summaryrefslogtreecommitdiff
path: root/fs/xfs/scrub/reap.c
blob: 847c6f83610214f13f1ce195d79453ab6eea7baf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2022-2023 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_extent_busy.h"
#include "xfs_ag.h"
#include "xfs_ag_resv.h"
#include "xfs_quota.h"
#include "xfs_qm.h"
#include "xfs_bmap.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/reap.h"

/*
 * Disposal of Blocks from Old Metadata
 *
 * Now that we've constructed a new btree to replace the damaged one, we want
 * to dispose of the blocks that (we think) the old btree was using.
 * Previously, we used the rmapbt to collect the extents (bitmap) with the
 * rmap owner corresponding to the tree we rebuilt, collected extents for any
 * blocks with the same rmap owner that are owned by another data structure
 * (sublist), and subtracted sublist from bitmap.  In theory the extents
 * remaining in bitmap are the old btree's blocks.
 *
 * Unfortunately, it's possible that the btree was crosslinked with other
 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
 * if the rmapbt says there is an owner of this block other than @oinfo, then
 * the block is crosslinked.  Remove the reverse mapping and continue.
 *
 * If there is one rmap record, we can free the block, which removes the
 * reverse mapping but doesn't add the block to the free space.  Our repair
 * strategy is to hope the other metadata objects crosslinked on this block
 * will be rebuilt (atop different blocks), thereby removing all the cross
 * links.
 *
 * If there are no rmap records at all, we also free the block.  If the btree
 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
 * supposed to be a rmap record and everything is ok.  For other btrees there
 * had to have been an rmap entry for the block to have ended up on @bitmap,
 * so if it's gone now there's something wrong and the fs will shut down.
 *
 * Note: If there are multiple rmap records with only the same rmap owner as
 * the btree we're trying to rebuild and the block is indeed owned by another
 * data structure with the same rmap owner, then the block will be in sublist
 * and therefore doesn't need disposal.  If there are multiple rmap records
 * with only the same rmap owner but the block is not owned by something with
 * the same rmap owner, the block will be freed.
 *
 * The caller is responsible for locking the AG headers for the entire rebuild
 * operation so that nothing else can sneak in and change the AG state while
 * we're not looking.  We must also invalidate any buffers associated with
 * @bitmap.
 */

/* Information about reaping extents after a repair. */
struct xrep_reap_state {
	struct xfs_scrub		*sc;

	/* Reverse mapping owner and metadata reservation type. */
	const struct xfs_owner_info	*oinfo;
	enum xfs_ag_resv_type		resv;

	/* Number of deferred reaps attached to the current transaction. */
	unsigned int			deferred;
};

/* Put a block back on the AGFL. */
STATIC int
xrep_put_freelist(
	struct xfs_scrub	*sc,
	xfs_agblock_t		agbno)
{
	struct xfs_buf		*agfl_bp;
	int			error;

	/* Make sure there's space on the freelist. */
	error = xrep_fix_freelist(sc, true);
	if (error)
		return error;

	/*
	 * Since we're "freeing" a lost block onto the AGFL, we have to
	 * create an rmap for the block prior to merging it or else other
	 * parts will break.
	 */
	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
			&XFS_RMAP_OINFO_AG);
	if (error)
		return error;

	/* Put the block on the AGFL. */
	error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
	if (error)
		return error;

	error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
			agfl_bp, agbno, 0);
	if (error)
		return error;
	xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
			XFS_EXTENT_BUSY_SKIP_DISCARD);

	return 0;
}

/* Try to invalidate the incore buffer for a block that we're about to free. */
STATIC void
xrep_block_reap_binval(
	struct xfs_scrub	*sc,
	xfs_fsblock_t		fsbno)
{
	struct xfs_buf		*bp = NULL;
	int			error;

	/*
	 * If there's an incore buffer for exactly this block, invalidate it.
	 * Avoid invalidating AG headers and post-EOFS blocks because we never
	 * own those.
	 */
	if (!xfs_verify_fsbno(sc->mp, fsbno))
		return;

	/*
	 * We assume that the lack of any other known owners means that the
	 * buffer can be locked without risk of deadlocking.
	 */
	error = xfs_buf_incore(sc->mp->m_ddev_targp,
			XFS_FSB_TO_DADDR(sc->mp, fsbno),
			XFS_FSB_TO_BB(sc->mp, 1), 0, &bp);
	if (error)
		return;

	xfs_trans_bjoin(sc->tp, bp);
	xfs_trans_binval(sc->tp, bp);
}

/* Dispose of a single block. */
STATIC int
xrep_reap_block(
	uint64_t			fsbno,
	void				*priv)
{
	struct xrep_reap_state		*rs = priv;
	struct xfs_scrub		*sc = rs->sc;
	struct xfs_btree_cur		*cur;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	bool				has_other_rmap;
	bool				need_roll = true;
	int				error;

	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);

	/* We don't support reaping file extents yet. */
	if (sc->ip != NULL || sc->sa.pag->pag_agno != agno) {
		ASSERT(0);
		return -EFSCORRUPTED;
	}

	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp, sc->sa.pag);

	/* Can we find any other rmappings? */
	error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo,
			&has_other_rmap);
	xfs_btree_del_cursor(cur, error);
	if (error)
		return error;

	/*
	 * If there are other rmappings, this block is cross linked and must
	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
	 * we were the only owner of the block, so free the extent, which will
	 * also remove the rmap.
	 *
	 * XXX: XFS doesn't support detecting the case where a single block
	 * metadata structure is crosslinked with a multi-block structure
	 * because the buffer cache doesn't detect aliasing problems, so we
	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
	 * blow on writeout, the filesystem will shut down, and the admin gets
	 * to run xfs_repair.
	 */
	if (has_other_rmap) {
		trace_xrep_dispose_unmap_extent(sc->sa.pag, agbno, 1);

		error = xfs_rmap_free(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno,
				1, rs->oinfo);
		if (error)
			return error;

		goto roll_out;
	}

	trace_xrep_dispose_free_extent(sc->sa.pag, agbno, 1);

	xrep_block_reap_binval(sc, fsbno);

	if (rs->resv == XFS_AG_RESV_AGFL) {
		error = xrep_put_freelist(sc, agbno);
	} else {
		/*
		 * Use deferred frees to get rid of the old btree blocks to try
		 * to minimize the window in which we could crash and lose the
		 * old blocks.  However, we still need to roll the transaction
		 * every 100 or so EFIs so that we don't exceed the log
		 * reservation.
		 */
		error = __xfs_free_extent_later(sc->tp, fsbno, 1, rs->oinfo,
				rs->resv, true);
		if (error)
			return error;
		rs->deferred++;
		need_roll = rs->deferred > 100;
	}
	if (error || !need_roll)
		return error;

roll_out:
	rs->deferred = 0;
	return xrep_roll_ag_trans(sc);
}

/* Dispose of every block of every extent in the bitmap. */
int
xrep_reap_extents(
	struct xfs_scrub		*sc,
	struct xbitmap			*bitmap,
	const struct xfs_owner_info	*oinfo,
	enum xfs_ag_resv_type		type)
{
	struct xrep_reap_state		rs = {
		.sc			= sc,
		.oinfo			= oinfo,
		.resv			= type,
	};
	int				error;

	ASSERT(xfs_has_rmapbt(sc->mp));

	error = xbitmap_walk_bits(bitmap, xrep_reap_block, &rs);
	if (error || rs.deferred == 0)
		return error;

	return xrep_roll_ag_trans(sc);
}