summaryrefslogtreecommitdiff
path: root/fs/crypto/keysetup.c
blob: aa94fba9d17e7761de39360d2c344de232bfc7cc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
// SPDX-License-Identifier: GPL-2.0
/*
 * Key setup facility for FS encryption support.
 *
 * Copyright (C) 2015, Google, Inc.
 *
 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
 * Heavily modified since then.
 */

#include <crypto/skcipher.h>
#include <linux/random.h>

#include "fscrypt_private.h"

struct fscrypt_mode fscrypt_modes[] = {
	[FSCRYPT_MODE_AES_256_XTS] = {
		.friendly_name = "AES-256-XTS",
		.cipher_str = "xts(aes)",
		.keysize = 64,
		.security_strength = 32,
		.ivsize = 16,
		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
	},
	[FSCRYPT_MODE_AES_256_CTS] = {
		.friendly_name = "AES-256-CTS-CBC",
		.cipher_str = "cts(cbc(aes))",
		.keysize = 32,
		.security_strength = 32,
		.ivsize = 16,
	},
	[FSCRYPT_MODE_AES_128_CBC] = {
		.friendly_name = "AES-128-CBC-ESSIV",
		.cipher_str = "essiv(cbc(aes),sha256)",
		.keysize = 16,
		.security_strength = 16,
		.ivsize = 16,
		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
	},
	[FSCRYPT_MODE_AES_128_CTS] = {
		.friendly_name = "AES-128-CTS-CBC",
		.cipher_str = "cts(cbc(aes))",
		.keysize = 16,
		.security_strength = 16,
		.ivsize = 16,
	},
	[FSCRYPT_MODE_SM4_XTS] = {
		.friendly_name = "SM4-XTS",
		.cipher_str = "xts(sm4)",
		.keysize = 32,
		.security_strength = 16,
		.ivsize = 16,
		.blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS,
	},
	[FSCRYPT_MODE_SM4_CTS] = {
		.friendly_name = "SM4-CTS-CBC",
		.cipher_str = "cts(cbc(sm4))",
		.keysize = 16,
		.security_strength = 16,
		.ivsize = 16,
	},
	[FSCRYPT_MODE_ADIANTUM] = {
		.friendly_name = "Adiantum",
		.cipher_str = "adiantum(xchacha12,aes)",
		.keysize = 32,
		.security_strength = 32,
		.ivsize = 32,
		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
	},
	[FSCRYPT_MODE_AES_256_HCTR2] = {
		.friendly_name = "AES-256-HCTR2",
		.cipher_str = "hctr2(aes)",
		.keysize = 32,
		.security_strength = 32,
		.ivsize = 32,
	},
};

static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);

static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy *policy,
		       const struct inode *inode)
{
	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);

	if (S_ISREG(inode->i_mode))
		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];

	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
		  inode->i_ino, (inode->i_mode & S_IFMT));
	return ERR_PTR(-EINVAL);
}

/* Create a symmetric cipher object for the given encryption mode and key */
static struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
			  const struct inode *inode)
{
	struct crypto_skcipher *tfm;
	int err;

	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
	if (IS_ERR(tfm)) {
		if (PTR_ERR(tfm) == -ENOENT) {
			fscrypt_warn(inode,
				     "Missing crypto API support for %s (API name: \"%s\")",
				     mode->friendly_name, mode->cipher_str);
			return ERR_PTR(-ENOPKG);
		}
		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
			    mode->cipher_str, PTR_ERR(tfm));
		return tfm;
	}
	if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
		/*
		 * fscrypt performance can vary greatly depending on which
		 * crypto algorithm implementation is used.  Help people debug
		 * performance problems by logging the ->cra_driver_name the
		 * first time a mode is used.
		 */
		pr_info("fscrypt: %s using implementation \"%s\"\n",
			mode->friendly_name, crypto_skcipher_driver_name(tfm));
	}
	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
		err = -EINVAL;
		goto err_free_tfm;
	}
	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
	if (err)
		goto err_free_tfm;

	return tfm;

err_free_tfm:
	crypto_free_skcipher(tfm);
	return ERR_PTR(err);
}

/*
 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
 * and IV generation method (@ci->ci_policy.flags).
 */
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
			const u8 *raw_key, const struct fscrypt_info *ci)
{
	struct crypto_skcipher *tfm;

	if (fscrypt_using_inline_encryption(ci))
		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);

