summaryrefslogtreecommitdiff
path: root/kernel/module/stats.c
blob: ad7b6ada29f2f5e809d20318945c61914adf8070 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Debugging module statistics.
 *
 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
 */

#include <linux/module.h>
#include <uapi/linux/module.h>
#include <linux/string.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/rculist.h>
#include <linux/math.h>

#include "internal.h"

/**
 * DOC: module debugging statistics overview
 *
 * Enabling CONFIG_MODULE_STATS enables module debugging statistics which
 * are useful to monitor and root cause memory pressure issues with module
 * loading. These statistics are useful to allow us to improve production
 * workloads.
 *
 * The current module debugging statistics supported help keep track of module
 * loading failures to enable improvements either for kernel module auto-loading
 * usage (request_module()) or interactions with userspace. Statistics are
 * provided to track all possible failures in the finit_module() path and memory
 * wasted in this process space.  Each of the failure counters are associated
 * to a type of module loading failure which is known to incur a certain amount
 * of memory allocation loss. In the worst case loading a module will fail after
 * a 3 step memory allocation process:
 *
 *   a) memory allocated with kernel_read_file_from_fd()
 *   b) module decompression processes the file read from
 *      kernel_read_file_from_fd(), and vmap() is used to map
 *      the decompressed module to a new local buffer which represents
 *      a copy of the decompressed module passed from userspace. The buffer
 *      from kernel_read_file_from_fd() is freed right away.
 *   c) layout_and_allocate() allocates space for the final resting
 *      place where we would keep the module if it were to be processed
 *      successfully.
 *
 * If a failure occurs after these three different allocations only one
 * counter will be incremented with the summation of the allocated bytes freed
 * incurred during this failure. Likewise, if module loading failed only after
 * step b) a separate counter is used and incremented for the bytes freed and
 * not used during both of those allocations.
 *
 * Virtual memory space can be limited, for example on x86 virtual memory size
 * defaults to 128 MiB. We should strive to limit and avoid wasting virtual
 * memory allocations when possible. These module debugging statistics help
 * to evaluate how much memory is being wasted on bootup due to module loading
 * failures.
 *
 * All counters are designed to be incremental. Atomic counters are used so to
 * remain simple and avoid delays and deadlocks.
 */

/**
 * DOC: dup_failed_modules - tracks duplicate failed modules
 *
 * Linked list of modules which failed to be loaded because an already existing
 * module with the same name was already being processed or already loaded.
 * The finit_module() system call incurs heavy virtual memory allocations. In
 * the worst case an finit_module() system call can end up allocating virtual
 * memory 3 times:
 *
 *   1) kernel_read_file_from_fd() call uses vmalloc()
 *   2) optional module decompression uses vmap()
 *   3) layout_and allocate() can use vzalloc() or an arch specific variation of
 *      vmalloc to deal with ELF sections requiring special permissions
 *
 * In practice on a typical boot today most finit_module() calls fail due to
 * the module with the same name already being loaded or about to be processed.
 * All virtual memory allocated to these failed modules will be freed with
 * no functional use.
 *
 * To help with this the dup_failed_modules allows us to track modules which
 * failed to load due to the fact that a module was already loaded or being
 * processed.  There are only two points at which we can fail such calls,
 * we list them below along with the number of virtual memory allocation
 * calls:
 *
 *   a) FAIL_DUP_MOD_BECOMING: at the end of early_mod_check() before
 *	layout_and_allocate().
 *	- with module decompression: 2 virtual memory allocation calls
 *	- without module decompression: 1 virtual memory allocation calls
 *   b) FAIL_DUP_MOD_LOAD: after layout_and_allocate() on add_unformed_module()
 *   	- with module decompression 3 virtual memory allocation calls
 *   	- without module decompression 2 virtual memory allocation calls
 *
 * We should strive to get this list to be as small as possible. If this list
 * is not empty it is a reflection of possible work or optimizations possible
 * either in-kernel or in userspace.
 */
static LIST_HEAD(dup_failed_modules);

