summaryrefslogtreecommitdiff
path: root/kernel/fork.c
blob: 4ae8cfc1c89cffdee486c2a3b28316e583a40747 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
/*
 *  linux/kernel/fork.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 *  'fork.c' contains the help-routines for the 'fork' system call
 * (see also entry.S and others).
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 */

#include <linux/config.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/completion.h>
#include <linux/namespace.h>
#include <linux/personality.h>
#include <linux/mempolicy.h>
#include <linux/sem.h>
#include <linux/file.h>
#include <linux/key.h>
#include <linux/binfmts.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/jiffies.h>
#include <linux/futex.h>
#include <linux/rcupdate.h>
#include <linux/ptrace.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/profile.h>
#include <linux/rmap.h>
#include <linux/acct.h>
#include <linux/cn_proc.h>

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>

/*
 * Protected counters by write_lock_irq(&tasklist_lock)
 */
unsigned long total_forks;	/* Handle normal Linux uptimes. */
int nr_threads; 		/* The idle threads do not count.. */

int max_threads;		/* tunable limit on nr_threads */

DEFINE_PER_CPU(unsigned long, process_counts) = 0;

 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */

EXPORT_SYMBOL(tasklist_lock);

int nr_processes(void)
{
	int cpu;
	int total = 0;

	for_each_online_cpu(cpu)
		total += per_cpu(process_counts, cpu);

	return total;
}

#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
# define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
# define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
static kmem_cache_t *task_struct_cachep;
#endif

/* SLAB cache for signal_struct structures (tsk->signal) */
kmem_cache_t *signal_cachep;

/* SLAB cache for sighand_struct structures (tsk->sighand) */
kmem_cache_t *sighand_cachep;

/* SLAB cache for files_struct structures (tsk->files) */
kmem_cache_t *files_cachep;

/* SLAB cache for fs_struct structures (tsk->fs) */
kmem_cache_t *fs_cachep;

/* SLAB cache for vm_area_struct structures */
kmem_cache_t *vm_area_cachep;

/* SLAB cache for mm_struct structures (tsk->mm) */
static kmem_cache_t *mm_cachep;

void free_task(struct task_struct *tsk)
{
	free_thread_info(tsk->thread_info);
	free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);

void __put_task_struct(struct task_struct *tsk)
{
	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
	WARN_ON(atomic_read(&tsk->usage));
	WARN_ON(tsk == current);

	if (unlikely(tsk->audit_context))
		audit_free(tsk);
	security_task_free(tsk);
	free_uid(tsk->user);
	put_group_info(tsk->group_info);

	if (!profile_handoff_task(tsk))
		free_task(tsk);
}

void __init fork_init(unsigned long mempages)
{
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
#endif
	/* create a slab on which task_structs can be allocated */
	task_struct_cachep =
		kmem_cache_create("task_struct", sizeof(struct task_struct),
			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
#endif

	/*
	 * The default maximum number of threads is set to a safe
	 * value: the thread structures can take up at most half
	 * of memory.
	 */
	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);

	/*
	 * we need to allow at least 20 threads to boot a system
	 */
	if(max_threads < 20)
		max_threads = 20;

	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
	init_task.signal->rlim[RLIMIT_SIGPENDING] =
		init_task.signal->rlim[RLIMIT_NPROC];
}

static struct task_struct *dup_task_struct(struct task_struct *orig)
{
	struct task_struct *tsk;
	struct thread_info *ti;

	prepare_to_copy(orig);

	tsk = alloc_task_struct();
	if (!tsk)
		return NULL;

	ti = alloc_thread_info(tsk);
	if (!ti) {
		free_task_struct(tsk);
		return NULL;
	}

	*tsk = *orig;
	tsk->thread_info = ti;
	setup_thread_stack(tsk, orig);

	/* One for us, one for whoever does the "release_task()" (usually parent) */
	atomic_set(&tsk->usage,2);
	atomic_set(&tsk->fs_excl, 0);
	return tsk;
}

#ifdef CONFIG_MMU
static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
{
	struct vm_area_struct *mpnt, *tmp, **pprev;
	struct rb_node **rb_link, *rb_parent;
	int retval;
	unsigned long charge;
	struct mempolicy *pol;

	down_write(&oldmm->mmap_sem);
	flush_cache_mm(oldmm);
	down_write(&mm->mmap_sem);

	mm->locked_vm = 0;
	mm->mmap = NULL;
	mm->mmap_cache = NULL;
	mm->free_area_cache = oldmm->mmap_base;
	mm->cached_hole_size = ~0UL;
	mm->map_count = 0;
	cpus_clear(mm->cpu_vm_mask);
	mm->mm_rb = RB_ROOT;
	rb_link = &mm->mm_rb.rb_node;
	rb_parent = NULL;
	pprev = &mm->mmap;

