summaryrefslogtreecommitdiff
path: root/include/crypto/hash.h
blob: d6702b4a457f956d849048f59d68be938241d3a4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/*
 * Hash: Hash algorithms under the crypto API
 * 
 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option) 
 * any later version.
 *
 */

#ifndef _CRYPTO_HASH_H
#define _CRYPTO_HASH_H

#include <linux/crypto.h>
#include <linux/string.h>

struct crypto_ahash;

/**
 * DOC: Message Digest Algorithm Definitions
 *
 * These data structures define modular message digest algorithm
 * implementations, managed via crypto_register_ahash(),
 * crypto_register_shash(), crypto_unregister_ahash() and
 * crypto_unregister_shash().
 */

/**
 * struct hash_alg_common - define properties of message digest
 * @digestsize: Size of the result of the transformation. A buffer of this size
 *	        must be available to the @final and @finup calls, so they can
 *	        store the resulting hash into it. For various predefined sizes,
 *	        search include/crypto/ using
 *	        git grep _DIGEST_SIZE include/crypto.
 * @statesize: Size of the block for partial state of the transformation. A
 *	       buffer of this size must be passed to the @export function as it
 *	       will save the partial state of the transformation into it. On the
 *	       other side, the @import function will load the state from a
 *	       buffer of this size as well.
 * @base: Start of data structure of cipher algorithm. The common data
 *	  structure of crypto_alg contains information common to all ciphers.
 *	  The hash_alg_common data structure now adds the hash-specific
 *	  information.
 */
struct hash_alg_common {
	unsigned int digestsize;
	unsigned int statesize;

	struct crypto_alg base;
};

struct ahash_request {
	struct crypto_async_request base;

	unsigned int nbytes;
	struct scatterlist *src;
	u8 *result;

	/* This field may only be used by the ahash API code. */
	void *priv;

	void *__ctx[] CRYPTO_MINALIGN_ATTR;
};

#define AHASH_REQUEST_ON_STACK(name, ahash) \
	char __##name##_desc[sizeof(struct ahash_request) + \
		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
	struct ahash_request *name = (void *)__##name##_desc

/**
 * struct ahash_alg - asynchronous message digest definition
 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
 *	  state of the HASH transformation at the beginning. This shall fill in
 *	  the internal structures used during the entire duration of the whole
 *	  transformation. No data processing happens at this point. Driver code
 *	  implementation must not use req->result.
 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
 *	   function actually pushes blocks of data from upper layers into the
 *	   driver, which then passes those to the hardware as seen fit. This
 *	   function must not finalize the HASH transformation by calculating the
 *	   final message digest as this only adds more data into the
 *	   transformation. This function shall not modify the transformation
 *	   context, as this function may be called in parallel with the same
 *	   transformation object. Data processing can happen synchronously
 *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
 *	   req->result.
 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
 *	   transformation and retrieves the resulting hash from the driver and
 *	   pushes it back to upper layers. No data processing happens at this
 *	   point unless hardware requires it to finish the transformation
 *	   (then the data buffered by the device driver is processed).
 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
 *	   combination of @update and @final calls issued in sequence. As some
 *	   hardware cannot do @update and @final separately, this callback was
 *	   added to allow such hardware to be used at least by IPsec. Data
 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
 *	   at this point.
 * @digest: Combination of @init and @update and @final. This function
 *	    effectively behaves as the entire chain of operations, @init,
 *	    @update and @final issued in sequence. Just like @finup, this was
 *	    added for hardware which cannot do even the @finup, but can only do
 *	    the whole transformation in one run. Data processing can happen
 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
 * @setkey: Set optional key used by the hashing algorithm. Intended to push
 *	    optional key used by the hashing algorithm from upper layers into
 *	    the driver. This function can store the key in the transformation
 *	    context or can outright program it into the hardware. In the former
 *	    case, one must be careful to program the key into the hardware at
 *	    appropriate time and one must be careful that .setkey() can be
 *	    called multiple times during the existence of the transformation
 *	    object. Not  all hashing algorithms do implement this function as it
 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
 *	    this function. This function must be called before any other of the
 *	    @init, @update, @final, @finup, @digest is called. No data
 *	    processing happens at this point.
 * @export: Export partial state of the transformation. This function dumps the
 *	    entire state of the ongoing transformation into a provided block of
 *	    data so it can be @import 'ed back later on. This is useful in case
 *	    you want to save partial result of the transformation after
 *	    processing certain amount of data and reload this partial result
 *	    multiple times later on for multiple re-use. No data processing
 *	    happens at this point. Driver must not use req->result.
 * @import: Import partial state of the transformation. This function loads the
 *	    entire state of the ongoing transformation from a provided block of
 *	    data so the transformation can continue from this point onward. No
 *	    data processing happens at this point. Driver must not use
 *	    req->result.
 * @halg: see struct hash_alg_common
 */
struct ahash_alg {
	int (*init)(struct ahash_request *req);
	int (*update)(struct ahash_request *req);
	int (*final)(struct ahash_request *req);
	int (*finup)(struct ahash_request *req);
	int (*digest)(struct ahash_request *req);
	int (*export)(struct ahash_request *req, void *out);
	int (*import)(struct ahash_request *req, const void *in);
	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
		      unsigned int keylen);

