summaryrefslogtreecommitdiff
path: root/fs/jffs2/scan.c
blob: ded53584a897dff6d0e93f3d005222288b442d6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/*
 * JFFS2 -- Journalling Flash File System, Version 2.
 *
 * Copyright (C) 2001-2003 Red Hat, Inc.
 *
 * Created by David Woodhouse <dwmw2@infradead.org>
 *
 * For licensing information, see the file 'LICENCE' in this directory.
 *
 * $Id: scan.c,v 1.115 2004/11/17 12:59:08 dedekind Exp $
 *
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/pagemap.h>
#include <linux/crc32.h>
#include <linux/compiler.h>
#include "nodelist.h"

#define EMPTY_SCAN_SIZE 1024

#define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
		c->free_size -= _x; c->dirty_size += _x; \
		jeb->free_size -= _x ; jeb->dirty_size += _x; \
		}while(0)
#define USED_SPACE(x) do { typeof(x) _x = (x); \
		c->free_size -= _x; c->used_size += _x; \
		jeb->free_size -= _x ; jeb->used_size += _x; \
		}while(0)
#define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
		c->free_size -= _x; c->unchecked_size += _x; \
		jeb->free_size -= _x ; jeb->unchecked_size += _x; \
		}while(0)

#define noisy_printk(noise, args...) do { \
	if (*(noise)) { \
		printk(KERN_NOTICE args); \
		 (*(noise))--; \
		 if (!(*(noise))) { \
			 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
		 } \
	} \
} while(0)

static uint32_t pseudo_random;

static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
				  unsigned char *buf, uint32_t buf_size);

/* These helper functions _must_ increase ofs and also do the dirty/used space accounting. 
 * Returning an error will abort the mount - bad checksums etc. should just mark the space
 * as dirty.
 */
static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
				 struct jffs2_raw_inode *ri, uint32_t ofs);
static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
				 struct jffs2_raw_dirent *rd, uint32_t ofs);

#define BLK_STATE_ALLFF		0
#define BLK_STATE_CLEAN		1
#define BLK_STATE_PARTDIRTY	2
#define BLK_STATE_CLEANMARKER	3
#define BLK_STATE_ALLDIRTY	4
#define BLK_STATE_BADBLOCK	5

static inline int min_free(struct jffs2_sb_info *c)
{
	uint32_t min = 2 * sizeof(struct jffs2_raw_inode);
#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
	if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize)
		return c->wbuf_pagesize;
#endif
	return min;

}
int jffs2_scan_medium(struct jffs2_sb_info *c)
{
	int i, ret;
	uint32_t empty_blocks = 0, bad_blocks = 0;
	unsigned char *flashbuf = NULL;
	uint32_t buf_size = 0;
#ifndef __ECOS
	size_t pointlen;

	if (c->mtd->point) {
		ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf);
		if (!ret && pointlen < c->mtd->size) {
			/* Don't muck about if it won't let us point to the whole flash */
			D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen));
			c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
			flashbuf = NULL;
		}
		if (ret)
			D1(printk(KERN_DEBUG "MTD point failed %d\n", ret));
	}
#endif
	if (!flashbuf) {
		/* For NAND it's quicker to read a whole eraseblock at a time,
		   apparently */
		if (jffs2_cleanmarker_oob(c))
			buf_size = c->sector_size;
		else
			buf_size = PAGE_SIZE;

		/* Respect kmalloc limitations */
		if (buf_size > 128*1024)
			buf_size = 128*1024;

		D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size));
		flashbuf = kmalloc(buf_size, GFP_KERNEL);
		if (!flashbuf)
			return -ENOMEM;
	}

	for (i=0; i<c->nr_blocks; i++) {
		struct jffs2_eraseblock *jeb = &c->blocks[i];

		ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size);

		if (ret < 0)
			goto out;

		ACCT_PARANOIA_CHECK(jeb);