	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
		struct file *file;

		if (mpnt->vm_flags & VM_DONTCOPY) {
			long pages = vma_pages(mpnt);
			mm->total_vm -= pages;
			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
								-pages);
			continue;
		}
		charge = 0;
		if (mpnt->vm_flags & VM_ACCOUNT) {
			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
			if (security_vm_enough_memory(len))
				goto fail_nomem;
			charge = len;
		}
		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
		if (!tmp)
			goto fail_nomem;
		*tmp = *mpnt;
		pol = mpol_copy(vma_policy(mpnt));
		retval = PTR_ERR(pol);
		if (IS_ERR(pol))
			goto fail_nomem_policy;
		vma_set_policy(tmp, pol);
		tmp->vm_flags &= ~VM_LOCKED;
		tmp->vm_mm = mm;
		tmp->vm_next = NULL;
		anon_vma_link(tmp);
		file = tmp->vm_file;
		if (file) {
			struct inode *inode = file->f_dentry->d_inode;
			get_file(file);
			if (tmp->vm_flags & VM_DENYWRITE)
				atomic_dec(&inode->i_writecount);
      
			/* insert tmp into the share list, just after mpnt */
			spin_lock(&file->f_mapping->i_mmap_lock);
			tmp->vm_truncate_count = mpnt->vm_truncate_count;
			flush_dcache_mmap_lock(file->f_mapping);
			vma_prio_tree_add(tmp, mpnt);
			flush_dcache_mmap_unlock(file->f_mapping);
			spin_unlock(&file->f_mapping->i_mmap_lock);
		}

		/*
		 * Link in the new vma and copy the page table entries.
		 */
		*pprev = tmp;
		pprev = &tmp->vm_next;

		__vma_link_rb(mm, tmp, rb_link, rb_parent);
		rb_link = &tmp->vm_rb.rb_right;
		rb_parent = &tmp->vm_rb;

		mm->map_count++;
		retval = copy_page_range(mm, oldmm, mpnt);

		if (tmp->vm_ops && tmp->vm_ops->open)
			tmp->vm_ops->open(tmp);

		if (retval)
			goto out;
	}
	retval = 0;
out:
	up_write(&mm->mmap_sem);
	flush_tlb_mm(oldmm);
	up_write(&oldmm->mmap_sem);
	return retval;
fail_nomem_policy:
	kmem_cache_free(vm_area_cachep, tmp);
fail_nomem:
	retval = -ENOMEM;
	vm_unacct_memory(charge);
	goto out;
}

static inline int mm_alloc_pgd(struct mm_struct * mm)
{
	mm->pgd = pgd_alloc(mm);
	if (unlikely(!mm->pgd))
		return -ENOMEM;
	return 0;
}

static inline void mm_free_pgd(struct mm_struct * mm)
{
	pgd_free(mm->pgd);
}
#else
#define dup_mmap(mm, oldmm)	(0)
#define mm_alloc_pgd(mm)	(0)
#define mm_free_pgd(mm)
#endif /* CONFIG_MMU */

 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);

#define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))

#include <linux/init_task.h>

static struct mm_struct * mm_init(struct mm_struct * mm)
{
	atomic_set(&mm->mm_users, 1);
	atomic_set(&mm->mm_count, 1);
	init_rwsem(&mm->mmap_sem);
	INIT_LIST_HEAD(&mm->mmlist);
	mm->core_waiters = 0;
	mm->nr_ptes = 0;
	set_mm_counter(mm, file_rss, 0);
	set_mm_counter(mm, anon_rss, 0);
	spin_lock_init(&mm->page_table_lock);
	rwlock_init(&mm->ioctx_list_lock);
	mm->ioctx_list = NULL;
	mm->free_area_cache = TASK_UNMAPPED_BASE;
	mm->cached_hole_size = ~0UL;

	if (likely(!mm_alloc_pgd(mm))) {
		mm->def_flags = 0;
		return mm;
	}
	free_mm(mm);
	return NULL;
}

/*
 * Allocate and initialize an mm_struct.
 */
struct mm_struct * mm_alloc(void)
{
	struct mm_struct * mm;

	mm = allocate_mm();
	if (mm) {
		memset(mm, 0, sizeof(*mm));
		mm = mm_init(mm);
	}
	return mm;
}