	struct hash_alg_common halg;
};

struct shash_desc {
	struct crypto_shash *tfm;
	void *__ctx[] CRYPTO_MINALIGN_ATTR;
};

#define HASH_MAX_DIGESTSIZE	 64

/*
 * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
 * containing a 'struct sha3_state'.
 */
#define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)

#define HASH_MAX_STATESIZE	512

#define SHASH_DESC_ON_STACK(shash, ctx)				  \
	char __##shash##_desc[sizeof(struct shash_desc) +	  \
		HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc

/**
 * struct shash_alg - synchronous message digest definition
 * @init: see struct ahash_alg
 * @update: see struct ahash_alg
 * @final: see struct ahash_alg
 * @finup: see struct ahash_alg
 * @digest: see struct ahash_alg
 * @export: see struct ahash_alg
 * @import: see struct ahash_alg
 * @setkey: see struct ahash_alg
 * @digestsize: see struct ahash_alg
 * @statesize: see struct ahash_alg
 * @descsize: Size of the operational state for the message digest. This state
 * 	      size is the memory size that needs to be allocated for
 *	      shash_desc.__ctx
 * @base: internally used
 */
struct shash_alg {
	int (*init)(struct shash_desc *desc);
	int (*update)(struct shash_desc *desc, const u8 *data,
		      unsigned int len);
	int (*final)(struct shash_desc *desc, u8 *out);
	int (*finup)(struct shash_desc *desc, const u8 *data,
		     unsigned int len, u8 *out);
	int (*digest)(struct shash_desc *desc, const u8 *data,
		      unsigned int len, u8 *out);
	int (*export)(struct shash_desc *desc, void *out);
	int (*import)(struct shash_desc *desc, const void *in);
	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
		      unsigned int keylen);

	unsigned int descsize;

	/* These fields must match hash_alg_common. */
	unsigned int digestsize
		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
	unsigned int statesize;

	struct crypto_alg base;
};

struct crypto_ahash {
	int (*init)(struct ahash_request *req);
	int (*update)(struct ahash_request *req);
	int (*final)(struct ahash_request *req);
	int (*finup)(struct ahash_request *req);
	int (*digest)(struct ahash_request *req);
	int (*export)(struct ahash_request *req, void *out);
	int (*import)(struct ahash_request *req, const void *in);
	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
		      unsigned int keylen);

	unsigned int reqsize;
	struct crypto_tfm base;
};

struct crypto_shash {
	unsigned int descsize;
	struct crypto_tfm base;
};

/**
 * DOC: Asynchronous Message Digest API
 *
 * The asynchronous message digest API is used with the ciphers of type
 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
 *
 * The asynchronous cipher operation discussion provided for the
 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
 */

static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
{
	return container_of(tfm, struct crypto_ahash, base);
}

/**
 * crypto_alloc_ahash() - allocate ahash cipher handle
 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 *	      ahash cipher
 * @type: specifies the type of the cipher
 * @mask: specifies the mask for the cipher
 *
 * Allocate a cipher handle for an ahash. The returned struct
 * crypto_ahash is the cipher handle that is required for any subsequent
 * API invocation for that ahash.
 *
 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 *	   of an error, PTR_ERR() returns the error code.
 */
struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
					u32 mask);

static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
{
	return &tfm->base;
}

/**
 * crypto_free_ahash() - zeroize and free the ahash handle
 * @tfm: cipher handle to be freed
 */
static inline void crypto_free_ahash(struct crypto_ahash *tfm)
{
	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
}

