summaryrefslogtreecommitdiff
path: root/fs/netfs/read_helper.c
blob: 994ec22d40402b7a7c3c5206e434d114ca81298a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
// SPDX-License-Identifier: GPL-2.0-or-later
/* Network filesystem high-level read support.
 *
 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#include <linux/module.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/sched/mm.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/netfs.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/netfs.h>

MODULE_DESCRIPTION("Network fs support");
MODULE_AUTHOR("Red Hat, Inc.");
MODULE_LICENSE("GPL");

unsigned netfs_debug;
module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask");

static void netfs_rreq_work(struct work_struct *);
static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool);

static void netfs_put_subrequest(struct netfs_read_subrequest *subreq,
				 bool was_async)
{
	if (refcount_dec_and_test(&subreq->usage))
		__netfs_put_subrequest(subreq, was_async);
}

static struct netfs_read_request *netfs_alloc_read_request(
	const struct netfs_read_request_ops *ops, void *netfs_priv,
	struct file *file)
{
	static atomic_t debug_ids;
	struct netfs_read_request *rreq;

	rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL);
	if (rreq) {
		rreq->netfs_ops	= ops;
		rreq->netfs_priv = netfs_priv;
		rreq->inode	= file_inode(file);
		rreq->i_size	= i_size_read(rreq->inode);
		rreq->debug_id	= atomic_inc_return(&debug_ids);
		INIT_LIST_HEAD(&rreq->subrequests);
		INIT_WORK(&rreq->work, netfs_rreq_work);
		refcount_set(&rreq->usage, 1);
		__set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
		ops->init_rreq(rreq, file);
		netfs_stat(&netfs_n_rh_rreq);
	}

	return rreq;
}

static void netfs_get_read_request(struct netfs_read_request *rreq)
{
	refcount_inc(&rreq->usage);
}

static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq,
				     bool was_async)
{
	struct netfs_read_subrequest *subreq;

	while (!list_empty(&rreq->subrequests)) {
		subreq = list_first_entry(&rreq->subrequests,
					  struct netfs_read_subrequest, rreq_link);
		list_del(&subreq->rreq_link);
		netfs_put_subrequest(subreq, was_async);
	}
}

static void netfs_free_read_request(struct work_struct *work)
{
	struct netfs_read_request *rreq =
		container_of(work, struct netfs_read_request, work);
	netfs_rreq_clear_subreqs(rreq, false);
	if (rreq->netfs_priv)
		rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv);
	trace_netfs_rreq(rreq, netfs_rreq_trace_free);
	if (rreq->cache_resources.ops)
		rreq->cache_resources.ops->end_operation(&rreq->cache_resources);
	kfree(rreq);
	netfs_stat_d(&netfs_n_rh_rreq);
}

static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async)
{
	if (refcount_dec_and_test(&rreq->usage)) {
		if (was_async) {
			rreq->work.func = netfs_free_read_request;
			if (!queue_work(system_unbound_wq, &rreq->work))
				BUG();
		} else {
			netfs_free_read_request(&rreq->work);
		}
	}
}

/*
 * Allocate and partially initialise an I/O request structure.
 */
static struct netfs_read_subrequest *netfs_alloc_subrequest(
	struct netfs_read_request *rreq)
{
	struct netfs_read_subrequest *subreq;

	subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL);
	if (subreq) {
		INIT_LIST_HEAD(&subreq->rreq_link);
		refcount_set(&subreq->usage, 2);
		subreq->rreq = rreq;
		netfs_get_read_request(rreq);
		netfs_stat(&netfs_n_rh_sreq);
	}

	return subreq;
}

static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq)
{
	refcount_inc(&subreq->usage);
}

static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq,
				   bool was_async)
{
	struct netfs_read_request *rreq = subreq->rreq;

	trace_netfs_sreq(subreq, netfs_sreq_trace_free);
	kfree(subreq);
	netfs_stat_d(&netfs_n_rh_sreq);
	netfs_put_read_request(rreq, was_async);
}