/*
 * Called when the last reference to the mm
 * is dropped: either by a lazy thread or by
 * mmput. Free the page directory and the mm.
 */
void fastcall __mmdrop(struct mm_struct *mm)
{
	BUG_ON(mm == &init_mm);
	mm_free_pgd(mm);
	destroy_context(mm);
	free_mm(mm);
}

/*
 * Decrement the use count and release all resources for an mm.
 */
void mmput(struct mm_struct *mm)
{
	if (atomic_dec_and_test(&mm->mm_users)) {
		exit_aio(mm);
		exit_mmap(mm);
		if (!list_empty(&mm->mmlist)) {
			spin_lock(&mmlist_lock);
			list_del(&mm->mmlist);
			spin_unlock(&mmlist_lock);
		}
		put_swap_token(mm);
		mmdrop(mm);
	}
}
EXPORT_SYMBOL_GPL(mmput);

/**
 * get_task_mm - acquire a reference to the task's mm
 *
 * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
 * this kernel workthread has transiently adopted a user mm with use_mm,
 * to do its AIO) is not set and if so returns a reference to it, after
 * bumping up the use count.  User must release the mm via mmput()
 * after use.  Typically used by /proc and ptrace.
 */
struct mm_struct *get_task_mm(struct task_struct *task)
{
	struct mm_struct *mm;

	task_lock(task);
	mm = task->mm;
	if (mm) {
		if (task->flags & PF_BORROWED_MM)
			mm = NULL;
		else
			atomic_inc(&mm->mm_users);
	}
	task_unlock(task);
	return mm;
}
EXPORT_SYMBOL_GPL(get_task_mm);

/* Please note the differences between mmput and mm_release.
 * mmput is called whenever we stop holding onto a mm_struct,
 * error success whatever.
 *
 * mm_release is called after a mm_struct has been removed
 * from the current process.
 *
 * This difference is important for error handling, when we
 * only half set up a mm_struct for a new process and need to restore
 * the old one.  Because we mmput the new mm_struct before
 * restoring the old one. . .
 * Eric Biederman 10 January 1998
 */
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
	struct completion *vfork_done = tsk->vfork_done;

	/* Get rid of any cached register state */
	deactivate_mm(tsk, mm);

	/* notify parent sleeping on vfork() */
	if (vfork_done) {
		tsk->vfork_done = NULL;
		complete(vfork_done);
	}
	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
		u32 __user * tidptr = tsk->clear_child_tid;
		tsk->clear_child_tid = NULL;

		/*
		 * We don't check the error code - if userspace has
		 * not set up a proper pointer then tough luck.
		 */
		put_user(0, tidptr);
		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
	}
}

static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{
	struct mm_struct * mm, *oldmm;
	int retval;

	tsk->min_flt = tsk->maj_flt = 0;
	tsk->nvcsw = tsk->nivcsw = 0;

	tsk->mm = NULL;
	tsk->active_mm = NULL;

	/*
	 * Are we cloning a kernel thread?
	 *
	 * We need to steal a active VM for that..
	 */
	oldmm = current->mm;
	if (!oldmm)
		return 0;

	if (clone_flags & CLONE_VM) {
		atomic_inc(&oldmm->mm_users);
		mm = oldmm;
		goto good_mm;
	}

	retval = -ENOMEM;
	mm = allocate_mm();
	if (!mm)
		goto fail_nomem;

	/* Copy the current MM stuff.. */
	memcpy(mm, oldmm, sizeof(*mm));
	if (!mm_init(mm))
		goto fail_nomem;

	if (init_new_context(tsk,mm))
		goto fail_nocontext;

	retval = dup_mmap(mm, oldmm);
	if (retval)
		goto free_pt;

	mm->hiwater_rss = get_mm_rss(mm);
	mm->hiwater_vm = mm->total_vm;

good_mm:
	tsk->mm = mm;
	tsk->active_mm = mm;
	return 0;

free_pt:
	mmput(mm);
fail_nomem:
	return retval;

fail_nocontext:
	/*
	 * If init_new_context() failed, we cannot use mmput() to free the mm
	 * because it calls destroy_context()
	 */
	mm_free_pgd(mm);
	free_mm(mm);
	return retval;
}

static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
{
	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
	/* We don't need to lock fs - think why ;-) */
	if (fs) {
		atomic_set(&fs->count, 1);
		rwlock_init(&fs->lock);
		fs->umask = old->umask;
		read_lock(&old->lock);
		fs->rootmnt = mntget(old->rootmnt);
		fs->root = dget(old->root);
		fs->pwdmnt = mntget(old->pwdmnt);
		fs->pwd = dget(old->pwd);
		if (old->altroot) {
			fs->altrootmnt = mntget(old->altrootmnt);
			fs->altroot = dget(old->altroot);
		} else {
			fs->altrootmnt = NULL;
			fs->altroot = NULL;
		}
		read_unlock(&old->lock);
	}
	return fs;
}

struct fs_struct *copy_fs_struct(struct fs_struct *old)
{
	return __copy_fs_struct(old);
}

