
		 */

		rcu_bh_qs(cpu);
	}
	rcu_preempt_check_callbacks(cpu);
	raise_softirq(RCU_SOFTIRQ);
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
 * Returns 1 if the current grace period ends while scanning (possibly
 * because we made it end).
 */
static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
			       int (*f)(struct rcu_data *))
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
	struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];

	for (; rnp_cur < rnp_end; rnp_cur++) {
		mask = 0;
		spin_lock_irqsave(&rnp_cur->lock, flags);
		if (rsp->completed != lastcomp) {
			spin_unlock_irqrestore(&rnp_cur->lock, flags);
			return 1;
		}
		if (rnp_cur->qsmask == 0) {
			spin_unlock_irqrestore(&rnp_cur->lock, flags);
			continue;
		}
		cpu = rnp_cur->grplo;
		bit = 1;
		for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
			if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
				mask |= bit;
		}
		if (mask != 0 && rsp->completed == lastcomp) {

			/* cpu_quiet_msk() releases rnp_cur->lock. */
			cpu_quiet_msk(mask, rsp, rnp_cur, flags);
			continue;
		}
		spin_unlock_irqrestore(&rnp_cur->lock, flags);
	}
	return 0;
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	long lastcomp;
	struct rcu_node *rnp = rcu_get_root(rsp);
	u8 signaled;

	if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
		return;  /* No grace period in progress, nothing to force. */
	if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
	if (relaxed &&
	    (long)(rsp->jiffies_force_qs - jiffies) >= 0)
		goto unlock_ret; /* no emergency and done recently. */
	rsp->n_force_qs++;
	spin_lock(&rnp->lock);
	lastcomp = rsp->completed;
	signaled = rsp->signaled;
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	if (lastcomp == rsp->gpnum) {
		rsp->n_force_qs_ngp++;
		spin_unlock(&rnp->lock);
		goto unlock_ret;  /* no GP in progress, time updated. */
	}
	spin_unlock(&rnp->lock);
	switch (signaled) {
	case RCU_GP_INIT:

		break; /* grace period still initializing, ignore. */

	case RCU_SAVE_DYNTICK:

		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

		/* Record dyntick-idle state. */
		if (rcu_process_dyntick(rsp, lastcomp,
					dyntick_save_progress_counter))
			goto unlock_ret;

		/* Update state, record completion counter. */
		spin_lock(&rnp->lock);
		if (lastcomp == rsp->completed) {
			rsp->signaled = RCU_FORCE_QS;
			dyntick_record_completed(rsp, lastcomp);
		}
		spin_unlock(&rnp->lock);
		break;

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
		if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
					rcu_implicit_dynticks_qs))
			goto unlock_ret;

		/* Leave state in case more forcing is required. */

		break;
	}
unlock_ret:
	spin_unlock_irqrestore(&rsp->fqslock, flags);
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

	WARN_ON_ONCE(rdp->beenonline == 0);

	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
	if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
		spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
	rcu_do_batch(rdp);
}

/*
 * Do softirq processing for the current CPU.
 */
static void rcu_process_callbacks(struct softirq_action *unused)
{
	/*
	 * Memory references from any prior RCU read-side critical sections
	 * executed by the interrupted code must be seen before any RCU
	 * grace-period manipulations below.
	 */
	smp_mb(); /* See above block comment. */

	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_process_callbacks();

	/*
	 * Memory references from any later RCU read-side critical sections
	 * executed by the interrupted code must be seen after any RCU
	 * grace-period manipulations above.
	 */
	smp_mb(); /* See above block comment. */
}

static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
	rdp = rsp->rda[smp_processor_id()];
	rcu_process_gp_end(rsp, rdp);
	check_for_new_grace_period(rsp, rdp);

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;

	/* Start a new grace period if one not already started. */
	if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
		unsigned long nestflag;
		struct rcu_node *rnp_root = rcu_get_root(rsp);

		spin_lock_irqsave(&rnp_root->lock, nestflag);
		rcu_start_gp(rsp, nestflag);  /* releases rnp_root->lock. */
	}