/*
 * Clear the unread part of an I/O request.
 */
static void netfs_clear_unread(struct netfs_read_subrequest *subreq)
{
	struct iov_iter iter;

	iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
			subreq->start + subreq->transferred,
			subreq->len   - subreq->transferred);
	iov_iter_zero(iov_iter_count(&iter), &iter);
}

static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
					bool was_async)
{
	struct netfs_read_subrequest *subreq = priv;

	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
}

/*
 * Issue a read against the cache.
 * - Eats the caller's ref on subreq.
 */
static void netfs_read_from_cache(struct netfs_read_request *rreq,
				  struct netfs_read_subrequest *subreq,
				  bool seek_data)
{
	struct netfs_cache_resources *cres = &rreq->cache_resources;
	struct iov_iter iter;

	netfs_stat(&netfs_n_rh_read);
	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
			subreq->start + subreq->transferred,
			subreq->len   - subreq->transferred);

	cres->ops->read(cres, subreq->start, &iter, seek_data,
			netfs_cache_read_terminated, subreq);
}

/*
 * Fill a subrequest region with zeroes.
 */
static void netfs_fill_with_zeroes(struct netfs_read_request *rreq,
				   struct netfs_read_subrequest *subreq)
{
	netfs_stat(&netfs_n_rh_zero);
	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
	netfs_subreq_terminated(subreq, 0, false);
}

/*
 * Ask the netfs to issue a read request to the server for us.
 *
 * The netfs is expected to read from subreq->pos + subreq->transferred to
 * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
 * buffer prior to the transferred point as it might clobber dirty data
 * obtained from the cache.
 *
 * Alternatively, the netfs is allowed to indicate one of two things:
 *
 * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
 *   make progress.
 *
 * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
 *   cleared.
 */
static void netfs_read_from_server(struct netfs_read_request *rreq,
				   struct netfs_read_subrequest *subreq)
{
	netfs_stat(&netfs_n_rh_download);
	rreq->netfs_ops->issue_op(subreq);
}

/*
 * Release those waiting.
 */
static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async)
{
	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
	netfs_rreq_clear_subreqs(rreq, was_async);
	netfs_put_read_request(rreq, was_async);
}

/*
 * Deal with the completion of writing the data to the cache.  We have to clear
 * the PG_fscache bits on the pages involved and release the caller's ref.
 *
 * May be called in softirq mode and we inherit a ref from the caller.
 */
static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq,
					  bool was_async)
{
	struct netfs_read_subrequest *subreq;
	struct page *page;
	pgoff_t unlocked = 0;
	bool have_unlocked = false;

	rcu_read_lock();

	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);

		xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
			/* We might have multiple writes from the same huge
			 * page, but we mustn't unlock a page more than once.
			 */
			if (have_unlocked && page->index <= unlocked)
				continue;
			unlocked = page->index;
			end_page_fscache(page);
			have_unlocked = true;
		}
	}

	rcu_read_unlock();
	netfs_rreq_completed(rreq, was_async);
}

static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
				       bool was_async)
{
	struct netfs_read_subrequest *subreq = priv;
	struct netfs_read_request *rreq = subreq->rreq;

	if (IS_ERR_VALUE(transferred_or_error)) {
		netfs_stat(&netfs_n_rh_write_failed);
		trace_netfs_failure(rreq, subreq, transferred_or_error,
				    netfs_fail_copy_to_cache);
	} else {
		netfs_stat(&netfs_n_rh_write_done);
	}

	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);

	/* If we decrement nr_wr_ops to 0, the ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_wr_ops))
		netfs_rreq_unmark_after_write(rreq, was_async);

	netfs_put_subrequest(subreq, was_async);
}

/*
 * Perform any outstanding writes to the cache.  We inherit a ref from the
 * caller.
 */
static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq)
{
	struct netfs_cache_resources *cres = &rreq->cache_resources;
	struct netfs_read_subrequest *subreq, *next, *p;
	struct iov_iter iter;
	int ret;

	trace_netfs_rreq(rreq, netfs_rreq_trace_write);

	/* We don't want terminating writes trying to wake us up whilst we're
	 * still going through the list.
	 */
	atomic_inc(&rreq->nr_wr_ops);

	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
		if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) {
			list_del_init(&subreq->rreq_link);
			netfs_put_subrequest(subreq, false);
		}
	}