	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
	if (IS_ERR(tfm))
		return PTR_ERR(tfm);
	/*
	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
	 * I.e., here we publish ->tfm with a RELEASE barrier so that
	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
	 * possible for per-mode keys, not for per-file keys.
	 */
	smp_store_release(&prep_key->tfm, tfm);
	return 0;
}

/* Destroy a crypto transform object and/or blk-crypto key. */
void fscrypt_destroy_prepared_key(struct super_block *sb,
				  struct fscrypt_prepared_key *prep_key)
{
	crypto_free_skcipher(prep_key->tfm);
	fscrypt_destroy_inline_crypt_key(sb, prep_key);
	memzero_explicit(prep_key, sizeof(*prep_key));
}

/* Given a per-file encryption key, set up the file's crypto transform object */
int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
{
	ci->ci_owns_key = true;
	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
}

static int setup_per_mode_enc_key(struct fscrypt_info *ci,
				  struct fscrypt_master_key *mk,
				  struct fscrypt_prepared_key *keys,
				  u8 hkdf_context, bool include_fs_uuid)
{
	const struct inode *inode = ci->ci_inode;
	const struct super_block *sb = inode->i_sb;
	struct fscrypt_mode *mode = ci->ci_mode;
	const u8 mode_num = mode - fscrypt_modes;
	struct fscrypt_prepared_key *prep_key;
	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
	unsigned int hkdf_infolen = 0;
	int err;

	if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
		return -EINVAL;

	prep_key = &keys[mode_num];
	if (fscrypt_is_key_prepared(prep_key, ci)) {
		ci->ci_enc_key = *prep_key;
		return 0;
	}

	mutex_lock(&fscrypt_mode_key_setup_mutex);

	if (fscrypt_is_key_prepared(prep_key, ci))
		goto done_unlock;

	BUILD_BUG_ON(sizeof(mode_num) != 1);
	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
	hkdf_info[hkdf_infolen++] = mode_num;
	if (include_fs_uuid) {
		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
		       sizeof(sb->s_uuid));
		hkdf_infolen += sizeof(sb->s_uuid);
	}
	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
				  hkdf_context, hkdf_info, hkdf_infolen,
				  mode_key, mode->keysize);
	if (err)
		goto out_unlock;
	err = fscrypt_prepare_key(prep_key, mode_key, ci);
	memzero_explicit(mode_key, mode->keysize);
	if (err)
		goto out_unlock;
done_unlock:
	ci->ci_enc_key = *prep_key;
	err = 0;
out_unlock:
	mutex_unlock(&fscrypt_mode_key_setup_mutex);
	return err;
}

/*
 * Derive a SipHash key from the given fscrypt master key and the given
 * application-specific information string.
 *
 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
 * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
 * endianness swap in order to get the same results as on little endian CPUs.
 */
static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
				      u8 context, const u8 *info,
				      unsigned int infolen, siphash_key_t *key)
{
	int err;

	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
				  (u8 *)key, sizeof(*key));
	if (err)
		return err;

	BUILD_BUG_ON(sizeof(*key) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
	le64_to_cpus(&key->key[0]);
	le64_to_cpus(&key->key[1]);
	return 0;
}

int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
			       const struct fscrypt_master_key *mk)
{
	int err;

	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
					 &ci->ci_dirhash_key);
	if (err)
		return err;
	ci->ci_dirhash_key_initialized = true;
	return 0;
}

void fscrypt_hash_inode_number(struct fscrypt_info *ci,
			       const struct fscrypt_master_key *mk)
{
	WARN_ON(ci->ci_inode->i_ino == 0);
	WARN_ON(!mk->mk_ino_hash_key_initialized);

	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
					      &mk->mk_ino_hash_key);
}

static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
					    struct fscrypt_master_key *mk)
{
	int err;

	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
	if (err)
		return err;

	/* pairs with smp_store_release() below */
	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {

		mutex_lock(&fscrypt_mode_key_setup_mutex);

		if (mk->mk_ino_hash_key_initialized)
			goto unlock;

		err = fscrypt_derive_siphash_key(mk,
						 HKDF_CONTEXT_INODE_HASH_KEY,
						 NULL, 0, &mk->mk_ino_hash_key);
		if (err)
			goto unlock;
		/* pairs with smp_load_acquire() above */
		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
unlock:
		mutex_unlock(&fscrypt_mode_key_setup_mutex);
		if (err)
			return err;
	}