/**
 * crypto_has_ahash() - Search for the availability of an ahash.
 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 *	      ahash
 * @type: specifies the type of the ahash
 * @mask: specifies the mask for the ahash
 *
 * Return: true when the ahash is known to the kernel crypto API; false
 *	   otherwise
 */
int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);

static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
{
	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
}

static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
{
	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
}

static inline unsigned int crypto_ahash_alignmask(
	struct crypto_ahash *tfm)
{
	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
}

/**
 * crypto_ahash_blocksize() - obtain block size for cipher
 * @tfm: cipher handle
 *
 * The block size for the message digest cipher referenced with the cipher
 * handle is returned.
 *
 * Return: block size of cipher
 */
static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
{
	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
}

static inline struct hash_alg_common *__crypto_hash_alg_common(
	struct crypto_alg *alg)
{
	return container_of(alg, struct hash_alg_common, base);
}

static inline struct hash_alg_common *crypto_hash_alg_common(
	struct crypto_ahash *tfm)
{
	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
}

/**
 * crypto_ahash_digestsize() - obtain message digest size
 * @tfm: cipher handle
 *
 * The size for the message digest created by the message digest cipher
 * referenced with the cipher handle is returned.
 *
 *
 * Return: message digest size of cipher
 */
static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
{
	return crypto_hash_alg_common(tfm)->digestsize;
}

/**
 * crypto_ahash_statesize() - obtain size of the ahash state
 * @tfm: cipher handle
 *
 * Return the size of the ahash state. With the crypto_ahash_export()
 * function, the caller can export the state into a buffer whose size is
 * defined with this function.
 *
 * Return: size of the ahash state
 */
static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
{
	return crypto_hash_alg_common(tfm)->statesize;
}

static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
{
	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
}

static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
{
	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
}

static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
{
	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
}

/**
 * crypto_ahash_reqtfm() - obtain cipher handle from request
 * @req: asynchronous request handle that contains the reference to the ahash
 *	 cipher handle
 *
 * Return the ahash cipher handle that is registered with the asynchronous
 * request handle ahash_request.
 *
 * Return: ahash cipher handle
 */
static inline struct crypto_ahash *crypto_ahash_reqtfm(
	struct ahash_request *req)
{
	return __crypto_ahash_cast(req->base.tfm);
}

/**
 * crypto_ahash_reqsize() - obtain size of the request data structure
 * @tfm: cipher handle
 *
 * Return: size of the request data
 */
static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
{
	return tfm->reqsize;
}

static inline void *ahash_request_ctx(struct ahash_request *req)
{
	return req->__ctx;
}

/**
 * crypto_ahash_setkey - set key for cipher handle
 * @tfm: cipher handle
 * @key: buffer holding the key
 * @keylen: length of the key in bytes
 *
 * The caller provided key is set for the ahash cipher. The cipher
 * handle must point to a keyed hash in order for this function to succeed.
 *
 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 */
int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
			unsigned int keylen);

/**
 * crypto_ahash_finup() - update and finalize message digest
 * @req: reference to the ahash_request handle that holds all information
 *	 needed to perform the cipher operation
 *
 * This function is a "short-hand" for the function calls of
 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 * meaning as discussed for those separate functions.
 *
 * Return: see crypto_ahash_final()
 */
int crypto_ahash_finup(struct ahash_request *req);

/**
 * crypto_ahash_final() - calculate message digest
 * @req: reference to the ahash_request handle that holds all information
 *	 needed to perform the cipher operation
 *
 * Finalize the message digest operation and create the message digest
 * based on all data added to the cipher handle. The message digest is placed
 * into the output buffer registered with the ahash_request handle.
 *
 * Return:
 * 0		if the message digest was successfully calculated;
 * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
 * -EBUSY	if queue is full and request should be resubmitted later;
 * other < 0	if an error occurred
 */
int crypto_ahash_final(struct ahash_request *req);

/**
 * crypto_ahash_digest() - calculate message digest for a buffer
 * @req: reference to the ahash_request handle that holds all information
 *	 needed to perform the cipher operation
 *
 * This function is a "short-hand" for the function calls of crypto_ahash_init,
 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 * meaning as discussed for those separate three functions.
 *
 * Return: see crypto_ahash_final()
 */
int crypto_ahash_digest(struct ahash_request *req);