	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		/* Amalgamate adjacent writes */
		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
			next = list_next_entry(subreq, rreq_link);
			if (next->start != subreq->start + subreq->len)
				break;
			subreq->len += next->len;
			list_del_init(&next->rreq_link);
			netfs_put_subrequest(next, false);
		}

		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
					       rreq->i_size);
		if (ret < 0) {
			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
			continue;
		}

		iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
				subreq->start, subreq->len);

		atomic_inc(&rreq->nr_wr_ops);
		netfs_stat(&netfs_n_rh_write);
		netfs_get_read_subrequest(subreq);
		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
		cres->ops->write(cres, subreq->start, &iter,
				 netfs_rreq_copy_terminated, subreq);
	}

	/* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_wr_ops))
		netfs_rreq_unmark_after_write(rreq, false);
}

static void netfs_rreq_write_to_cache_work(struct work_struct *work)
{
	struct netfs_read_request *rreq =
		container_of(work, struct netfs_read_request, work);

	netfs_rreq_do_write_to_cache(rreq);
}

static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq,
				      bool was_async)
{
	if (was_async) {
		rreq->work.func = netfs_rreq_write_to_cache_work;
		if (!queue_work(system_unbound_wq, &rreq->work))
			BUG();
	} else {
		netfs_rreq_do_write_to_cache(rreq);
	}
}

/*
 * Unlock the pages in a read operation.  We need to set PG_fscache on any
 * pages we're going to write back before we unlock them.
 */
static void netfs_rreq_unlock(struct netfs_read_request *rreq)
{
	struct netfs_read_subrequest *subreq;
	struct page *page;
	unsigned int iopos, account = 0;
	pgoff_t start_page = rreq->start / PAGE_SIZE;
	pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
	bool subreq_failed = false;
	int i;

	XA_STATE(xas, &rreq->mapping->i_pages, start_page);

	if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
		__clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
		list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
			__clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags);
		}
	}

	/* Walk through the pagecache and the I/O request lists simultaneously.
	 * We may have a mixture of cached and uncached sections and we only
	 * really want to write out the uncached sections.  This is slightly
	 * complicated by the possibility that we might have huge pages with a
	 * mixture inside.
	 */
	subreq = list_first_entry(&rreq->subrequests,
				  struct netfs_read_subrequest, rreq_link);
	iopos = 0;
	subreq_failed = (subreq->error < 0);

	trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);

	rcu_read_lock();
	xas_for_each(&xas, page, last_page) {
		unsigned int pgpos = (page->index - start_page) * PAGE_SIZE;
		unsigned int pgend = pgpos + thp_size(page);
		bool pg_failed = false;

		for (;;) {
			if (!subreq) {
				pg_failed = true;
				break;
			}
			if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
				set_page_fscache(page);
			pg_failed |= subreq_failed;
			if (pgend < iopos + subreq->len)
				break;

			account += subreq->transferred;
			iopos += subreq->len;
			if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
				subreq = list_next_entry(subreq, rreq_link);
				subreq_failed = (subreq->error < 0);
			} else {
				subreq = NULL;
				subreq_failed = false;
			}
			if (pgend == iopos)
				break;
		}

		if (!pg_failed) {
			for (i = 0; i < thp_nr_pages(page); i++)
				flush_dcache_page(page);
			SetPageUptodate(page);
		}

		if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) {
			if (page->index == rreq->no_unlock_page &&
			    test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags))
				_debug("no unlock");
			else
				unlock_page(page);
		}
	}
	rcu_read_unlock();

	task_io_account_read(account);
	if (rreq->netfs_ops->done)
		rreq->netfs_ops->done(rreq);
}

/*
 * Handle a short read.
 */
static void netfs_rreq_short_read(struct netfs_read_request *rreq,
				  struct netfs_read_subrequest *subreq)
{
	__clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);

	netfs_stat(&netfs_n_rh_short_read);
	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);

	netfs_get_read_subrequest(subreq);
	atomic_inc(&rreq->nr_rd_ops);
	if (subreq->source == NETFS_READ_FROM_CACHE)
		netfs_read_from_cache(rreq, subreq, true);
	else
		netfs_read_from_server(rreq, subreq);
}