EXPORT_SYMBOL_GPL(copy_fs_struct);

static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
{
	if (clone_flags & CLONE_FS) {
		atomic_inc(&current->fs->count);
		return 0;
	}
	tsk->fs = __copy_fs_struct(current->fs);
	if (!tsk->fs)
		return -ENOMEM;
	return 0;
}

static int count_open_files(struct fdtable *fdt)
{
	int size = fdt->max_fdset;
	int i;

	/* Find the last open fd */
	for (i = size/(8*sizeof(long)); i > 0; ) {
		if (fdt->open_fds->fds_bits[--i])
			break;
	}
	i = (i+1) * 8 * sizeof(long);
	return i;
}

static struct files_struct *alloc_files(void)
{
	struct files_struct *newf;
	struct fdtable *fdt;

	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
	if (!newf)
		goto out;

	atomic_set(&newf->count, 1);

	spin_lock_init(&newf->file_lock);
	fdt = &newf->fdtab;
	fdt->next_fd = 0;
	fdt->max_fds = NR_OPEN_DEFAULT;
	fdt->max_fdset = __FD_SETSIZE;
	fdt->close_on_exec = &newf->close_on_exec_init;
	fdt->open_fds = &newf->open_fds_init;
	fdt->fd = &newf->fd_array[0];
	INIT_RCU_HEAD(&fdt->rcu);
	fdt->free_files = NULL;
	fdt->next = NULL;
	rcu_assign_pointer(newf->fdt, fdt);
out:
	return newf;
}

static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
{
	struct files_struct *oldf, *newf;
	struct file **old_fds, **new_fds;
	int open_files, size, i, error = 0, expand;
	struct fdtable *old_fdt, *new_fdt;

	/*
	 * A background process may not have any files ...
	 */
	oldf = current->files;
	if (!oldf)
		goto out;

	if (clone_flags & CLONE_FILES) {
		atomic_inc(&oldf->count);
		goto out;
	}

	/*
	 * Note: we may be using current for both targets (See exec.c)
	 * This works because we cache current->files (old) as oldf. Don't
	 * break this.
	 */
	tsk->files = NULL;
	error = -ENOMEM;
	newf = alloc_files();
	if (!newf)
		goto out;

	spin_lock(&oldf->file_lock);
	old_fdt = files_fdtable(oldf);
	new_fdt = files_fdtable(newf);
	size = old_fdt->max_fdset;
	open_files = count_open_files(old_fdt);
	expand = 0;

	/*
	 * Check whether we need to allocate a larger fd array or fd set.
	 * Note: we're not a clone task, so the open count won't  change.
	 */
	if (open_files > new_fdt->max_fdset) {
		new_fdt->max_fdset = 0;
		expand = 1;
	}
	if (open_files > new_fdt->max_fds) {
		new_fdt->max_fds = 0;
		expand = 1;
	}

	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
	if (expand) {
		spin_unlock(&oldf->file_lock);
		spin_lock(&newf->file_lock);
		error = expand_files(newf, open_files-1);
		spin_unlock(&newf->file_lock);
		if (error < 0)
			goto out_release;
		new_fdt = files_fdtable(newf);
		/*
		 * Reacquire the oldf lock and a pointer to its fd table
		 * who knows it may have a new bigger fd table. We need
		 * the latest pointer.
		 */
		spin_lock(&oldf->file_lock);
		old_fdt = files_fdtable(oldf);
	}

	old_fds = old_fdt->fd;
	new_fds = new_fdt->fd;

	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);

	for (i = open_files; i != 0; i--) {
		struct file *f = *old_fds++;
		if (f) {
			get_file(f);
		} else {
			/*
			 * The fd may be claimed in the fd bitmap but not yet
			 * instantiated in the files array if a sibling thread
			 * is partway through open().  So make sure that this
			 * fd is available to the new process.
			 */
			FD_CLR(open_files - i, new_fdt->open_fds);
		}
		rcu_assign_pointer(*new_fds++, f);
	}
	spin_unlock(&oldf->file_lock);