/**
 * DOC: module statistics debugfs counters
 *
 * The total amount of wasted virtual memory allocation space during module
 * loading can be computed by adding the total from the summation:
 *
 *   * @invalid_kread_bytes +
 *     @invalid_decompress_bytes +
 *     @invalid_becoming_bytes +
 *     @invalid_mod_bytes
 *
 * The following debugfs counters are available to inspect module loading
 * failures:
 *
 *   * total_mod_size: total bytes ever used by all modules we've dealt with on
 *     this system
 *   * total_text_size: total bytes of the .text and .init.text ELF section
 *     sizes we've dealt with on this system
 *   * invalid_kread_bytes: bytes allocated and then freed on failures which
 *     happen due to the initial kernel_read_file_from_fd(). kernel_read_file_from_fd()
 *     uses vmalloc(). These should typically not happen unless your system is
 *     under memory pressure.
 *   * invalid_decompress_bytes: number of bytes allocated and freed due to
 *     memory allocations in the module decompression path that use vmap().
 *     These typically should not happen unless your system is under memory
 *     pressure.
 *   * invalid_becoming_bytes: total number of bytes allocated and freed used
 *     used to read the kernel module userspace wants us to read before we
 *     promote it to be processed to be added to our @modules linked list. These
 *     failures can happen if we had a check in between a successful kernel_read_file_from_fd()
 *     call and right before we allocate the our private memory for the module
 *     which would be kept if the module is successfully loaded. The most common
 *     reason for this failure is when userspace is racing to load a module
 *     which it does not yet see loaded. The first module to succeed in
 *     add_unformed_module() will add a module to our &modules list and
 *     subsequent loads of modules with the same name will error out at the
 *     end of early_mod_check(). The check for module_patient_check_exists()
 *     at the end of early_mod_check() prevents duplicate allocations
 *     on layout_and_allocate() for modules already being processed. These
 *     duplicate failed modules are non-fatal, however they typically are
 *     indicative of userspace not seeing a module in userspace loaded yet and
 *     unnecessarily trying to load a module before the kernel even has a chance
 *     to begin to process prior requests. Although duplicate failures can be
 *     non-fatal, we should try to reduce vmalloc() pressure proactively, so
 *     ideally after boot this will be close to as 0 as possible.  If module
 *     decompression was used we also add to this counter the cost of the
 *     initial kernel_read_file_from_fd() of the compressed module. If module
 *     decompression was not used the value represents the total allocated and
 *     freed bytes in kernel_read_file_from_fd() calls for these type of
 *     failures. These failures can occur because:
 *
 *    * module_sig_check() - module signature checks
 *    * elf_validity_cache_copy() - some ELF validation issue
 *    * early_mod_check():
 *
 *      * blacklisting
 *      * failed to rewrite section headers
 *      * version magic
 *      * live patch requirements didn't check out
 *      * the module was detected as being already present
 *
 *   * invalid_mod_bytes: these are the total number of bytes allocated and
 *     freed due to failures after we did all the sanity checks of the module
 *     which userspace passed to us and after our first check that the module
 *     is unique.  A module can still fail to load if we detect the module is
 *     loaded after we allocate space for it with layout_and_allocate(), we do
 *     this check right before processing the module as live and run its
 *     initialization routines. Note that you have a failure of this type it
 *     also means the respective kernel_read_file_from_fd() memory space was
 *     also freed and not used, and so we increment this counter with twice
 *     the size of the module. Additionally if you used module decompression
 *     the size of the compressed module is also added to this counter.
 *
 *  * modcount: how many modules we've loaded in our kernel life time
 *  * failed_kreads: how many modules failed due to failed kernel_read_file_from_fd()
 *  * failed_decompress: how many failed module decompression attempts we've had.
 *    These really should not happen unless your compression / decompression
 *    might be broken.
 *  * failed_becoming: how many modules failed after we kernel_read_file_from_fd()
 *    it and before we allocate memory for it with layout_and_allocate(). This
 *    counter is never incremented if you manage to validate the module and
 *    call layout_and_allocate() for it.
 *  * failed_load_modules: how many modules failed once we've allocated our
 *    private space for our module using layout_and_allocate(). These failures
 *    should hopefully mostly be dealt with already. Races in theory could
 *    still exist here, but it would just mean the kernel had started processing
 *    two threads concurrently up to early_mod_check() and one thread won.
 *    These failures are good signs the kernel or userspace is doing something
 *    seriously stupid or that could be improved. We should strive to fix these,
 *    but it is perhaps not easy to fix them. A recent example are the modules
 *    requests incurred for frequency modules, a separate module request was
 *    being issued for each CPU on a system.
 */

atomic_long_t total_mod_size;
atomic_long_t total_text_size;
atomic_long_t invalid_kread_bytes;
atomic_long_t invalid_decompress_bytes;
static atomic_long_t invalid_becoming_bytes;
static atomic_long_t invalid_mod_bytes;
atomic_t modcount;
atomic_t failed_kreads;
atomic_t failed_decompress;
static atomic_t failed_becoming;
static atomic_t failed_load_modules;