/*
 * Resubmit any short or failed operations.  Returns true if we got the rreq
 * ref back.
 */
static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq)
{
	struct netfs_read_subrequest *subreq;

	WARN_ON(in_interrupt());

	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);

	/* We don't want terminating submissions trying to wake us up whilst
	 * we're still going through the list.
	 */
	atomic_inc(&rreq->nr_rd_ops);

	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		if (subreq->error) {
			if (subreq->source != NETFS_READ_FROM_CACHE)
				break;
			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
			subreq->error = 0;
			netfs_stat(&netfs_n_rh_download_instead);
			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
			netfs_get_read_subrequest(subreq);
			atomic_inc(&rreq->nr_rd_ops);
			netfs_read_from_server(rreq, subreq);
		} else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) {
			netfs_rreq_short_read(rreq, subreq);
		}
	}

	/* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_rd_ops))
		return true;

	wake_up_var(&rreq->nr_rd_ops);
	return false;
}

/*
 * Check to see if the data read is still valid.
 */
static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq)
{
	struct netfs_read_subrequest *subreq;

	if (!rreq->netfs_ops->is_still_valid ||
	    rreq->netfs_ops->is_still_valid(rreq))
		return;

	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		if (subreq->source == NETFS_READ_FROM_CACHE) {
			subreq->error = -ESTALE;
			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
		}
	}
}

/*
 * Assess the state of a read request and decide what to do next.
 *
 * Note that we could be in an ordinary kernel thread, on a workqueue or in
 * softirq context at this point.  We inherit a ref from the caller.
 */
static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async)
{
	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);

again:
	netfs_rreq_is_still_valid(rreq);

	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
		if (netfs_rreq_perform_resubmissions(rreq))
			goto again;
		return;
	}

	netfs_rreq_unlock(rreq);

	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);

	if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags))
		return netfs_rreq_write_to_cache(rreq, was_async);

	netfs_rreq_completed(rreq, was_async);
}

static void netfs_rreq_work(struct work_struct *work)
{
	struct netfs_read_request *rreq =
		container_of(work, struct netfs_read_request, work);
	netfs_rreq_assess(rreq, false);
}

/*
 * Handle the completion of all outstanding I/O operations on a read request.
 * We inherit a ref from the caller.
 */
static void netfs_rreq_terminated(struct netfs_read_request *rreq,
				  bool was_async)
{
	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
	    was_async) {
		if (!queue_work(system_unbound_wq, &rreq->work))
			BUG();
	} else {
		netfs_rreq_assess(rreq, was_async);
	}
}

/**
 * netfs_subreq_terminated - Note the termination of an I/O operation.
 * @subreq: The I/O request that has terminated.
 * @transferred_or_error: The amount of data transferred or an error code.
 * @was_async: The termination was asynchronous
 *
 * This tells the read helper that a contributory I/O operation has terminated,
 * one way or another, and that it should integrate the results.
 *
 * The caller indicates in @transferred_or_error the outcome of the operation,
 * supplying a positive value to indicate the number of bytes transferred, 0 to
 * indicate a failure to transfer anything that should be retried or a negative
 * error code.  The helper will look after reissuing I/O operations as
 * appropriate and writing downloaded data to the cache.
 *
 * If @was_async is true, the caller might be running in softirq or interrupt
 * context and we can't sleep.
 */
void netfs_subreq_terminated(struct netfs_read_subrequest *subreq,
			     ssize_t transferred_or_error,
			     bool was_async)
{
	struct netfs_read_request *rreq = subreq->rreq;
	int u;

	_enter("[%u]{%llx,%lx},%zd",
	       subreq->debug_index, subreq->start, subreq->flags,
	       transferred_or_error);

	switch (subreq->source) {
	case NETFS_READ_FROM_CACHE:
		netfs_stat(&netfs_n_rh_read_done);
		break;
	case NETFS_DOWNLOAD_FROM_SERVER:
		netfs_stat(&netfs_n_rh_download_done);
		break;
	default:
		break;
	}

	if (IS_ERR_VALUE(transferred_or_error)) {
		subreq->error = transferred_or_error;
		trace_netfs_failure(rreq, subreq, transferred_or_error,
				    netfs_fail_read);
		goto failed;
	}