	/* compute the remainder to be cleared */
	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);

	/* This is long word aligned thus could use a optimized version */ 
	memset(new_fds, 0, size); 

	if (new_fdt->max_fdset > open_files) {
		int left = (new_fdt->max_fdset-open_files)/8;
		int start = open_files / (8 * sizeof(unsigned long));

		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
	}

	tsk->files = newf;
	error = 0;
out:
	return error;

out_release:
	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
	free_fd_array(new_fdt->fd, new_fdt->max_fds);
	kmem_cache_free(files_cachep, newf);
	goto out;
}

/*
 *	Helper to unshare the files of the current task.
 *	We don't want to expose copy_files internals to
 *	the exec layer of the kernel.
 */

int unshare_files(void)
{
	struct files_struct *files  = current->files;
	int rc;

	if(!files)
		BUG();

	/* This can race but the race causes us to copy when we don't
	   need to and drop the copy */
	if(atomic_read(&files->count) == 1)
	{
		atomic_inc(&files->count);
		return 0;
	}
	rc = copy_files(0, current);
	if(rc)
		current->files = files;
	return rc;
}

EXPORT_SYMBOL(unshare_files);

void sighand_free_cb(struct rcu_head *rhp)
{
	struct sighand_struct *sp;

	sp = container_of(rhp, struct sighand_struct, rcu);
	kmem_cache_free(sighand_cachep, sp);
}

static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
{
	struct sighand_struct *sig;

	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
		atomic_inc(&current->sighand->count);
		return 0;
	}
	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
	rcu_assign_pointer(tsk->sighand, sig);
	if (!sig)
		return -ENOMEM;
	spin_lock_init(&sig->siglock);
	atomic_set(&sig->count, 1);
	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
	return 0;
}

static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
{
	struct signal_struct *sig;
	int ret;

	if (clone_flags & CLONE_THREAD) {
		atomic_inc(&current->signal->count);
		atomic_inc(&current->signal->live);
		return 0;
	}
	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
	tsk->signal = sig;
	if (!sig)
		return -ENOMEM;

	ret = copy_thread_group_keys(tsk);
	if (ret < 0) {
		kmem_cache_free(signal_cachep, sig);
		return ret;
	}

	atomic_set(&sig->count, 1);
	atomic_set(&sig->live, 1);
	init_waitqueue_head(&sig->wait_chldexit);
	sig->flags = 0;
	sig->group_exit_code = 0;
	sig->group_exit_task = NULL;
	sig->group_stop_count = 0;
	sig->curr_target = NULL;
	init_sigpending(&sig->shared_pending);
	INIT_LIST_HEAD(&sig->posix_timers);

	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC);
	sig->it_real_incr.tv64 = 0;
	sig->real_timer.function = it_real_fn;
	sig->real_timer.data = tsk;

	sig->it_virt_expires = cputime_zero;
	sig->it_virt_incr = cputime_zero;
	sig->it_prof_expires = cputime_zero;
	sig->it_prof_incr = cputime_zero;

	sig->leader = 0;	/* session leadership doesn't inherit */
	sig->tty_old_pgrp = 0;

	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
	sig->sched_time = 0;
	INIT_LIST_HEAD(&sig->cpu_timers[0]);
	INIT_LIST_HEAD(&sig->cpu_timers[1]);
	INIT_LIST_HEAD(&sig->cpu_timers[2]);

	task_lock(current->group_leader);
	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
	task_unlock(current->group_leader);

	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
		/*
		 * New sole thread in the process gets an expiry time
		 * of the whole CPU time limit.
		 */
		tsk->it_prof_expires =
			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
	}

	return 0;
}

static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
{
	unsigned long new_flags = p->flags;

	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
	new_flags |= PF_FORKNOEXEC;
	if (!(clone_flags & CLONE_PTRACE))
		p->ptrace = 0;
	p->flags = new_flags;
}

asmlinkage long sys_set_tid_address(int __user *tidptr)
{
	current->clear_child_tid = tidptr;

	return current->pid;
}

/*
 * This creates a new process as a copy of the old one,
 * but does not actually start it yet.
 *
 * It copies the registers, and all the appropriate
 * parts of the process environment (as per the clone
 * flags). The actual kick-off is left to the caller.
 */
static task_t *copy_process(unsigned long clone_flags,
				 unsigned long stack_start,
				 struct pt_regs *regs,
				 unsigned long stack_size,
				 int __user *parent_tidptr,
				 int __user *child_tidptr,
				 int pid)
{
	int retval;
	struct task_struct *p = NULL;