/**
 * crypto_ahash_export() - extract current message digest state
 * @req: reference to the ahash_request handle whose state is exported
 * @out: output buffer of sufficient size that can hold the hash state
 *
 * This function exports the hash state of the ahash_request handle into the
 * caller-allocated output buffer out which must have sufficient size (e.g. by
 * calling crypto_ahash_statesize()).
 *
 * Return: 0 if the export was successful; < 0 if an error occurred
 */
static inline int crypto_ahash_export(struct ahash_request *req, void *out)
{
	return crypto_ahash_reqtfm(req)->export(req, out);
}

/**
 * crypto_ahash_import() - import message digest state
 * @req: reference to ahash_request handle the state is imported into
 * @in: buffer holding the state
 *
 * This function imports the hash state into the ahash_request handle from the
 * input buffer. That buffer should have been generated with the
 * crypto_ahash_export function.
 *
 * Return: 0 if the import was successful; < 0 if an error occurred
 */
static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);

	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
		return -ENOKEY;

	return tfm->import(req, in);
}

/**
 * crypto_ahash_init() - (re)initialize message digest handle
 * @req: ahash_request handle that already is initialized with all necessary
 *	 data using the ahash_request_* API functions
 *
 * The call (re-)initializes the message digest referenced by the ahash_request
 * handle. Any potentially existing state created by previous operations is
 * discarded.
 *
 * Return: see crypto_ahash_final()
 */
static inline int crypto_ahash_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);

	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
		return -ENOKEY;

	return tfm->init(req);
}

/**
 * crypto_ahash_update() - add data to message digest for processing
 * @req: ahash_request handle that was previously initialized with the
 *	 crypto_ahash_init call.
 *
 * Updates the message digest state of the &ahash_request handle. The input data
 * is pointed to by the scatter/gather list registered in the &ahash_request
 * handle
 *
 * Return: see crypto_ahash_final()
 */
static inline int crypto_ahash_update(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct crypto_alg *alg = tfm->base.__crt_alg;
	unsigned int nbytes = req->nbytes;
	int ret;

	crypto_stats_get(alg);
	ret = crypto_ahash_reqtfm(req)->update(req);
	crypto_stats_ahash_update(nbytes, ret, alg);
	return ret;
}

/**
 * DOC: Asynchronous Hash Request Handle
 *
 * The &ahash_request data structure contains all pointers to data
 * required for the asynchronous cipher operation. This includes the cipher
 * handle (which can be used by multiple &ahash_request instances), pointer
 * to plaintext and the message digest output buffer, asynchronous callback
 * function, etc. It acts as a handle to the ahash_request_* API calls in a
 * similar way as ahash handle to the crypto_ahash_* API calls.
 */

/**
 * ahash_request_set_tfm() - update cipher handle reference in request
 * @req: request handle to be modified
 * @tfm: cipher handle that shall be added to the request handle
 *
 * Allow the caller to replace the existing ahash handle in the request
 * data structure with a different one.
 */
static inline void ahash_request_set_tfm(struct ahash_request *req,
					 struct crypto_ahash *tfm)
{
	req->base.tfm = crypto_ahash_tfm(tfm);
}

/**
 * ahash_request_alloc() - allocate request data structure
 * @tfm: cipher handle to be registered with the request
 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 *
 * Allocate the request data structure that must be used with the ahash
 * message digest API calls. During
 * the allocation, the provided ahash handle
 * is registered in the request data structure.
 *
 * Return: allocated request handle in case of success, or NULL if out of memory
 */
static inline struct ahash_request *ahash_request_alloc(
	struct crypto_ahash *tfm, gfp_t gfp)
{
	struct ahash_request *req;

	req = kmalloc(sizeof(struct ahash_request) +
		      crypto_ahash_reqsize(tfm), gfp);

	if (likely(req))
		ahash_request_set_tfm(req, tfm);

	return req;
}

/**
 * ahash_request_free() - zeroize and free the request data structure
 * @req: request data structure cipher handle to be freed
 */
static inline void ahash_request_free(struct ahash_request *req)
{
	kzfree(req);
}

static inline void ahash_request_zero(struct ahash_request *req)
{
	memzero_explicit(req, sizeof(*req) +
			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
}

static inline struct ahash_request *ahash_request_cast(
	struct crypto_async_request *req)
{
	return container_of(req, struct ahash_request, base);
}