	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
		 rreq->debug_id, subreq->debug_index,
		 transferred_or_error, subreq->len, subreq->transferred))
		transferred_or_error = subreq->len - subreq->transferred;

	subreq->error = 0;
	subreq->transferred += transferred_or_error;
	if (subreq->transferred < subreq->len)
		goto incomplete;

complete:
	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
	if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
		set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);

out:
	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);

	/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
	u = atomic_dec_return(&rreq->nr_rd_ops);
	if (u == 0)
		netfs_rreq_terminated(rreq, was_async);
	else if (u == 1)
		wake_up_var(&rreq->nr_rd_ops);

	netfs_put_subrequest(subreq, was_async);
	return;

incomplete:
	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
		netfs_clear_unread(subreq);
		subreq->transferred = subreq->len;
		goto complete;
	}

	if (transferred_or_error == 0) {
		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
			subreq->error = -ENODATA;
			goto failed;
		}
	} else {
		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
	}

	__set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
	goto out;

failed:
	if (subreq->source == NETFS_READ_FROM_CACHE) {
		netfs_stat(&netfs_n_rh_read_failed);
		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
	} else {
		netfs_stat(&netfs_n_rh_download_failed);
		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
		rreq->error = subreq->error;
	}
	goto out;
}
EXPORT_SYMBOL(netfs_subreq_terminated);

static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq,
						       loff_t i_size)
{
	struct netfs_read_request *rreq = subreq->rreq;
	struct netfs_cache_resources *cres = &rreq->cache_resources;

	if (cres->ops)
		return cres->ops->prepare_read(subreq, i_size);
	if (subreq->start >= rreq->i_size)
		return NETFS_FILL_WITH_ZEROES;
	return NETFS_DOWNLOAD_FROM_SERVER;
}

/*
 * Work out what sort of subrequest the next one will be.
 */
static enum netfs_read_source
netfs_rreq_prepare_read(struct netfs_read_request *rreq,
			struct netfs_read_subrequest *subreq)
{
	enum netfs_read_source source;

	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);

	source = netfs_cache_prepare_read(subreq, rreq->i_size);
	if (source == NETFS_INVALID_READ)
		goto out;

	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
		/* Call out to the netfs to let it shrink the request to fit
		 * its own I/O sizes and boundaries.  If it shinks it here, it
		 * will be called again to make simultaneous calls; if it wants
		 * to make serial calls, it can indicate a short read and then
		 * we will call it again.
		 */
		if (subreq->len > rreq->i_size - subreq->start)
			subreq->len = rreq->i_size - subreq->start;

		if (rreq->netfs_ops->clamp_length &&
		    !rreq->netfs_ops->clamp_length(subreq)) {
			source = NETFS_INVALID_READ;
			goto out;
		}
	}

	if (WARN_ON(subreq->len == 0))
		source = NETFS_INVALID_READ;

out:
	subreq->source = source;
	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
	return source;
}

/*
 * Slice off a piece of a read request and submit an I/O request for it.
 */
static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq,
				    unsigned int *_debug_index)
{
	struct netfs_read_subrequest *subreq;
	enum netfs_read_source source;

	subreq = netfs_alloc_subrequest(rreq);
	if (!subreq)
		return false;

	subreq->debug_index	= (*_debug_index)++;
	subreq->start		= rreq->start + rreq->submitted;
	subreq->len		= rreq->len   - rreq->submitted;

	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
	list_add_tail(&subreq->rreq_link, &rreq->subrequests);

	/* Call out to the cache to find out what it can do with the remaining
	 * subset.  It tells us in subreq->flags what it decided should be done
	 * and adjusts subreq->len down if the subset crosses a cache boundary.
	 *
	 * Then when we hand the subset, it can choose to take a subset of that
	 * (the starts must coincide), in which case, we go around the loop
	 * again and ask it to download the next piece.
	 */
	source = netfs_rreq_prepare_read(rreq, subreq);
	if (source == NETFS_INVALID_READ)
		goto subreq_failed;

	atomic_inc(&rreq->nr_rd_ops);

	rreq->submitted += subreq->len;

