summaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.h
blob: 90cc2c9bd79e7ae98df637ff51cac38095c5fc83 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#ifndef __CTREE__
#define __CTREE__

#include "list.h"
#include "kerncompat.h"

#define CTREE_BLOCKSIZE 1024

/*
 * the key defines the order in the tree, and so it also defines (optimal)
 * block layout.  objectid corresonds to the inode number.  The flags
 * tells us things about the object, and is a kind of stream selector.
 * so for a given inode, keys with flags of 1 might refer to the inode
 * data, flags of 2 may point to file data in the btree and flags == 3
 * may point to extents.
 *
 * offset is the starting byte offset for this key in the stream.
 *
 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 * in cpu native order.  Otherwise they are identical and their sizes
 * should be the same (ie both packed)
 */
struct btrfs_disk_key {
	__le64 objectid;
	__le32 flags;
	__le64 offset;
} __attribute__ ((__packed__));

struct btrfs_key {
	u64 objectid;
	u32 flags;
	u64 offset;
} __attribute__ ((__packed__));

/*
 * every tree block (leaf or node) starts with this header.
 */
struct btrfs_header {
	__le64 fsid[2]; /* FS specific uuid */
	__le64 blocknr; /* which block this node is supposed to live in */
	__le64 parentid; /* objectid of the tree root */
	__le32 csum;
	__le32 ham;
	__le16 nritems;
	__le16 flags;
	/* generation flags to be added */
} __attribute__ ((__packed__));

#define MAX_LEVEL 8
#define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \
			    (sizeof(struct btrfs_disk_key) + sizeof(u64)))

struct tree_buffer;

/*
 * in ram representation of the tree.  extent_root is used for all allocations
 * and for the extent tree extent_root root.  current_insert is used
 * only for the extent tree.
 */
struct ctree_root {
	struct tree_buffer *node;
	struct tree_buffer *commit_root;
	struct ctree_root *extent_root;
	struct btrfs_key current_insert;
	struct btrfs_key last_insert;
	int fp;
	struct radix_tree_root cache_radix;
	struct radix_tree_root pinned_radix;
	struct list_head trans;
	struct list_head cache;
	int cache_size;
};

/*
 * describes a tree on disk
 */
struct ctree_root_info {
	u64 fsid[2]; /* FS specific uuid */
	u64 blocknr; /* blocknr of this block */
	u64 objectid; /* inode number of this root */
	u64 tree_root; /* the tree root block */
	u32 csum;
	u32 ham;
	u64 snapuuid[2]; /* root specific uuid */
} __attribute__ ((__packed__));

/*
 * the super block basically lists the main trees of the FS
 * it currently lacks any block count etc etc
 */
struct ctree_super_block {
	struct ctree_root_info root_info;
	struct ctree_root_info extent_info;
} __attribute__ ((__packed__));

/*
 * A leaf is full of items.  The exact type of item is defined by
 * the key flags parameter.  offset and size tell us where to find
 * the item in the leaf (relative to the start of the data area)
 */
struct btrfs_item {
	struct btrfs_disk_key key;
	__le16 offset;
	__le16 size;
} __attribute__ ((__packed__));

/*
 * leaves have an item area and a data area:
 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 *
 * The data is separate from the items to get the keys closer together
 * during searches.
 */
#define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header))
struct leaf {
	struct btrfs_header header;
	union {
		struct btrfs_item items[LEAF_DATA_SIZE/
				        sizeof(struct btrfs_item)];
		u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)];
	};
} __attribute__ ((__packed__));

/*
 * all non-leaf blocks are nodes, they hold only keys and pointers to
 * other blocks
 */
struct node {
	struct btrfs_header header;
	struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK];
	__le64 blockptrs[NODEPTRS_PER_BLOCK];
} __attribute__ ((__packed__));

/*
 * items in the extent btree are used to record the objectid of the
 * owner of the block and the number of references
 */
struct extent_item {
	__le32 refs;
	__le64 owner;
} __attribute__ ((__packed__));