/**
 * ahash_request_set_callback() - set asynchronous callback function
 * @req: request handle
 * @flags: specify zero or an ORing of the flags
 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 *	   increase the wait queue beyond the initial maximum size;
 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 * @compl: callback function pointer to be registered with the request handle
 * @data: The data pointer refers to memory that is not used by the kernel
 *	  crypto API, but provided to the callback function for it to use. Here,
 *	  the caller can provide a reference to memory the callback function can
 *	  operate on. As the callback function is invoked asynchronously to the
 *	  related functionality, it may need to access data structures of the
 *	  related functionality which can be referenced using this pointer. The
 *	  callback function can access the memory via the "data" field in the
 *	  &crypto_async_request data structure provided to the callback function.
 *
 * This function allows setting the callback function that is triggered once
 * the cipher operation completes.
 *
 * The callback function is registered with the &ahash_request handle and
 * must comply with the following template::
 *
 *	void callback_function(struct crypto_async_request *req, int error)
 */
static inline void ahash_request_set_callback(struct ahash_request *req,
					      u32 flags,
					      crypto_completion_t compl,
					      void *data)
{
	req->base.complete = compl;
	req->base.data = data;
	req->base.flags = flags;
}

/**
 * ahash_request_set_crypt() - set data buffers
 * @req: ahash_request handle to be updated
 * @src: source scatter/gather list
 * @result: buffer that is filled with the message digest -- the caller must
 *	    ensure that the buffer has sufficient space by, for example, calling
 *	    crypto_ahash_digestsize()
 * @nbytes: number of bytes to process from the source scatter/gather list
 *
 * By using this call, the caller references the source scatter/gather list.
 * The source scatter/gather list points to the data the message digest is to
 * be calculated for.
 */
static inline void ahash_request_set_crypt(struct ahash_request *req,
					   struct scatterlist *src, u8 *result,
					   unsigned int nbytes)
{
	req->src = src;
	req->nbytes = nbytes;
	req->result = result;
}

/**
 * DOC: Synchronous Message Digest API
 *
 * The synchronous message digest API is used with the ciphers of type
 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
 *
 * The message digest API is able to maintain state information for the
 * caller.
 *
 * The synchronous message digest API can store user-related context in in its
 * shash_desc request data structure.
 */

/**
 * crypto_alloc_shash() - allocate message digest handle
 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 *	      message digest cipher
 * @type: specifies the type of the cipher
 * @mask: specifies the mask for the cipher
 *
 * Allocate a cipher handle for a message digest. The returned &struct
 * crypto_shash is the cipher handle that is required for any subsequent
 * API invocation for that message digest.
 *
 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 *	   of an error, PTR_ERR() returns the error code.
 */
struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
					u32 mask);

static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
{
	return &tfm->base;
}

/**
 * crypto_free_shash() - zeroize and free the message digest handle
 * @tfm: cipher handle to be freed
 */
static inline void crypto_free_shash(struct crypto_shash *tfm)
{
	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
}

static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
{
	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
}

static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
{
	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
}

static inline unsigned int crypto_shash_alignmask(
	struct crypto_shash *tfm)
{
	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
}

/**
 * crypto_shash_blocksize() - obtain block size for cipher
 * @tfm: cipher handle
 *
 * The block size for the message digest cipher referenced with the cipher
 * handle is returned.
 *
 * Return: block size of cipher
 */
static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
{
	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
}

static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
{
	return container_of(alg, struct shash_alg, base);
}

static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
{
	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
}

/**
 * crypto_shash_digestsize() - obtain message digest size
 * @tfm: cipher handle
 *
 * The size for the message digest created by the message digest cipher
 * referenced with the cipher handle is returned.
 *
 * Return: digest size of cipher
 */
static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
{
	return crypto_shash_alg(tfm)->digestsize;
}

static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
{
	return crypto_shash_alg(tfm)->statesize;
}

static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
{
	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
}

static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
{
	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
}

static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
{
	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
}

/**
 * crypto_shash_descsize() - obtain the operational state size
 * @tfm: cipher handle
 *
 * The size of the operational state the cipher needs during operation is
 * returned for the hash referenced with the cipher handle. This size is
 * required to calculate the memory requirements to allow the caller allocating
 * sufficient memory for operational state.
 *
 * The operational state is defined with struct shash_desc where the size of
 * that data structure is to be calculated as
 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
 *
 * Return: size of the operational state
 */
static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
{
	return tfm->descsize;
}

static inline void *shash_desc_ctx(struct shash_desc *desc)
{
	return desc->__ctx;
}