static const char *mod_fail_to_str(struct mod_fail_load *mod_fail)
{
	if (test_bit(FAIL_DUP_MOD_BECOMING, &mod_fail->dup_fail_mask) &&
	    test_bit(FAIL_DUP_MOD_LOAD, &mod_fail->dup_fail_mask))
		return "Becoming & Load";
	if (test_bit(FAIL_DUP_MOD_BECOMING, &mod_fail->dup_fail_mask))
		return "Becoming";
	if (test_bit(FAIL_DUP_MOD_LOAD, &mod_fail->dup_fail_mask))
		return "Load";
	return "Bug-on-stats";
}

void mod_stat_bump_invalid(struct load_info *info, int flags)
{
	atomic_long_add(info->len * 2, &invalid_mod_bytes);
	atomic_inc(&failed_load_modules);
#if defined(CONFIG_MODULE_DECOMPRESS)
	if (flags & MODULE_INIT_COMPRESSED_FILE)
		atomic_long_add(info->compressed_len, &invalid_mod_bytes);
#endif
}

void mod_stat_bump_becoming(struct load_info *info, int flags)
{
	atomic_inc(&failed_becoming);
	atomic_long_add(info->len, &invalid_becoming_bytes);
#if defined(CONFIG_MODULE_DECOMPRESS)
	if (flags & MODULE_INIT_COMPRESSED_FILE)
		atomic_long_add(info->compressed_len, &invalid_becoming_bytes);
#endif
}

int try_add_failed_module(const char *name, enum fail_dup_mod_reason reason)
{
	struct mod_fail_load *mod_fail;

	list_for_each_entry_rcu(mod_fail, &dup_failed_modules, list,
				lockdep_is_held(&module_mutex)) {
		if (!strcmp(mod_fail->name, name)) {
			atomic_long_inc(&mod_fail->count);
			__set_bit(reason, &mod_fail->dup_fail_mask);
			goto out;
		}
	}

	mod_fail = kzalloc(sizeof(*mod_fail), GFP_KERNEL);
	if (!mod_fail)
		return -ENOMEM;
	memcpy(mod_fail->name, name, strlen(name));
	__set_bit(reason, &mod_fail->dup_fail_mask);
	atomic_long_inc(&mod_fail->count);
	list_add_rcu(&mod_fail->list, &dup_failed_modules);
out:
	return 0;
}

/*
 * At 64 bytes per module and assuming a 1024 bytes preamble we can fit the
 * 112 module prints within 8k.
 *
 * 1024 + (64*112) = 8k
 */
#define MAX_PREAMBLE 1024
#define MAX_FAILED_MOD_PRINT 112
#define MAX_BYTES_PER_MOD 64
static ssize_t read_file_mod_stats(struct file *file, char __user *user_buf,
				   size_t count, loff_t *ppos)
{
	struct mod_fail_load *mod_fail;
	unsigned int len, size, count_failed = 0;
	char *buf;
	u32 live_mod_count, fkreads, fdecompress, fbecoming, floads;
	unsigned long total_size, text_size, ikread_bytes, ibecoming_bytes,
		idecompress_bytes, imod_bytes, total_virtual_lost;

	live_mod_count = atomic_read(&modcount);
	fkreads = atomic_read(&failed_kreads);
	fdecompress = atomic_read(&failed_decompress);
	fbecoming = atomic_read(&failed_becoming);
	floads = atomic_read(&failed_load_modules);

	total_size = atomic_long_read(&total_mod_size);
	text_size = atomic_long_read(&total_text_size);
	ikread_bytes = atomic_long_read(&invalid_kread_bytes);
	idecompress_bytes = atomic_long_read(&invalid_decompress_bytes);
	ibecoming_bytes = atomic_long_read(&invalid_becoming_bytes);
	imod_bytes = atomic_long_read(&invalid_mod_bytes);

	total_virtual_lost = ikread_bytes + idecompress_bytes + ibecoming_bytes + imod_bytes;

	size = MAX_PREAMBLE + min((unsigned int)(floads + fbecoming),
				  (unsigned int)MAX_FAILED_MOD_PRINT) * MAX_BYTES_PER_MOD;
	buf = kzalloc(size, GFP_KERNEL);
	if (buf == NULL)
		return -ENOMEM;

	/* The beginning of our debug preamble */
	len = scnprintf(buf, size, "%25s\t%u\n", "Mods ever loaded", live_mod_count);

	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on kread", fkreads);