	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
		return ERR_PTR(-EINVAL);

	/*
	 * Thread groups must share signals as well, and detached threads
	 * can only be started up within the thread group.
	 */
	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
		return ERR_PTR(-EINVAL);

	/*
	 * Shared signal handlers imply shared VM. By way of the above,
	 * thread groups also imply shared VM. Blocking this case allows
	 * for various simplifications in other code.
	 */
	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
		return ERR_PTR(-EINVAL);

	retval = security_task_create(clone_flags);
	if (retval)
		goto fork_out;

	retval = -ENOMEM;
	p = dup_task_struct(current);
	if (!p)
		goto fork_out;

	retval = -EAGAIN;
	if (atomic_read(&p->user->processes) >=
			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
				p->user != &root_user)
			goto bad_fork_free;
	}

	atomic_inc(&p->user->__count);
	atomic_inc(&p->user->processes);
	get_group_info(p->group_info);

	/*
	 * If multiple threads are within copy_process(), then this check
	 * triggers too late. This doesn't hurt, the check is only there
	 * to stop root fork bombs.
	 */
	if (nr_threads >= max_threads)
		goto bad_fork_cleanup_count;

	if (!try_module_get(task_thread_info(p)->exec_domain->module))
		goto bad_fork_cleanup_count;

	if (p->binfmt && !try_module_get(p->binfmt->module))
		goto bad_fork_cleanup_put_domain;

	p->did_exec = 0;
	copy_flags(clone_flags, p);
	p->pid = pid;
	retval = -EFAULT;
	if (clone_flags & CLONE_PARENT_SETTID)
		if (put_user(p->pid, parent_tidptr))
			goto bad_fork_cleanup;

	p->proc_dentry = NULL;

	INIT_LIST_HEAD(&p->children);
	INIT_LIST_HEAD(&p->sibling);
	p->vfork_done = NULL;
	spin_lock_init(&p->alloc_lock);
	spin_lock_init(&p->proc_lock);

	clear_tsk_thread_flag(p, TIF_SIGPENDING);
	init_sigpending(&p->pending);

	p->utime = cputime_zero;
	p->stime = cputime_zero;
 	p->sched_time = 0;
	p->rchar = 0;		/* I/O counter: bytes read */
	p->wchar = 0;		/* I/O counter: bytes written */
	p->syscr = 0;		/* I/O counter: read syscalls */
	p->syscw = 0;		/* I/O counter: write syscalls */
	acct_clear_integrals(p);

 	p->it_virt_expires = cputime_zero;
	p->it_prof_expires = cputime_zero;
 	p->it_sched_expires = 0;
 	INIT_LIST_HEAD(&p->cpu_timers[0]);
 	INIT_LIST_HEAD(&p->cpu_timers[1]);
 	INIT_LIST_HEAD(&p->cpu_timers[2]);

	p->lock_depth = -1;		/* -1 = no lock */
	do_posix_clock_monotonic_gettime(&p->start_time);
	p->security = NULL;
	p->io_context = NULL;
	p->io_wait = NULL;
	p->audit_context = NULL;
	cpuset_fork(p);
#ifdef CONFIG_NUMA
 	p->mempolicy = mpol_copy(p->mempolicy);
 	if (IS_ERR(p->mempolicy)) {
 		retval = PTR_ERR(p->mempolicy);
 		p->mempolicy = NULL;
 		goto bad_fork_cleanup_cpuset;
 	}
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	p->blocked_on = NULL; /* not blocked yet */
#endif

	p->tgid = p->pid;
	if (clone_flags & CLONE_THREAD)
		p->tgid = current->tgid;

	if ((retval = security_task_alloc(p)))
		goto bad_fork_cleanup_policy;
	if ((retval = audit_alloc(p)))
		goto bad_fork_cleanup_security;
	/* copy all the process information */
	if ((retval = copy_semundo(clone_flags, p)))
		goto bad_fork_cleanup_audit;
	if ((retval = copy_files(clone_flags, p)))
		goto bad_fork_cleanup_semundo;
	if ((retval = copy_fs(clone_flags, p)))
		goto bad_fork_cleanup_files;
	if ((retval = copy_sighand(clone_flags, p)))
		goto bad_fork_cleanup_fs;
	if ((retval = copy_signal(clone_flags, p)))
		goto bad_fork_cleanup_sighand;
	if ((retval = copy_mm(clone_flags, p)))
		goto bad_fork_cleanup_signal;
	if ((retval = copy_keys(clone_flags, p)))
		goto bad_fork_cleanup_mm;
	if ((retval = copy_namespace(clone_flags, p)))
		goto bad_fork_cleanup_keys;
	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
	if (retval)
		goto bad_fork_cleanup_namespace;