		/* Now decide which list to put it on */
		switch(ret) {
		case BLK_STATE_ALLFF:
			/* 
			 * Empty block.   Since we can't be sure it 
			 * was entirely erased, we just queue it for erase
			 * again.  It will be marked as such when the erase
			 * is complete.  Meanwhile we still count it as empty
			 * for later checks.
			 */
			empty_blocks++;
			list_add(&jeb->list, &c->erase_pending_list);
			c->nr_erasing_blocks++;
			break;

		case BLK_STATE_CLEANMARKER:
			/* Only a CLEANMARKER node is valid */
			if (!jeb->dirty_size) {
				/* It's actually free */
				list_add(&jeb->list, &c->free_list);
				c->nr_free_blocks++;
			} else {
				/* Dirt */
				D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset));
				list_add(&jeb->list, &c->erase_pending_list);
				c->nr_erasing_blocks++;
			}
			break;

		case BLK_STATE_CLEAN:
                        /* Full (or almost full) of clean data. Clean list */
                        list_add(&jeb->list, &c->clean_list);
			break;

		case BLK_STATE_PARTDIRTY:
                        /* Some data, but not full. Dirty list. */
                        /* We want to remember the block with most free space
                           and stick it in the 'nextblock' position to start writing to it. */
                        if (jeb->free_size > min_free(c) && 
			    (!c->nextblock || c->nextblock->free_size < jeb->free_size)) {
                                /* Better candidate for the next writes to go to */
                                if (c->nextblock) {
					c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
					c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size;
					c->free_size -= c->nextblock->free_size;
					c->wasted_size -= c->nextblock->wasted_size;
					c->nextblock->free_size = c->nextblock->wasted_size = 0;
					if (VERYDIRTY(c, c->nextblock->dirty_size)) {
						list_add(&c->nextblock->list, &c->very_dirty_list);
					} else {
						list_add(&c->nextblock->list, &c->dirty_list);
					}
				}
                                c->nextblock = jeb;
                        } else {
				jeb->dirty_size += jeb->free_size + jeb->wasted_size;
				c->dirty_size += jeb->free_size + jeb->wasted_size;
				c->free_size -= jeb->free_size;
				c->wasted_size -= jeb->wasted_size;
				jeb->free_size = jeb->wasted_size = 0;
				if (VERYDIRTY(c, jeb->dirty_size)) {
					list_add(&jeb->list, &c->very_dirty_list);
				} else {
					list_add(&jeb->list, &c->dirty_list);
				}
                        }
			break;

		case BLK_STATE_ALLDIRTY:
			/* Nothing valid - not even a clean marker. Needs erasing. */
                        /* For now we just put it on the erasing list. We'll start the erases later */
			D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset));
                        list_add(&jeb->list, &c->erase_pending_list);
			c->nr_erasing_blocks++;
			break;
			
		case BLK_STATE_BADBLOCK:
			D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset));
                        list_add(&jeb->list, &c->bad_list);
			c->bad_size += c->sector_size;
			c->free_size -= c->sector_size;
			bad_blocks++;
			break;
		default:
			printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n");
			BUG();	
		}
	}
	
	/* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
	if (c->nextblock && (c->nextblock->dirty_size)) {
		c->nextblock->wasted_size += c->nextblock->dirty_size;
		c->wasted_size += c->nextblock->dirty_size;
		c->dirty_size -= c->nextblock->dirty_size;
		c->nextblock->dirty_size = 0;
	}
#if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
	if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) {
		/* If we're going to start writing into a block which already 
		   contains data, and the end of the data isn't page-aligned,
		   skip a little and align it. */

		uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1);