	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on decompress",
			 fdecompress);
	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on becoming", fbecoming);

	len += scnprintf(buf + len, size - len, "%25s\t%u\n", "Mods failed on load", floads);

	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Total module size", total_size);
	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Total mod text size", text_size);

	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed kread bytes", ikread_bytes);

	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed decompress bytes",
			 idecompress_bytes);

	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed becoming bytes", ibecoming_bytes);

	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Failed kmod bytes", imod_bytes);

	len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Virtual mem wasted bytes", total_virtual_lost);

	if (live_mod_count && total_size) {
		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average mod size",
				 DIV_ROUND_UP(total_size, live_mod_count));
	}

	if (live_mod_count && text_size) {
		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average mod text size",
				 DIV_ROUND_UP(text_size, live_mod_count));
	}

	/*
	 * We use WARN_ON_ONCE() for the counters to ensure we always have parity
	 * for keeping tabs on a type of failure with one type of byte counter.
	 * The counters for imod_bytes does not increase for fkreads failures
	 * for example, and so on.
	 */

	WARN_ON_ONCE(ikread_bytes && !fkreads);
	if (fkreads && ikread_bytes) {
		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail kread bytes",
				 DIV_ROUND_UP(ikread_bytes, fkreads));
	}

	WARN_ON_ONCE(ibecoming_bytes && !fbecoming);
	if (fbecoming && ibecoming_bytes) {
		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail becoming bytes",
				 DIV_ROUND_UP(ibecoming_bytes, fbecoming));
	}

	WARN_ON_ONCE(idecompress_bytes && !fdecompress);
	if (fdecompress && idecompress_bytes) {
		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Avg fail decomp bytes",
				 DIV_ROUND_UP(idecompress_bytes, fdecompress));
	}

	WARN_ON_ONCE(imod_bytes && !floads);
	if (floads && imod_bytes) {
		len += scnprintf(buf + len, size - len, "%25s\t%lu\n", "Average fail load bytes",
				 DIV_ROUND_UP(imod_bytes, floads));
	}

	/* End of our debug preamble header. */

	/* Catch when we've gone beyond our expected preamble */
	WARN_ON_ONCE(len >= MAX_PREAMBLE);

	if (list_empty(&dup_failed_modules))
		goto out;

	len += scnprintf(buf + len, size - len, "Duplicate failed modules:\n");
	len += scnprintf(buf + len, size - len, "%25s\t%15s\t%25s\n",
			 "Module-name", "How-many-times", "Reason");
	mutex_lock(&module_mutex);


	list_for_each_entry_rcu(mod_fail, &dup_failed_modules, list) {
		if (WARN_ON_ONCE(++count_failed >= MAX_FAILED_MOD_PRINT))
			goto out_unlock;
		len += scnprintf(buf + len, size - len, "%25s\t%15lu\t%25s\n", mod_fail->name,
				 atomic_long_read(&mod_fail->count), mod_fail_to_str(mod_fail));
	}
out_unlock:
	mutex_unlock(&module_mutex);
out:
	kfree(buf);
        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
#undef MAX_PREAMBLE
#undef MAX_FAILED_MOD_PRINT
#undef MAX_BYTES_PER_MOD

static const struct file_operations fops_mod_stats = {
	.read = read_file_mod_stats,
	.open = simple_open,
	.owner = THIS_MODULE,
	.llseek = default_llseek,
};

#define mod_debug_add_ulong(name) debugfs_create_ulong(#name, 0400, mod_debugfs_root, (unsigned long *) &name.counter)
#define mod_debug_add_atomic(name) debugfs_create_atomic_t(#name, 0400, mod_debugfs_root, &name)
static int __init module_stats_init(void)
{
	mod_debug_add_ulong(total_mod_size);
	mod_debug_add_ulong(total_text_size);
	mod_debug_add_ulong(invalid_kread_bytes);
	mod_debug_add_ulong(invalid_decompress_bytes);
	mod_debug_add_ulong(invalid_becoming_bytes);
	mod_debug_add_ulong(invalid_mod_bytes);

	mod_debug_add_atomic(modcount);
	mod_debug_add_atomic(failed_kreads);
	mod_debug_add_atomic(failed_decompress);
	mod_debug_add_atomic(failed_becoming);
	mod_debug_add_atomic(failed_load_modules);

	debugfs_create_file("stats", 0400, mod_debugfs_root, mod_debugfs_root, &fops_mod_stats);

	return 0;
}
#undef mod_debug_add_ulong
#undef mod_debug_add_atomic
module_init(module_stats_init);