	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
	/*
	 * Clear TID on mm_release()?
	 */
	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;

	/*
	 * Syscall tracing should be turned off in the child regardless
	 * of CLONE_PTRACE.
	 */
	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif

	/* Our parent execution domain becomes current domain
	   These must match for thread signalling to apply */
	   
	p->parent_exec_id = p->self_exec_id;

	/* ok, now we should be set up.. */
	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
	p->pdeath_signal = 0;
	p->exit_state = 0;

	/*
	 * Ok, make it visible to the rest of the system.
	 * We dont wake it up yet.
	 */
	p->group_leader = p;
	INIT_LIST_HEAD(&p->ptrace_children);
	INIT_LIST_HEAD(&p->ptrace_list);

	/* Perform scheduler related setup. Assign this task to a CPU. */
	sched_fork(p, clone_flags);

	/* Need tasklist lock for parent etc handling! */
	write_lock_irq(&tasklist_lock);

	/*
	 * The task hasn't been attached yet, so its cpus_allowed mask will
	 * not be changed, nor will its assigned CPU.
	 *
	 * The cpus_allowed mask of the parent may have changed after it was
	 * copied first time - so re-copy it here, then check the child's CPU
	 * to ensure it is on a valid CPU (and if not, just force it back to
	 * parent's CPU). This avoids alot of nasty races.
	 */
	p->cpus_allowed = current->cpus_allowed;
	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
			!cpu_online(task_cpu(p))))
		set_task_cpu(p, smp_processor_id());

	/*
	 * Check for pending SIGKILL! The new thread should not be allowed
	 * to slip out of an OOM kill. (or normal SIGKILL.)
	 */
	if (sigismember(&current->pending.signal, SIGKILL)) {
		write_unlock_irq(&tasklist_lock);
		retval = -EINTR;
		goto bad_fork_cleanup_namespace;
	}

	/* CLONE_PARENT re-uses the old parent */
	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
		p->real_parent = current->real_parent;
	else
		p->real_parent = current;
	p->parent = p->real_parent;

	if (clone_flags & CLONE_THREAD) {
		spin_lock(&current->sighand->siglock);
		/*
		 * Important: if an exit-all has been started then
		 * do not create this new thread - the whole thread
		 * group is supposed to exit anyway.
		 */
		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
			spin_unlock(&current->sighand->siglock);
			write_unlock_irq(&tasklist_lock);
			retval = -EAGAIN;
			goto bad_fork_cleanup_namespace;
		}
		p->group_leader = current->group_leader;

		if (current->signal->group_stop_count > 0) {
			/*
			 * There is an all-stop in progress for the group.
			 * We ourselves will stop as soon as we check signals.
			 * Make the new thread part of that group stop too.
			 */
			current->signal->group_stop_count++;
			set_tsk_thread_flag(p, TIF_SIGPENDING);
		}

		if (!cputime_eq(current->signal->it_virt_expires,
				cputime_zero) ||
		    !cputime_eq(current->signal->it_prof_expires,
				cputime_zero) ||
		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
		    !list_empty(&current->signal->cpu_timers[0]) ||
		    !list_empty(&current->signal->cpu_timers[1]) ||
		    !list_empty(&current->signal->cpu_timers[2])) {
			/*
			 * Have child wake up on its first tick to check
			 * for process CPU timers.
			 */
			p->it_prof_expires = jiffies_to_cputime(1);
		}

		spin_unlock(&current->sighand->siglock);
	}

	/*
	 * inherit ioprio
	 */
	p->ioprio = current->ioprio;

	SET_LINKS(p);
	if (unlikely(p->ptrace & PT_PTRACED))
		__ptrace_link(p, current->parent);

	attach_pid(p, PIDTYPE_PID, p->pid);
	attach_pid(p, PIDTYPE_TGID, p->tgid);
	if (thread_group_leader(p)) {
		p->signal->tty = current->signal->tty;
		p->signal->pgrp = process_group(current);
		p->signal->session = current->signal->session;
		attach_pid(p, PIDTYPE_PGID, process_group(p));
		attach_pid(p, PIDTYPE_SID, p->signal->session);
		if (p->pid)
			__get_cpu_var(process_counts)++;
	}