		D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
			  skip));
		c->nextblock->wasted_size += skip;
		c->wasted_size += skip;

		c->nextblock->free_size -= skip;
		c->free_size -= skip;
	}
#endif
	if (c->nr_erasing_blocks) {
		if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { 
			printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
			printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks);
			ret = -EIO;
			goto out;
		}
		jffs2_erase_pending_trigger(c);
	}
	ret = 0;
 out:
	if (buf_size)
		kfree(flashbuf);
#ifndef __ECOS
	else 
		c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size);
#endif
	return ret;
}

static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf,
				uint32_t ofs, uint32_t len)
{
	int ret;
	size_t retlen;

	ret = jffs2_flash_read(c, ofs, len, &retlen, buf);
	if (ret) {
		D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret));
		return ret;
	}
	if (retlen < len) {
		D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen));
		return -EIO;
	}
	D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs));
	D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
		  buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]));
	return 0;
}

static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
				  unsigned char *buf, uint32_t buf_size) {
	struct jffs2_unknown_node *node;
	struct jffs2_unknown_node crcnode;
	uint32_t ofs, prevofs;
	uint32_t hdr_crc, buf_ofs, buf_len;
	int err;
	int noise = 0;
#ifdef CONFIG_JFFS2_FS_NAND
	int cleanmarkerfound = 0;
#endif

	ofs = jeb->offset;
	prevofs = jeb->offset - 1;

	D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));

#ifdef CONFIG_JFFS2_FS_NAND
	if (jffs2_cleanmarker_oob(c)) {
		int ret = jffs2_check_nand_cleanmarker(c, jeb);
		D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
		/* Even if it's not found, we still scan to see
		   if the block is empty. We use this information
		   to decide whether to erase it or not. */
		switch (ret) {
		case 0:		cleanmarkerfound = 1; break;
		case 1: 	break;
		case 2: 	return BLK_STATE_BADBLOCK;
		case 3:		return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
		default: 	return ret;
		}
	}
#endif
	buf_ofs = jeb->offset;

	if (!buf_size) {
		buf_len = c->sector_size;
	} else {
		buf_len = EMPTY_SCAN_SIZE;
		err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
		if (err)
			return err;
	}
	
	/* We temporarily use 'ofs' as a pointer into the buffer/jeb */
	ofs = 0;

	/* Scan only 4KiB of 0xFF before declaring it's empty */
	while(ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
		ofs += 4;

	if (ofs == EMPTY_SCAN_SIZE) {
#ifdef CONFIG_JFFS2_FS_NAND
		if (jffs2_cleanmarker_oob(c)) {
			/* scan oob, take care of cleanmarker */
			int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
			D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
			switch (ret) {
			case 0:		return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
			case 1: 	return BLK_STATE_ALLDIRTY;
			default: 	return ret;
			}
		}
#endif
		D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
		return BLK_STATE_ALLFF;	/* OK to erase if all blocks are like this */
	}
	if (ofs) {
		D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
			  jeb->offset + ofs));
		DIRTY_SPACE(ofs);
	}

	/* Now ofs is a complete physical flash offset as it always was... */
	ofs += jeb->offset;

	noise = 10;

scan_more:	
	while(ofs < jeb->offset + c->sector_size) {

		D1(ACCT_PARANOIA_CHECK(jeb));

		cond_resched();

		if (ofs & 3) {
			printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
			ofs = PAD(ofs);
			continue;
		}
		if (ofs == prevofs) {
			printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		prevofs = ofs;

		if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
			D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
				  jeb->offset, c->sector_size, ofs, sizeof(*node)));
			DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
			break;
		}

		if (buf_ofs + buf_len < ofs + sizeof(*node)) {
			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
			D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
				  sizeof(struct jffs2_unknown_node), buf_len, ofs));
			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
			if (err)
				return err;
			buf_ofs = ofs;
		}

		node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];

		if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
			uint32_t inbuf_ofs;
			uint32_t empty_start;

			empty_start = ofs;
			ofs += 4;

			D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
		more_empty:
			inbuf_ofs = ofs - buf_ofs;
			while (inbuf_ofs < buf_len) {
				if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
					printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
					       empty_start, ofs);
					DIRTY_SPACE(ofs-empty_start);
					goto scan_more;
				}

				inbuf_ofs+=4;
				ofs += 4;
			}
			/* Ran off end. */
			D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));