	/*
	 * New inodes may not have an inode number assigned yet.
	 * Hashing their inode number is delayed until later.
	 */
	if (ci->ci_inode->i_ino)
		fscrypt_hash_inode_number(ci, mk);
	return 0;
}

static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
				     struct fscrypt_master_key *mk,
				     bool need_dirhash_key)
{
	int err;

	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
		/*
		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
		 * per-file nonce will be included in all the IVs.  But unlike
		 * v1 policies, for v2 policies in this case we don't encrypt
		 * with the master key directly but rather derive a per-mode
		 * encryption key.  This ensures that the master key is
		 * consistently used only for HKDF, avoiding key reuse issues.
		 */
		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
					     HKDF_CONTEXT_DIRECT_KEY, false);
	} else if (ci->ci_policy.v2.flags &
		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
		/*
		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
		 * mode_num, filesystem_uuid), and inode number is included in
		 * the IVs.  This format is optimized for use with inline
		 * encryption hardware compliant with the UFS standard.
		 */
		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
					     true);
	} else if (ci->ci_policy.v2.flags &
		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
	} else {
		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];

		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
					  derived_key, ci->ci_mode->keysize);
		if (err)
			return err;

		err = fscrypt_set_per_file_enc_key(ci, derived_key);
		memzero_explicit(derived_key, ci->ci_mode->keysize);
	}
	if (err)
		return err;

	/* Derive a secret dirhash key for directories that need it. */
	if (need_dirhash_key) {
		err = fscrypt_derive_dirhash_key(ci, mk);
		if (err)
			return err;
	}

	return 0;
}

/*
 * Check whether the size of the given master key (@mk) is appropriate for the
 * encryption settings which a particular file will use (@ci).
 *
 * If the file uses a v1 encryption policy, then the master key must be at least
 * as long as the derived key, as this is a requirement of the v1 KDF.
 *
 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
 * requirement: we require that the size of the master key be at least the
 * maximum security strength of any algorithm whose key will be derived from it
 * (but in practice we only need to consider @ci->ci_mode, since any other
 * possible subkeys such as DIRHASH and INODE_HASH will never increase the
 * required key size over @ci->ci_mode).  This allows AES-256-XTS keys to be
 * derived from a 256-bit master key, which is cryptographically sufficient,
 * rather than requiring a 512-bit master key which is unnecessarily long.  (We
 * still allow 512-bit master keys if the user chooses to use them, though.)
 */
static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
					  const struct fscrypt_info *ci)
{
	unsigned int min_keysize;

	if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
		min_keysize = ci->ci_mode->keysize;
	else
		min_keysize = ci->ci_mode->security_strength;

	if (mk->mk_secret.size < min_keysize) {
		fscrypt_warn(NULL,
			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
			     master_key_spec_type(&mk->mk_spec),
			     master_key_spec_len(&mk->mk_spec),
			     (u8 *)&mk->mk_spec.u,
			     mk->mk_secret.size, min_keysize);
		return false;
	}
	return true;
}

/*
 * Find the master key, then set up the inode's actual encryption key.
 *
 * If the master key is found in the filesystem-level keyring, then it is
 * returned in *mk_ret with its semaphore read-locked.  This is needed to ensure
 * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
 * multiple tasks may race to create an fscrypt_info for the same inode), and to
 * synchronize the master key being removed with a new inode starting to use it.
 */
static int setup_file_encryption_key(struct fscrypt_info *ci,
				     bool need_dirhash_key,
				     struct fscrypt_master_key **mk_ret)
{
	struct super_block *sb = ci->ci_inode->i_sb;
	struct fscrypt_key_specifier mk_spec;
	struct fscrypt_master_key *mk;
	int err;

	err = fscrypt_select_encryption_impl(ci);
	if (err)
		return err;

	err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
	if (err)
		return err;

	mk = fscrypt_find_master_key(sb, &mk_spec);
	if (unlikely(!mk)) {
		const union fscrypt_policy *dummy_policy =
			fscrypt_get_dummy_policy(sb);

		/*
		 * Add the test_dummy_encryption key on-demand.  In principle,
		 * it should be added at mount time.  Do it here instead so that
		 * the individual filesystems don't need to worry about adding
		 * this key at mount time and cleaning up on mount failure.
		 */
		if (dummy_policy &&
		    fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) {
			err = fscrypt_add_test_dummy_key(sb, &mk_spec);
			if (err)
				return err;
			mk = fscrypt_find_master_key(sb, &mk_spec);
		}
	}
	if (unlikely(!mk)) {
		if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
			return -ENOKEY;