	nr_threads++;
	total_forks++;
	write_unlock_irq(&tasklist_lock);
	proc_fork_connector(p);
	return p;

bad_fork_cleanup_namespace:
	exit_namespace(p);
bad_fork_cleanup_keys:
	exit_keys(p);
bad_fork_cleanup_mm:
	if (p->mm)
		mmput(p->mm);
bad_fork_cleanup_signal:
	exit_signal(p);
bad_fork_cleanup_sighand:
	exit_sighand(p);
bad_fork_cleanup_fs:
	exit_fs(p); /* blocking */
bad_fork_cleanup_files:
	exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
	exit_sem(p);
bad_fork_cleanup_audit:
	audit_free(p);
bad_fork_cleanup_security:
	security_task_free(p);
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
	mpol_free(p->mempolicy);
bad_fork_cleanup_cpuset:
#endif
	cpuset_exit(p);
bad_fork_cleanup:
	if (p->binfmt)
		module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
	module_put(task_thread_info(p)->exec_domain->module);
bad_fork_cleanup_count:
	put_group_info(p->group_info);
	atomic_dec(&p->user->processes);
	free_uid(p->user);
bad_fork_free:
	free_task(p);
fork_out:
	return ERR_PTR(retval);
}

struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
{
	memset(regs, 0, sizeof(struct pt_regs));
	return regs;
}

task_t * __devinit fork_idle(int cpu)
{
	task_t *task;
	struct pt_regs regs;

	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
	if (!task)
		return ERR_PTR(-ENOMEM);
	init_idle(task, cpu);
	unhash_process(task);
	return task;
}

static inline int fork_traceflag (unsigned clone_flags)
{
	if (clone_flags & CLONE_UNTRACED)
		return 0;
	else if (clone_flags & CLONE_VFORK) {
		if (current->ptrace & PT_TRACE_VFORK)
			return PTRACE_EVENT_VFORK;
	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
		if (current->ptrace & PT_TRACE_CLONE)
			return PTRACE_EVENT_CLONE;
	} else if (current->ptrace & PT_TRACE_FORK)
		return PTRACE_EVENT_FORK;

	return 0;
}

/*
 *  Ok, this is the main fork-routine.
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 */
long do_fork(unsigned long clone_flags,
	      unsigned long stack_start,
	      struct pt_regs *regs,
	      unsigned long stack_size,
	      int __user *parent_tidptr,
	      int __user *child_tidptr)
{
	struct task_struct *p;
	int trace = 0;
	long pid = alloc_pidmap();

	if (pid < 0)
		return -EAGAIN;
	if (unlikely(current->ptrace)) {
		trace = fork_traceflag (clone_flags);
		if (trace)
			clone_flags |= CLONE_PTRACE;
	}

	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
	/*
	 * Do this prior waking up the new thread - the thread pointer
	 * might get invalid after that point, if the thread exits quickly.
	 */
	if (!IS_ERR(p)) {
		struct completion vfork;

		if (clone_flags & CLONE_VFORK) {
			p->vfork_done = &vfork;
			init_completion(&vfork);
		}

		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
			/*
			 * We'll start up with an immediate SIGSTOP.
			 */
			sigaddset(&p->pending.signal, SIGSTOP);
			set_tsk_thread_flag(p, TIF_SIGPENDING);
		}

		if (!(clone_flags & CLONE_STOPPED))
			wake_up_new_task(p, clone_flags);
		else
			p->state = TASK_STOPPED;

		if (unlikely (trace)) {
			current->ptrace_message = pid;
			ptrace_notify ((trace << 8) | SIGTRAP);
		}

		if (clone_flags & CLONE_VFORK) {
			wait_for_completion(&vfork);
			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
		}
	} else {
		free_pidmap(pid);
		pid = PTR_ERR(p);
	}
	return pid;
}

#ifndef ARCH_MIN_MMSTRUCT_ALIGN
#define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif

void __init proc_caches_init(void)
{
	sighand_cachep = kmem_cache_create("sighand_cache",
			sizeof(struct sighand_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
	signal_cachep = kmem_cache_create("signal_cache",
			sizeof(struct signal_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
	files_cachep = kmem_cache_create("files_cache", 
			sizeof(struct files_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
	fs_cachep = kmem_cache_create("fs_cache", 
			sizeof(struct fs_struct), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
	vm_area_cachep = kmem_cache_create("vm_area_struct",
			sizeof(struct vm_area_struct), 0,
			SLAB_PANIC, NULL, NULL);
	mm_cachep = kmem_cache_create("mm_struct",
			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
}