			/* If we're only checking the beginning of a block with a cleanmarker,
			   bail now */
			if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && 
			    c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) {
				D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE));
				return BLK_STATE_CLEANMARKER;
			}

			/* See how much more there is to read in this eraseblock... */
			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
			if (!buf_len) {
				/* No more to read. Break out of main loop without marking 
				   this range of empty space as dirty (because it's not) */
				D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
					  empty_start));
				break;
			}
			D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
			if (err)
				return err;
			buf_ofs = ofs;
			goto more_empty;
		}

		if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
			printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
			D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
			printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
			printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
			/* OK. We're out of possibilities. Whinge and move on */
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", 
				     JFFS2_MAGIC_BITMASK, ofs, 
				     je16_to_cpu(node->magic));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		/* We seem to have a node of sorts. Check the CRC */
		crcnode.magic = node->magic;
		crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
		crcnode.totlen = node->totlen;
		hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);

		if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
				     ofs, je16_to_cpu(node->magic),
				     je16_to_cpu(node->nodetype), 
				     je32_to_cpu(node->totlen),
				     je32_to_cpu(node->hdr_crc),
				     hdr_crc);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (ofs + je32_to_cpu(node->totlen) > 
		    jeb->offset + c->sector_size) {
			/* Eep. Node goes over the end of the erase block. */
			printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
			       ofs, je32_to_cpu(node->totlen));
			printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
			/* Wheee. This is an obsoleted node */
			D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
			ofs += PAD(je32_to_cpu(node->totlen));
			continue;
		}

		switch(je16_to_cpu(node->nodetype)) {
		case JFFS2_NODETYPE_INODE:
			if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
				D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
					  sizeof(struct jffs2_raw_inode), buf_len, ofs));
				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
				if (err)
					return err;
				buf_ofs = ofs;
				node = (void *)buf;
			}
			err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
			if (err) return err;
			ofs += PAD(je32_to_cpu(node->totlen));
			break;
			
		case JFFS2_NODETYPE_DIRENT:
			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
				D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
					  je32_to_cpu(node->totlen), buf_len, ofs));
				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
				if (err)
					return err;
				buf_ofs = ofs;
				node = (void *)buf;
			}
			err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
			if (err) return err;
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		case JFFS2_NODETYPE_CLEANMARKER:
			D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
			if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", 
				       ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
			} else if (jeb->first_node) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
			} else {
				struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
				if (!marker_ref) {
					printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
					return -ENOMEM;
				}
				marker_ref->next_in_ino = NULL;
				marker_ref->next_phys = NULL;
				marker_ref->flash_offset = ofs | REF_NORMAL;
				marker_ref->__totlen = c->cleanmarker_size;
				jeb->first_node = jeb->last_node = marker_ref;
			     
				USED_SPACE(PAD(c->cleanmarker_size));
				ofs += PAD(c->cleanmarker_size);
			}
			break;

		case JFFS2_NODETYPE_PADDING:
			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		default:
			switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
			case JFFS2_FEATURE_ROCOMPAT:
				printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
			        c->flags |= JFFS2_SB_FLAG_RO;
				if (!(jffs2_is_readonly(c)))
					return -EROFS;
				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;

			case JFFS2_FEATURE_INCOMPAT:
				printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
				return -EINVAL;

			case JFFS2_FEATURE_RWCOMPAT_DELETE:
				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;

			case JFFS2_FEATURE_RWCOMPAT_COPY:
				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
				USED_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;
			}
		}
	}


	D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset, 
		  jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));

	/* mark_node_obsolete can add to wasted !! */
	if (jeb->wasted_size) {
		jeb->dirty_size += jeb->wasted_size;
		c->dirty_size += jeb->wasted_size;
		c->wasted_size -= jeb->wasted_size;
		jeb->wasted_size = 0;
	}

	if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size 
		&& (!jeb->first_node || !jeb->first_node->next_in_ino) )
		return BLK_STATE_CLEANMARKER;
		