		/*
		 * As a legacy fallback for v1 policies, search for the key in
		 * the current task's subscribed keyrings too.  Don't move this
		 * to before the search of ->s_master_keys, since users
		 * shouldn't be able to override filesystem-level keys.
		 */
		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
	}
	down_read(&mk->mk_sem);

	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
	if (!is_master_key_secret_present(&mk->mk_secret)) {
		err = -ENOKEY;
		goto out_release_key;
	}

	if (!fscrypt_valid_master_key_size(mk, ci)) {
		err = -ENOKEY;
		goto out_release_key;
	}

	switch (ci->ci_policy.version) {
	case FSCRYPT_POLICY_V1:
		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
		break;
	case FSCRYPT_POLICY_V2:
		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
		break;
	default:
		WARN_ON(1);
		err = -EINVAL;
		break;
	}
	if (err)
		goto out_release_key;

	*mk_ret = mk;
	return 0;

out_release_key:
	up_read(&mk->mk_sem);
	fscrypt_put_master_key(mk);
	return err;
}

static void put_crypt_info(struct fscrypt_info *ci)
{
	struct fscrypt_master_key *mk;

	if (!ci)
		return;

	if (ci->ci_direct_key)
		fscrypt_put_direct_key(ci->ci_direct_key);
	else if (ci->ci_owns_key)
		fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
					     &ci->ci_enc_key);

	mk = ci->ci_master_key;
	if (mk) {
		/*
		 * Remove this inode from the list of inodes that were unlocked
		 * with the master key.  In addition, if we're removing the last
		 * inode from a master key struct that already had its secret
		 * removed, then complete the full removal of the struct.
		 */
		spin_lock(&mk->mk_decrypted_inodes_lock);
		list_del(&ci->ci_master_key_link);
		spin_unlock(&mk->mk_decrypted_inodes_lock);
		fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk);
	}
	memzero_explicit(ci, sizeof(*ci));
	kmem_cache_free(fscrypt_info_cachep, ci);
}

static int
fscrypt_setup_encryption_info(struct inode *inode,
			      const union fscrypt_policy *policy,
			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
			      bool need_dirhash_key)
{
	struct fscrypt_info *crypt_info;
	struct fscrypt_mode *mode;
	struct fscrypt_master_key *mk = NULL;
	int res;

	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
	if (res)
		return res;

	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
	if (!crypt_info)
		return -ENOMEM;

	crypt_info->ci_inode = inode;
	crypt_info->ci_policy = *policy;
	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);

	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
	if (IS_ERR(mode)) {
		res = PTR_ERR(mode);
		goto out;
	}
	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
	crypt_info->ci_mode = mode;

	res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
	if (res)
		goto out;

	/*
	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
	 * RELEASE barrier so that other tasks can ACQUIRE it.
	 */
	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
		/*
		 * We won the race and set ->i_crypt_info to our crypt_info.
		 * Now link it into the master key's inode list.
		 */
		if (mk) {
			crypt_info->ci_master_key = mk;
			refcount_inc(&mk->mk_active_refs);
			spin_lock(&mk->mk_decrypted_inodes_lock);
			list_add(&crypt_info->ci_master_key_link,
				 &mk->mk_decrypted_inodes);
			spin_unlock(&mk->mk_decrypted_inodes_lock);
		}
		crypt_info = NULL;
	}
	res = 0;
out:
	if (mk) {
		up_read(&mk->mk_sem);
		fscrypt_put_master_key(mk);
	}
	put_crypt_info(crypt_info);
	return res;
}

/**
 * fscrypt_get_encryption_info() - set up an inode's encryption key
 * @inode: the inode to set up the key for.  Must be encrypted.
 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
 *		       unrecognized encryption context) the same way as the key
 *		       being unavailable, instead of returning an error.  Use
 *		       %false unless the operation being performed is needed in
 *		       order for files (or directories) to be deleted.
 *
 * Set up ->i_crypt_info, if it hasn't already been done.
 *
 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
 * generally this shouldn't be called from within a filesystem transaction.
 *
 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
 *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
 *	   distinguish these cases.)  Also can return another -errno code.
 */
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
{
	int res;
	union fscrypt_context ctx;
	union fscrypt_policy policy;

	if (fscrypt_has_encryption_key(inode))
		return 0;