	/* Force the grace period if too many callbacks or too long waiting. */
	if (unlikely(++rdp->qlen > qhimark)) {
		rdp->blimit = LONG_MAX;
		force_quiescent_state(rsp, 0);
	} else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
 * Queue an RCU-sched callback for invocation after a grace period.
 */
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_sched_state);
}
EXPORT_SYMBOL_GPL(call_rcu_sched);

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
	if (rdp->qs_pending) {
		rdp->n_rp_qs_pending++;
		return 1;
	}

	/* Does this CPU have callbacks ready to invoke? */
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
		return 1;
	}

	/* Has RCU gone idle with this CPU needing another grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
		return 1;
	}

	/* Has another RCU grace period completed?  */
	if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
		rdp->n_rp_gp_completed++;
		return 1;
	}

	/* Has a new RCU grace period started? */
	if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
		rdp->n_rp_gp_started++;
		return 1;
	}

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
	if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
	    ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
		rdp->n_rp_need_fqs++;
		return 1;
	}

	/* nothing to do */
	rdp->n_rp_need_nothing++;
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
static int rcu_pending(int cpu)
{
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 */
int rcu_needs_cpu(int cpu)
{
	/* RCU callbacks either ready or pending? */
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
}

/*
 * Do boot-time initialization of a CPU's per-CPU RCU data.
 */
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	int i;
	struct rcu_data *rdp = rsp->rda[cpu];
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
	spin_lock_irqsave(&rnp->lock, flags);
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
	spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 */
static void __cpuinit
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
{
	unsigned long flags;
	long lastcomp;
	unsigned long mask;
	struct rcu_data *rdp = rsp->rda[cpu];
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
	spin_lock_irqsave(&rnp->lock, flags);
	lastcomp = rsp->completed;
	rdp->completed = lastcomp;
	rdp->gpnum = lastcomp;
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
	rdp->preemptable = preemptable;
	rdp->passed_quiesc_completed = lastcomp - 1;
	rdp->blimit = blimit;
	spin_unlock(&rnp->lock);		/* irqs remain disabled. */

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
	spin_lock(&rsp->onofflock);		/* irqs already disabled. */

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
		spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
		spin_unlock(&rnp->lock); /* irqs already disabled. */
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

	spin_unlock_irqrestore(&rsp->onofflock, flags);
}

static void __cpuinit rcu_online_cpu(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
}

/*
 * Handle CPU online/offline notification events.
 */
int __cpuinit rcu_cpu_notify(struct notifier_block *self,
			     unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
static void __init rcu_init_one(struct rcu_state *rsp)
{
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
			spin_lock_init(&rnp->lock);
			rnp->gpnum = 0;
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
			INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
			INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
		}
	}
}

/*
 * Helper macro for __rcu_init() and __rcu_init_preempt().  To be used
 * nowhere else!  Assigns leaf node pointers into each CPU's rcu_data
 * structure.
 */
#define RCU_INIT_FLAVOR(rsp, rcu_data) \
do { \
	rcu_init_one(rsp); \
	rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
	j = 0; \
	for_each_possible_cpu(i) { \
		if (i > rnp[j].grphi) \
			j++; \
		per_cpu(rcu_data, i).mynode = &rnp[j]; \
		(rsp)->rda[i] = &per_cpu(rcu_data, i); \
		rcu_boot_init_percpu_data(i, rsp); \
	} \
} while (0)

#ifdef CONFIG_TREE_PREEMPT_RCU

void __init __rcu_init_preempt(void)
{
	int i;			/* All used by RCU_INIT_FLAVOR(). */
	int j;
	struct rcu_node *rnp;

	RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

void __init __rcu_init_preempt(void)
{
}

#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */

void __init __rcu_init(void)
{
	int i;			/* All used by RCU_INIT_FLAVOR(). */
	int j;
	struct rcu_node *rnp;

	rcu_bootup_announce();
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
	printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
	RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
	RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
	__rcu_init_preempt();
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
}

module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);