	/* move blocks with max 4 byte dirty space to cleanlist */	
	else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
		c->dirty_size -= jeb->dirty_size;
		c->wasted_size += jeb->dirty_size; 
		jeb->wasted_size += jeb->dirty_size;
		jeb->dirty_size = 0;
		return BLK_STATE_CLEAN;
	} else if (jeb->used_size || jeb->unchecked_size)
		return BLK_STATE_PARTDIRTY;
	else
		return BLK_STATE_ALLDIRTY;
}

static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
{
	struct jffs2_inode_cache *ic;

	ic = jffs2_get_ino_cache(c, ino);
	if (ic)
		return ic;

	if (ino > c->highest_ino)
		c->highest_ino = ino;

	ic = jffs2_alloc_inode_cache();
	if (!ic) {
		printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
		return NULL;
	}
	memset(ic, 0, sizeof(*ic));

	ic->ino = ino;
	ic->nodes = (void *)ic;
	jffs2_add_ino_cache(c, ic);
	if (ino == 1)
		ic->nlink = 1;
	return ic;
}

static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
				 struct jffs2_raw_inode *ri, uint32_t ofs)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_inode_cache *ic;
	uint32_t ino = je32_to_cpu(ri->ino);

	D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));

	/* We do very little here now. Just check the ino# to which we should attribute
	   this node; we can do all the CRC checking etc. later. There's a tradeoff here -- 
	   we used to scan the flash once only, reading everything we want from it into
	   memory, then building all our in-core data structures and freeing the extra
	   information. Now we allow the first part of the mount to complete a lot quicker,
	   but we have to go _back_ to the flash in order to finish the CRC checking, etc. 
	   Which means that the _full_ amount of time to get to proper write mode with GC
	   operational may actually be _longer_ than before. Sucks to be me. */

	raw = jffs2_alloc_raw_node_ref();
	if (!raw) {
		printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
		return -ENOMEM;
	}

	ic = jffs2_get_ino_cache(c, ino);
	if (!ic) {
		/* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
		   first node we found for this inode. Do a CRC check to protect against the former
		   case */
		uint32_t crc = crc32(0, ri, sizeof(*ri)-8);

		if (crc != je32_to_cpu(ri->node_crc)) {
			printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
			       ofs, je32_to_cpu(ri->node_crc), crc);
			/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
			DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
			jffs2_free_raw_node_ref(raw);
			return 0;
		}
		ic = jffs2_scan_make_ino_cache(c, ino);
		if (!ic) {
			jffs2_free_raw_node_ref(raw);
			return -ENOMEM;
		}
	}

	/* Wheee. It worked */

	raw->flash_offset = ofs | REF_UNCHECKED;
	raw->__totlen = PAD(je32_to_cpu(ri->totlen));
	raw->next_phys = NULL;
	raw->next_in_ino = ic->nodes;

	ic->nodes = raw;
	if (!jeb->first_node)
		jeb->first_node = raw;
	if (jeb->last_node)
		jeb->last_node->next_phys = raw;
	jeb->last_node = raw;

	D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", 
		  je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
		  je32_to_cpu(ri->offset),
		  je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));

	pseudo_random += je32_to_cpu(ri->version);

	UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
	return 0;
}

static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
				  struct jffs2_raw_dirent *rd, uint32_t ofs)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_full_dirent *fd;
	struct jffs2_inode_cache *ic;
	uint32_t crc;

	D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));

