summaryrefslogtreecommitdiff
path: root/include/asm-arm/spinlock.h
blob: 2b41ebbfa7ffe261841d8bd17835f24abe8750ea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H

#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif

/*
 * ARMv6 Spin-locking.
 *
 * We exclusively read the old value.  If it is zero, we may have
 * won the lock, so we try exclusively storing it.  A memory barrier
 * is required after we get a lock, and before we release it, because
 * V6 CPUs are assumed to have weakly ordered memory.
 *
 * Unlocked value: 0
 * Locked value: 1
 */

#define __raw_spin_is_locked(x)		((x)->lock != 0)
#define __raw_spin_unlock_wait(lock) \
	do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0)

#define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock)

static inline void __raw_spin_lock(raw_spinlock_t *lock)
{
	unsigned long tmp;

	__asm__ __volatile__(
"1:	ldrex	%0, [%1]\n"
"	teq	%0, #0\n"
#ifdef CONFIG_CPU_32v6K
"	wfene\n"
#endif
"	strexeq	%0, %2, [%1]\n"
"	teqeq	%0, #0\n"
"	bne	1b"
	: "=&r" (tmp)
	: "r" (&lock->lock), "r" (1)
	: "cc");

	smp_mb();
}

static inline int __raw_spin_trylock(raw_spinlock_t *lock)
{
	unsigned long tmp;

	__asm__ __volatile__(
"	ldrex	%0, [%1]\n"
"	teq	%0, #0\n"
"	strexeq	%0, %2, [%1]"
	: "=&r" (tmp)
	: "r" (&lock->lock), "r" (1)
	: "cc");

	if (tmp == 0) {
		smp_mb();
		return 1;
	} else {
		return 0;
	}
}

static inline void __raw_spin_unlock(raw_spinlock_t *lock)
{
	smp_mb();

	__asm__ __volatile__(
"	str	%1, [%0]\n"
#ifdef CONFIG_CPU_32v6K
"	mcr	p15, 0, %1, c7, c10, 4\n" /* DSB */
"	sev"
#endif
	:
	: "r" (&lock->lock), "r" (0)
	: "cc");
}

/*
 * RWLOCKS
 *
 *
 * Write locks are easy - we just set bit 31.  When unlocking, we can
 * just write zero since the lock is exclusively held.
 */

static inline void __raw_write_lock(raw_rwlock_t *rw)
{
	unsigned long tmp;

	__asm__ __volatile__(
"1:	ldrex	%0, [%1]\n"
"	teq	%0, #0\n"
#ifdef CONFIG_CPU_32v6K
"	wfene\n"
#endif
"	strexeq	%0, %2, [%1]\n"
"	teq	%0, #0\n"
"	bne	1b"
	: "=&r" (tmp)
	: "r" (&rw->lock), "r" (0x80000000)
	: "cc");

	smp_mb();
}

static inline int __raw_write_trylock(raw_rwlock_t *rw)
{
	unsigned long tmp;

	__asm__ __volatile__(
"1:	ldrex	%0, [%1]\n"
"	teq	%0, #0\n"
"	strexeq	%0, %2, [%1]"
	: "=&r" (tmp)
	: "r" (&rw->lock), "r" (0x80000000)
	: "cc");

	if (tmp == 0) {
		smp_mb();
		return 1;
	} else {
		return 0;
	}
}

static inline void __raw_write_unlock(raw_rwlock_t *rw)
{
	smp_mb();

	__asm__ __volatile__(
	"str	%1, [%0]\n"
#ifdef CONFIG_CPU_32v6K
"	mcr	p15, 0, %1, c7, c10, 4\n" /* DSB */
"	sev\n"
#endif
	:
	: "r" (&rw->lock), "r" (0)
	: "cc");
}

/* write_can_lock - would write_trylock() succeed? */
#define __raw_write_can_lock(x)		((x)->lock == 0)

/*
 * Read locks are a bit more hairy:
 *  - Exclusively load the lock value.
 *  - Increment it.
 *  - Store new lock value if positive, and we still own this location.
 *    If the value is negative, we've already failed.
 *  - If we failed to store the value, we want a negative result.
 *  - If we failed, try again.
 * Unlocking is similarly hairy.  We may have multiple read locks
 * currently active.  However, we know we won't have any write
 * locks.
 */
static inline void __raw_read_lock(raw_rwlock_t *rw)
{
	unsigned long tmp, tmp2;

	__asm__ __volatile__(
"1:	ldrex	%0, [%2]\n"
"	adds	%0, %0, #1\n"
"	strexpl	%1, %0, [%2]\n"
#ifdef CONFIG_CPU_32v6K
"	wfemi\n"
#endif
"	rsbpls	%0, %1, #0\n"
"	bmi	1b"
	: "=&r" (tmp), "=&r" (tmp2)
	: "r" (&rw->lock)
	: "cc");

	smp_mb();
}

static inline void __raw_read_unlock(raw_rwlock_t *rw)
{
	unsigned long tmp, tmp2;

	smp_mb();

	__asm__ __volatile__(
"1:	ldrex	%0, [%2]\n"
"	sub	%0, %0, #1\n"
"	strex	%1, %0, [%2]\n"
"	teq	%1, #0\n"
"	bne	1b"
#ifdef CONFIG_CPU_32v6K
"\n	cmp	%0, #0\n"
"	mcreq   p15, 0, %0, c7, c10, 4\n"
"	seveq"
#endif
	: "=&r" (tmp), "=&r" (tmp2)
	: "r" (&rw->lock)
	: "cc");
}

static inline int __raw_read_trylock(raw_rwlock_t *rw)
{
	unsigned long tmp, tmp2 = 1;

	__asm__ __volatile__(
"1:	ldrex	%0, [%2]\n"
"	adds	%0, %0, #1\n"
"	strexpl	%1, %0, [%2]\n"
	: "=&r" (tmp), "+r" (tmp2)
	: "r" (&rw->lock)
	: "cc");

	smp_mb();
	return tmp2 == 0;
}

/* read_can_lock - would read_trylock() succeed? */
#define __raw_read_can_lock(x)		((x)->lock < 0x80000000)

#define _raw_spin_relax(lock)	cpu_relax()
#define _raw_read_relax(lock)	cpu_relax()
#define _raw_write_relax(lock)	cpu_relax()

#endif /* __ASM_SPINLOCK_H */