summaryrefslogtreecommitdiff
path: root/include/linux/cpuset.h
blob: d58e0476ee8e3be7a48d14d89c45d24438c684ca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_CPUSET_H
#define _LINUX_CPUSET_H
/*
 *  cpuset interface
 *
 *  Copyright (C) 2003 BULL SA
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 */

#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/sched/task.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h>
#include <linux/mm.h>
#include <linux/mmu_context.h>
#include <linux/jump_label.h>

#ifdef CONFIG_CPUSETS

/*
 * Static branch rewrites can happen in an arbitrary order for a given
 * key. In code paths where we need to loop with read_mems_allowed_begin() and
 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
 * to ensure that begin() always gets rewritten before retry() in the
 * disabled -> enabled transition. If not, then if local irqs are disabled
 * around the loop, we can deadlock since retry() would always be
 * comparing the latest value of the mems_allowed seqcount against 0 as
 * begin() still would see cpusets_enabled() as false. The enabled -> disabled
 * transition should happen in reverse order for the same reasons (want to stop
 * looking at real value of mems_allowed.sequence in retry() first).
 */
extern struct static_key_false cpusets_pre_enable_key;
extern struct static_key_false cpusets_enabled_key;
extern struct static_key_false cpusets_insane_config_key;

static inline bool cpusets_enabled(void)
{
	return static_branch_unlikely(&cpusets_enabled_key);
}

static inline void cpuset_inc(void)
{
	static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
	static_branch_inc_cpuslocked(&cpusets_enabled_key);
}

static inline void cpuset_dec(void)
{
	static_branch_dec_cpuslocked(&cpusets_enabled_key);
	static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
}

/*
 * This will get enabled whenever a cpuset configuration is considered
 * unsupportable in general. E.g. movable only node which cannot satisfy
 * any non movable allocations (see update_nodemask). Page allocator
 * needs to make additional checks for those configurations and this
 * check is meant to guard those checks without any overhead for sane
 * configurations.
 */
static inline bool cpusets_insane_config(void)
{
	return static_branch_unlikely(&cpusets_insane_config_key);
}

extern int cpuset_init(void);
extern void cpuset_init_smp(void);
extern void cpuset_force_rebuild(void);
extern void cpuset_update_active_cpus(void);
extern void cpuset_wait_for_hotplug(void);
extern void cpuset_read_lock(void);
extern void cpuset_read_unlock(void);
extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
extern bool cpuset_cpus_allowed_fallback(struct task_struct *p);
extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
#define cpuset_current_mems_allowed (current->mems_allowed)
void cpuset_init_current_mems_allowed(void);
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);

extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);

static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
{
	if (cpusets_enabled())
		return __cpuset_node_allowed(node, gfp_mask);
	return true;
}

static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
{
	return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
}

static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
{
	if (cpusets_enabled())
		return __cpuset_zone_allowed(z, gfp_mask);
	return true;
}

extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
					  const struct task_struct *tsk2);

#define cpuset_memory_pressure_bump() 				\
	do {							\
		if (cpuset_memory_pressure_enabled)		\
			__cpuset_memory_pressure_bump();	\
	} while (0)
extern int cpuset_memory_pressure_enabled;
extern void __cpuset_memory_pressure_bump(void);

extern void cpuset_task_status_allowed(struct seq_file *m,
					struct task_struct *task);
extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
			    struct pid *pid, struct task_struct *tsk);

extern int cpuset_mem_spread_node(void);
extern int cpuset_slab_spread_node(void);

static inline int cpuset_do_page_mem_spread(void)
{
	return task_spread_page(current);
}

static inline int cpuset_do_slab_mem_spread(void)
{
	return task_spread_slab(current);
}

extern bool current_cpuset_is_being_rebound(void);

extern void rebuild_sched_domains(void);

extern void cpuset_print_current_mems_allowed(void);

/*
 * read_mems_allowed_begin is required when making decisions involving
 * mems_allowed such as during page allocation. mems_allowed can be updated in
 * parallel and depending on the new value an operation can fail potentially
 * causing process failure. A retry loop with read_mems_allowed_begin and
 * read_mems_allowed_retry prevents these artificial failures.
 */
static inline unsigned int read_mems_allowed_begin(void)
{
	if (!static_branch_unlikely(&cpusets_pre_enable_key))
		return 0;

	return read_seqcount_begin(&current->mems_allowed_seq);
}

/*
 * If this returns true, the operation that took place after
 * read_mems_allowed_begin may have failed artificially due to a concurrent
 * update of mems_allowed. It is up to the caller to retry the operation if
 * appropriate.
 */
static inline bool read_mems_allowed_retry(unsigned int seq)
{
	if (!static_branch_unlikely(&cpusets_enabled_key))
		return false;

	return read_seqcount_retry(&current->mems_allowed_seq, seq);
}

static inline void set_mems_allowed(nodemask_t nodemask)
{
	unsigned long flags;

	task_lock(current);
	local_irq_save(flags);
	write_seqcount_begin(&current->mems_allowed_seq);
	current->mems_allowed = nodemask;
	write_seqcount_end(&current->mems_allowed_seq);
	local_irq_restore(flags);
	task_unlock(current);
}

#else /* !CONFIG_CPUSETS */

static inline bool cpusets_enabled(void) { return false; }

static inline bool cpusets_insane_config(void) { return false; }

static inline int cpuset_init(void) { return 0; }
static inline void cpuset_init_smp(void) {}

static inline void cpuset_force_rebuild(void) { }

static inline void cpuset_update_active_cpus(void)
{
	partition_sched_domains(1, NULL, NULL);
}

static inline void cpuset_wait_for_hotplug(void) { }

static inline void cpuset_read_lock(void) { }
static inline void cpuset_read_unlock(void) { }

static inline void cpuset_cpus_allowed(struct task_struct *p,
				       struct cpumask *mask)
{
	cpumask_copy(mask, task_cpu_possible_mask(p));
}

static inline bool cpuset_cpus_allowed_fallback(struct task_struct *p)
{
	return false;
}

static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
{
	return node_possible_map;
}

#define cpuset_current_mems_allowed (node_states[N_MEMORY])
static inline void cpuset_init_current_mems_allowed(void) {}

static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
{
	return 1;
}

static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
{
	return true;
}

static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
{
	return true;
}

static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
{
	return true;
}

static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
						 const struct task_struct *tsk2)
{
	return 1;
}

static inline void cpuset_memory_pressure_bump(void) {}

static inline void cpuset_task_status_allowed(struct seq_file *m,
						struct task_struct *task)
{
}

static inline int cpuset_mem_spread_node(void)
{
	return 0;
}

static inline int cpuset_slab_spread_node(void)
{
	return 0;
}

static inline int cpuset_do_page_mem_spread(void)
{
	return 0;
}

static inline int cpuset_do_slab_mem_spread(void)
{
	return 0;
}

static inline bool current_cpuset_is_being_rebound(void)
{
	return false;
}

static inline void rebuild_sched_domains(void)
{
	partition_sched_domains(1, NULL, NULL);
}

static inline void cpuset_print_current_mems_allowed(void)
{
}

static inline void set_mems_allowed(nodemask_t nodemask)
{
}

static inline unsigned int read_mems_allowed_begin(void)
{
	return 0;
}

static inline bool read_mems_allowed_retry(unsigned int seq)
{
	return false;
}

#endif /* !CONFIG_CPUSETS */

#endif /* _LINUX_CPUSET_H */