/**
 * crypto_shash_setkey() - set key for message digest
 * @tfm: cipher handle
 * @key: buffer holding the key
 * @keylen: length of the key in bytes
 *
 * The caller provided key is set for the keyed message digest cipher. The
 * cipher handle must point to a keyed message digest cipher in order for this
 * function to succeed.
 *
 * Context: Any context.
 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 */
int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
			unsigned int keylen);

/**
 * crypto_shash_digest() - calculate message digest for buffer
 * @desc: see crypto_shash_final()
 * @data: see crypto_shash_update()
 * @len: see crypto_shash_update()
 * @out: see crypto_shash_final()
 *
 * This function is a "short-hand" for the function calls of crypto_shash_init,
 * crypto_shash_update and crypto_shash_final. The parameters have the same
 * meaning as discussed for those separate three functions.
 *
 * Context: Any context.
 * Return: 0 if the message digest creation was successful; < 0 if an error
 *	   occurred
 */
int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
			unsigned int len, u8 *out);

/**
 * crypto_shash_export() - extract operational state for message digest
 * @desc: reference to the operational state handle whose state is exported
 * @out: output buffer of sufficient size that can hold the hash state
 *
 * This function exports the hash state of the operational state handle into the
 * caller-allocated output buffer out which must have sufficient size (e.g. by
 * calling crypto_shash_descsize).
 *
 * Context: Any context.
 * Return: 0 if the export creation was successful; < 0 if an error occurred
 */
static inline int crypto_shash_export(struct shash_desc *desc, void *out)
{
	return crypto_shash_alg(desc->tfm)->export(desc, out);
}

/**
 * crypto_shash_import() - import operational state
 * @desc: reference to the operational state handle the state imported into
 * @in: buffer holding the state
 *
 * This function imports the hash state into the operational state handle from
 * the input buffer. That buffer should have been generated with the
 * crypto_ahash_export function.
 *
 * Context: Any context.
 * Return: 0 if the import was successful; < 0 if an error occurred
 */
static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
{
	struct crypto_shash *tfm = desc->tfm;

	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
		return -ENOKEY;

	return crypto_shash_alg(tfm)->import(desc, in);
}

/**
 * crypto_shash_init() - (re)initialize message digest
 * @desc: operational state handle that is already filled
 *
 * The call (re-)initializes the message digest referenced by the
 * operational state handle. Any potentially existing state created by
 * previous operations is discarded.
 *
 * Context: Any context.
 * Return: 0 if the message digest initialization was successful; < 0 if an
 *	   error occurred
 */
static inline int crypto_shash_init(struct shash_desc *desc)
{
	struct crypto_shash *tfm = desc->tfm;

	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
		return -ENOKEY;

	return crypto_shash_alg(tfm)->init(desc);
}

/**
 * crypto_shash_update() - add data to message digest for processing
 * @desc: operational state handle that is already initialized
 * @data: input data to be added to the message digest
 * @len: length of the input data
 *
 * Updates the message digest state of the operational state handle.
 *
 * Context: Any context.
 * Return: 0 if the message digest update was successful; < 0 if an error
 *	   occurred
 */
int crypto_shash_update(struct shash_desc *desc, const u8 *data,
			unsigned int len);

/**
 * crypto_shash_final() - calculate message digest
 * @desc: operational state handle that is already filled with data
 * @out: output buffer filled with the message digest
 *
 * Finalize the message digest operation and create the message digest
 * based on all data added to the cipher handle. The message digest is placed
 * into the output buffer. The caller must ensure that the output buffer is
 * large enough by using crypto_shash_digestsize.
 *
 * Context: Any context.
 * Return: 0 if the message digest creation was successful; < 0 if an error
 *	   occurred
 */
int crypto_shash_final(struct shash_desc *desc, u8 *out);

/**
 * crypto_shash_finup() - calculate message digest of buffer
 * @desc: see crypto_shash_final()
 * @data: see crypto_shash_update()
 * @len: see crypto_shash_update()
 * @out: see crypto_shash_final()
 *
 * This function is a "short-hand" for the function calls of
 * crypto_shash_update and crypto_shash_final. The parameters have the same
 * meaning as discussed for those separate functions.
 *
 * Context: Any context.
 * Return: 0 if the message digest creation was successful; < 0 if an error
 *	   occurred
 */
int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
		       unsigned int len, u8 *out);

static inline void shash_desc_zero(struct shash_desc *desc)
{
	memzero_explicit(desc,
			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
}

#endif	/* _CRYPTO_HASH_H */