	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
	switch (source) {
	case NETFS_FILL_WITH_ZEROES:
		netfs_fill_with_zeroes(rreq, subreq);
		break;
	case NETFS_DOWNLOAD_FROM_SERVER:
		netfs_read_from_server(rreq, subreq);
		break;
	case NETFS_READ_FROM_CACHE:
		netfs_read_from_cache(rreq, subreq, false);
		break;
	default:
		BUG();
	}

	return true;

subreq_failed:
	rreq->error = subreq->error;
	netfs_put_subrequest(subreq, false);
	return false;
}

static void netfs_cache_expand_readahead(struct netfs_read_request *rreq,
					 loff_t *_start, size_t *_len, loff_t i_size)
{
	struct netfs_cache_resources *cres = &rreq->cache_resources;

	if (cres->ops && cres->ops->expand_readahead)
		cres->ops->expand_readahead(cres, _start, _len, i_size);
}

static void netfs_rreq_expand(struct netfs_read_request *rreq,
			      struct readahead_control *ractl)
{
	/* Give the cache a chance to change the request parameters.  The
	 * resultant request must contain the original region.
	 */
	netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);

	/* Give the netfs a chance to change the request parameters.  The
	 * resultant request must contain the original region.
	 */
	if (rreq->netfs_ops->expand_readahead)
		rreq->netfs_ops->expand_readahead(rreq);

	/* Expand the request if the cache wants it to start earlier.  Note
	 * that the expansion may get further extended if the VM wishes to
	 * insert THPs and the preferred start and/or end wind up in the middle
	 * of THPs.
	 *
	 * If this is the case, however, the THP size should be an integer
	 * multiple of the cache granule size, so we get a whole number of
	 * granules to deal with.
	 */
	if (rreq->start  != readahead_pos(ractl) ||
	    rreq->len != readahead_length(ractl)) {
		readahead_expand(ractl, rreq->start, rreq->len);
		rreq->start  = readahead_pos(ractl);
		rreq->len = readahead_length(ractl);

		trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
				 netfs_read_trace_expanded);
	}
}

/**
 * netfs_readahead - Helper to manage a read request
 * @ractl: The description of the readahead request
 * @ops: The network filesystem's operations for the helper to use
 * @netfs_priv: Private netfs data to be retained in the request
 *
 * Fulfil a readahead request by drawing data from the cache if possible, or
 * the netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O
 * requests from different sources will get munged together.  If necessary, the
 * readahead window can be expanded in either direction to a more convenient
 * alighment for RPC efficiency or to make storage in the cache feasible.
 *
 * The calling netfs must provide a table of operations, only one of which,
 * issue_op, is mandatory.  It may also be passed a private token, which will
 * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
 *
 * This is usable whether or not caching is enabled.
 */
void netfs_readahead(struct readahead_control *ractl,
		     const struct netfs_read_request_ops *ops,
		     void *netfs_priv)
{
	struct netfs_read_request *rreq;
	struct page *page;
	unsigned int debug_index = 0;
	int ret;

	_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));

	if (readahead_count(ractl) == 0)
		goto cleanup;

	rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file);
	if (!rreq)
		goto cleanup;
	rreq->mapping	= ractl->mapping;
	rreq->start	= readahead_pos(ractl);
	rreq->len	= readahead_length(ractl);

	if (ops->begin_cache_operation) {
		ret = ops->begin_cache_operation(rreq);
		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
			goto cleanup_free;
	}

	netfs_stat(&netfs_n_rh_readahead);
	trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
			 netfs_read_trace_readahead);

	netfs_rreq_expand(rreq, ractl);

	atomic_set(&rreq->nr_rd_ops, 1);
	do {
		if (!netfs_rreq_submit_slice(rreq, &debug_index))
			break;

	} while (rreq->submitted < rreq->len);

	/* Drop the refs on the pages here rather than in the cache or
	 * filesystem.  The locks will be dropped in netfs_rreq_unlock().
	 */
	while ((page = readahead_page(ractl)))
		put_page(page);

	/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
	if (atomic_dec_and_test(&rreq->nr_rd_ops))
		netfs_rreq_assess(rreq, false);
	return;

cleanup_free:
	netfs_put_read_request(rreq, false);
	return;
cleanup:
	if (netfs_priv)
		ops->cleanup(ractl->mapping, netfs_priv);
	return;
}
EXPORT_SYMBOL(netfs_readahead);