	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
	if (res < 0) {
		if (res == -ERANGE && allow_unsupported)
			return 0;
		fscrypt_warn(inode, "Error %d getting encryption context", res);
		return res;
	}

	res = fscrypt_policy_from_context(&policy, &ctx, res);
	if (res) {
		if (allow_unsupported)
			return 0;
		fscrypt_warn(inode,
			     "Unrecognized or corrupt encryption context");
		return res;
	}

	if (!fscrypt_supported_policy(&policy, inode)) {
		if (allow_unsupported)
			return 0;
		return -EINVAL;
	}

	res = fscrypt_setup_encryption_info(inode, &policy,
					    fscrypt_context_nonce(&ctx),
					    IS_CASEFOLDED(inode) &&
					    S_ISDIR(inode->i_mode));

	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
		res = 0;
	if (res == -ENOKEY)
		res = 0;
	return res;
}

/**
 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
 * @dir: a possibly-encrypted directory
 * @inode: the new inode.  ->i_mode must be set already.
 *	   ->i_ino doesn't need to be set yet.
 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
 *
 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
 * encrypting the name of the new file.  Also, if the new inode will be
 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
 *
 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
 * any filesystem transaction to create the inode.  For this reason, ->i_ino
 * isn't required to be set yet, as the filesystem may not have set it yet.
 *
 * This doesn't persist the new inode's encryption context.  That still needs to
 * be done later by calling fscrypt_set_context().
 *
 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
 *	   -errno code
 */
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
			      bool *encrypt_ret)
{
	const union fscrypt_policy *policy;
	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];

	policy = fscrypt_policy_to_inherit(dir);
	if (policy == NULL)
		return 0;
	if (IS_ERR(policy))
		return PTR_ERR(policy);

	if (WARN_ON_ONCE(inode->i_mode == 0))
		return -EINVAL;

	/*
	 * Only regular files, directories, and symlinks are encrypted.
	 * Special files like device nodes and named pipes aren't.
	 */
	if (!S_ISREG(inode->i_mode) &&
	    !S_ISDIR(inode->i_mode) &&
	    !S_ISLNK(inode->i_mode))
		return 0;

	*encrypt_ret = true;

	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
	return fscrypt_setup_encryption_info(inode, policy, nonce,
					     IS_CASEFOLDED(dir) &&
					     S_ISDIR(inode->i_mode));
}
EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);

/**
 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
 * @inode: an inode being evicted
 *
 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
 * being evicted.  An RCU grace period need not have elapsed yet.
 */
void fscrypt_put_encryption_info(struct inode *inode)
{
	put_crypt_info(inode->i_crypt_info);
	inode->i_crypt_info = NULL;
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);

/**
 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
 * @inode: an inode being freed
 *
 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
 * call this after an RCU grace period, just before they free the inode.
 */
void fscrypt_free_inode(struct inode *inode)
{
	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
		kfree(inode->i_link);
		inode->i_link = NULL;
	}
}
EXPORT_SYMBOL(fscrypt_free_inode);

/**
 * fscrypt_drop_inode() - check whether the inode's master key has been removed
 * @inode: an inode being considered for eviction
 *
 * Filesystems supporting fscrypt must call this from their ->drop_inode()
 * method so that encrypted inodes are evicted as soon as they're no longer in
 * use and their master key has been removed.
 *
 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
 */
int fscrypt_drop_inode(struct inode *inode)
{
	const struct fscrypt_info *ci = fscrypt_get_info(inode);

	/*
	 * If ci is NULL, then the inode doesn't have an encryption key set up
	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
	 * was provided via the legacy mechanism of the process-subscribed
	 * keyrings, so we don't know whether it's been removed or not.
	 */
	if (!ci || !ci->ci_master_key)
		return 0;

	/*
	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
	 * protected by the key were cleaned by sync_filesystem().  But if
	 * userspace is still using the files, inodes can be dirtied between
	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
	 */
	if (inode->i_state & I_DIRTY_ALL)
		return 0;

	/*
	 * Note: since we aren't holding the key semaphore, the result here can
	 * immediately become outdated.  But there's no correctness problem with
	 * unnecessarily evicting.  Nor is there a correctness problem with not
	 * evicting while iput() is racing with the key being removed, since
	 * then the thread removing the key will either evict the inode itself
	 * or will correctly detect that it wasn't evicted due to the race.
	 */
	return !is_master_key_secret_present(&ci->ci_master_key->mk_secret);
}
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);