	/* We don't get here unless the node is still valid, so we don't have to
	   mask in the ACCURATE bit any more. */
	crc = crc32(0, rd, sizeof(*rd)-8);

	if (crc != je32_to_cpu(rd->node_crc)) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       ofs, je32_to_cpu(rd->node_crc), crc);
		/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
		DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
		return 0;
	}

	pseudo_random += je32_to_cpu(rd->version);

	fd = jffs2_alloc_full_dirent(rd->nsize+1);
	if (!fd) {
		return -ENOMEM;
	}
	memcpy(&fd->name, rd->name, rd->nsize);
	fd->name[rd->nsize] = 0;

	crc = crc32(0, fd->name, rd->nsize);
	if (crc != je32_to_cpu(rd->name_crc)) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       ofs, je32_to_cpu(rd->name_crc), crc);	
		D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
		jffs2_free_full_dirent(fd);
		/* FIXME: Why do we believe totlen? */
		/* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
		DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
		return 0;
	}
	raw = jffs2_alloc_raw_node_ref();
	if (!raw) {
		jffs2_free_full_dirent(fd);
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
		return -ENOMEM;
	}
	ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
	if (!ic) {
		jffs2_free_full_dirent(fd);
		jffs2_free_raw_node_ref(raw);
		return -ENOMEM;
	}
	
	raw->__totlen = PAD(je32_to_cpu(rd->totlen));
	raw->flash_offset = ofs | REF_PRISTINE;
	raw->next_phys = NULL;
	raw->next_in_ino = ic->nodes;
	ic->nodes = raw;
	if (!jeb->first_node)
		jeb->first_node = raw;
	if (jeb->last_node)
		jeb->last_node->next_phys = raw;
	jeb->last_node = raw;

	fd->raw = raw;
	fd->next = NULL;
	fd->version = je32_to_cpu(rd->version);
	fd->ino = je32_to_cpu(rd->ino);
	fd->nhash = full_name_hash(fd->name, rd->nsize);
	fd->type = rd->type;
	USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
	jffs2_add_fd_to_list(c, fd, &ic->scan_dents);

	return 0;
}

static int count_list(struct list_head *l)
{
	uint32_t count = 0;
	struct list_head *tmp;

	list_for_each(tmp, l) {
		count++;
	}
	return count;
}

/* Note: This breaks if list_empty(head). I don't care. You
   might, if you copy this code and use it elsewhere :) */
static void rotate_list(struct list_head *head, uint32_t count)
{
	struct list_head *n = head->next;

	list_del(head);
	while(count--) {
		n = n->next;
	}
	list_add(head, n);
}

void jffs2_rotate_lists(struct jffs2_sb_info *c)
{
	uint32_t x;
	uint32_t rotateby;

	x = count_list(&c->clean_list);
	if (x) {
		rotateby = pseudo_random % x;
		D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby));

		rotate_list((&c->clean_list), rotateby);

		D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n",
			  list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset));
	} else {
		D1(printk(KERN_DEBUG "Not rotating empty clean_list\n"));
	}

	x = count_list(&c->very_dirty_list);
	if (x) {
		rotateby = pseudo_random % x;
		D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby));

		rotate_list((&c->very_dirty_list), rotateby);

		D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n",
			  list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset));
	} else {
		D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n"));
	}

	x = count_list(&c->dirty_list);
	if (x) {
		rotateby = pseudo_random % x;
		D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby));

		rotate_list((&c->dirty_list), rotateby);

		D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n",
			  list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset));
	} else {
		D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n"));
	}

	x = count_list(&c->erasable_list);
	if (x) {
		rotateby = pseudo_random % x;
		D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby));

		rotate_list((&c->erasable_list), rotateby);

		D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n",
			  list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset));
	} else {
		D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n"));
	}

	if (c->nr_erasing_blocks) {
		rotateby = pseudo_random % c->nr_erasing_blocks;
		D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby));

		rotate_list((&c->erase_pending_list), rotateby);

		D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n",
			  list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset));
	} else {
		D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n"));
	}

	if (c->nr_free_blocks) {
		rotateby = pseudo_random % c->nr_free_blocks;
		D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby));

		rotate_list((&c->free_list), rotateby);

		D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n",
			  list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset));
	} else {
		D1(printk(KERN_DEBUG "Not rotating empty free_list\n"));
	}
}