/**
 * netfs_readpage - Helper to manage a readpage request
 * @file: The file to read from
 * @page: The page to read
 * @ops: The network filesystem's operations for the helper to use
 * @netfs_priv: Private netfs data to be retained in the request
 *
 * Fulfil a readpage request by drawing data from the cache if possible, or the
 * netfs if not.  Space beyond the EOF is zero-filled.  Multiple I/O requests
 * from different sources will get munged together.
 *
 * The calling netfs must provide a table of operations, only one of which,
 * issue_op, is mandatory.  It may also be passed a private token, which will
 * be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
 *
 * This is usable whether or not caching is enabled.
 */
int netfs_readpage(struct file *file,
		   struct page *page,
		   const struct netfs_read_request_ops *ops,
		   void *netfs_priv)
{
	struct netfs_read_request *rreq;
	unsigned int debug_index = 0;
	int ret;

	_enter("%lx", page_index(page));

	rreq = netfs_alloc_read_request(ops, netfs_priv, file);
	if (!rreq) {
		if (netfs_priv)
			ops->cleanup(netfs_priv, page_file_mapping(page));
		unlock_page(page);
		return -ENOMEM;
	}
	rreq->mapping	= page_file_mapping(page);
	rreq->start	= page_file_offset(page);
	rreq->len	= thp_size(page);

	if (ops->begin_cache_operation) {
		ret = ops->begin_cache_operation(rreq);
		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) {
			unlock_page(page);
			goto out;
		}
	}

	netfs_stat(&netfs_n_rh_readpage);
	trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);

	netfs_get_read_request(rreq);

	atomic_set(&rreq->nr_rd_ops, 1);
	do {
		if (!netfs_rreq_submit_slice(rreq, &debug_index))
			break;

	} while (rreq->submitted < rreq->len);

	/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
	 * the service code isn't punted off to a random thread pool to
	 * process.
	 */
	do {
		wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
		netfs_rreq_assess(rreq, false);
	} while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags));

	ret = rreq->error;
	if (ret == 0 && rreq->submitted < rreq->len) {
		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage);
		ret = -EIO;
	}
out:
	netfs_put_read_request(rreq, false);
	return ret;
}
EXPORT_SYMBOL(netfs_readpage);

/**
 * netfs_skip_page_read - prep a page for writing without reading first
 * @page: page being prepared
 * @pos: starting position for the write
 * @len: length of write
 *
 * In some cases, write_begin doesn't need to read at all:
 * - full page write
 * - write that lies in a page that is completely beyond EOF
 * - write that covers the the page from start to EOF or beyond it
 *
 * If any of these criteria are met, then zero out the unwritten parts
 * of the page and return true. Otherwise, return false.
 */
static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len)
{
	struct inode *inode = page->mapping->host;
	loff_t i_size = i_size_read(inode);
	size_t offset = offset_in_thp(page, pos);

	/* Full page write */
	if (offset == 0 && len >= thp_size(page))
		return true;

	/* pos beyond last page in the file */
	if (pos - offset >= i_size)
		goto zero_out;

	/* Write that covers from the start of the page to EOF or beyond */
	if (offset == 0 && (pos + len) >= i_size)
		goto zero_out;

	return false;
zero_out:
	zero_user_segments(page, 0, offset, offset + len, thp_size(page));
	return true;
}

/**
 * netfs_write_begin - Helper to prepare for writing
 * @file: The file to read from
 * @mapping: The mapping to read from
 * @pos: File position at which the write will begin
 * @len: The length of the write (may extend beyond the end of the page chosen)
 * @flags: AOP_* flags
 * @_page: Where to put the resultant page
 * @_fsdata: Place for the netfs to store a cookie
 * @ops: The network filesystem's operations for the helper to use
 * @netfs_priv: Private netfs data to be retained in the request
 *
 * Pre-read data for a write-begin request by drawing data from the cache if
 * possible, or the netfs if not.  Space beyond the EOF is zero-filled.
 * Multiple I/O requests from different sources will get munged together.  If
 * necessary, the readahead window can be expanded in either direction to a
 * more convenient alighment for RPC efficiency or to make storage in the cache
 * feasible.
 *
 * The calling netfs must provide a table of operations, only one of which,
 * issue_op, is mandatory.
 *
 * The check_write_begin() operation can be provided to check for and flush
 * conflicting writes once the page is grabbed and locked.  It is passed a
 * pointer to the fsdata cookie that gets returned to the VM to be passed to
 * write_end.  It is permitted to sleep.  It should return 0 if the request
 * should go ahead; unlock the page and return -EAGAIN to cause the page to be
 * regot; or return an error.
 *
 * This is usable whether or not caching is enabled.
 */
int netfs_write_begin(struct file *file, struct address_space *mapping,
		      loff_t pos, unsigned int len, unsigned int flags,
		      struct page **_page, void **_fsdata,
		      const struct netfs_read_request_ops *ops,
		      void *netfs_priv)
{
	struct netfs_read_request *rreq;
	struct page *page, *xpage;
	struct inode *inode = file_inode(file);
	unsigned int debug_index = 0;
	pgoff_t index = pos >> PAGE_SHIFT;
	int ret;

	DEFINE_READAHEAD(ractl, file, NULL, mapping, index);

retry:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;

	if (ops->check_write_begin) {
		/* Allow the netfs (eg. ceph) to flush conflicts. */
		ret = ops->check_write_begin(file, pos, len, page, _fsdata);
		if (ret < 0) {
			trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
			if (ret == -EAGAIN)
				goto retry;
			goto error;
		}
	}

	if (PageUptodate(page))
		goto have_page;

	/* If the page is beyond the EOF, we want to clear it - unless it's
	 * within the cache granule containing the EOF, in which case we need
	 * to preload the granule.
	 */
	if (!ops->is_cache_enabled(inode) &&
	    netfs_skip_page_read(page, pos, len)) {
		netfs_stat(&netfs_n_rh_write_zskip);
		goto have_page_no_wait;
	}

	ret = -ENOMEM;
	rreq = netfs_alloc_read_request(ops, netfs_priv, file);
	if (!rreq)
		goto error;
	rreq->mapping		= page->mapping;
	rreq->start		= page_offset(page);
	rreq->len		= thp_size(page);
	rreq->no_unlock_page	= page->index;
	__set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags);
	netfs_priv = NULL;

	if (ops->begin_cache_operation) {
		ret = ops->begin_cache_operation(rreq);
		if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
			goto error_put;
	}

	netfs_stat(&netfs_n_rh_write_begin);
	trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);

	/* Expand the request to meet caching requirements and download
	 * preferences.
	 */
	ractl._nr_pages = thp_nr_pages(page);
	netfs_rreq_expand(rreq, &ractl);
	netfs_get_read_request(rreq);

	/* We hold the page locks, so we can drop the references */
	while ((xpage = readahead_page(&ractl)))
		if (xpage != page)
			put_page(xpage);

	atomic_set(&rreq->nr_rd_ops, 1);
	do {
		if (!netfs_rreq_submit_slice(rreq, &debug_index))
			break;

	} while (rreq->submitted < rreq->len);

	/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
	 * the service code isn't punted off to a random thread pool to
	 * process.
	 */
	for (;;) {
		wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
		netfs_rreq_assess(rreq, false);
		if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
			break;
		cond_resched();
	}

	ret = rreq->error;
	if (ret == 0 && rreq->submitted < rreq->len) {
		trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin);
		ret = -EIO;
	}
	netfs_put_read_request(rreq, false);
	if (ret < 0)
		goto error;

have_page:
	ret = wait_on_page_fscache_killable(page);
	if (ret < 0)
		goto error;
have_page_no_wait:
	if (netfs_priv)
		ops->cleanup(netfs_priv, mapping);
	*_page = page;
	_leave(" = 0");
	return 0;

error_put:
	netfs_put_read_request(rreq, false);
error:
	unlock_page(page);
	put_page(page);
	if (netfs_priv)
		ops->cleanup(netfs_priv, mapping);
	_leave(" = %d", ret);
	return ret;
}
EXPORT_SYMBOL(netfs_write_begin);