/*
 * ctree_paths remember the path taken from the root down to the leaf.
 * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point
 * to any other levels that are present.
 *
 * The slots array records the index of the item or block pointer
 * used while walking the tree.
 */
struct ctree_path {
	struct tree_buffer *nodes[MAX_LEVEL];
	int slots[MAX_LEVEL];
};

static inline u64 btrfs_extent_owner(struct extent_item *ei)
{
	return le64_to_cpu(ei->owner);
}

static inline void btrfs_set_extent_owner(struct extent_item *ei, u64 val)
{
	ei->owner = cpu_to_le64(val);
}

static inline u32 btrfs_extent_refs(struct extent_item *ei)
{
	return le32_to_cpu(ei->refs);
}

static inline void btrfs_set_extent_refs(struct extent_item *ei, u32 val)
{
	ei->refs = cpu_to_le32(val);
}

static inline u64 btrfs_node_blockptr(struct node *n, int nr)
{
	return le64_to_cpu(n->blockptrs[nr]);
}

static inline void btrfs_set_node_blockptr(struct node *n, int nr, u64 val)
{
	n->blockptrs[nr] = cpu_to_le64(val);
}

static inline u16 btrfs_item_offset(struct btrfs_item *item)
{
	return le16_to_cpu(item->offset);
}

static inline void btrfs_set_item_offset(struct btrfs_item *item, u16 val)
{
	item->offset = cpu_to_le16(val);
}

static inline u16 btrfs_item_end(struct btrfs_item *item)
{
	return le16_to_cpu(item->offset) + le16_to_cpu(item->size);
}

static inline u16 btrfs_item_size(struct btrfs_item *item)
{
	return le16_to_cpu(item->size);
}

static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
{
	item->size = cpu_to_le16(val);
}

static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
					 struct btrfs_disk_key *disk)
{
	cpu->offset = le64_to_cpu(disk->offset);
	cpu->flags = le32_to_cpu(disk->flags);
	cpu->objectid = le64_to_cpu(disk->objectid);
}

static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
					 struct btrfs_key *cpu)
{
	disk->offset = cpu_to_le64(cpu->offset);
	disk->flags = cpu_to_le32(cpu->flags);
	disk->objectid = cpu_to_le64(cpu->objectid);
}

static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk)
{
	return le64_to_cpu(disk->objectid);
}

static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk,
					  u64 val)
{
	disk->objectid = cpu_to_le64(val);
}

static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk)
{
	return le64_to_cpu(disk->offset);
}

static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk,
					  u64 val)
{
	disk->offset = cpu_to_le64(val);
}

static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk)
{
	return le32_to_cpu(disk->flags);
}

static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk,
					  u32 val)
{
	disk->flags = cpu_to_le32(val);
}

static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
{
	return le64_to_cpu(h->blocknr);
}

static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
{
	h->blocknr = cpu_to_le64(blocknr);
}

static inline u64 btrfs_header_parentid(struct btrfs_header *h)
{
	return le64_to_cpu(h->parentid);
}

static inline void btrfs_set_header_parentid(struct btrfs_header *h,
					     u64 parentid)
{
	h->parentid = cpu_to_le64(parentid);
}

static inline u16 btrfs_header_nritems(struct btrfs_header *h)
{
	return le16_to_cpu(h->nritems);
}

static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
{
	h->nritems = cpu_to_le16(val);
}

static inline u16 btrfs_header_flags(struct btrfs_header *h)
{
	return le16_to_cpu(h->flags);
}

static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
{
	h->flags = cpu_to_le16(val);
}

static inline int btrfs_header_level(struct btrfs_header *h)
{
	return btrfs_header_flags(h) & (MAX_LEVEL - 1);
}

static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
{
	u16 flags;
	BUG_ON(level > MAX_LEVEL);
	flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1);
	btrfs_set_header_flags(h, flags | level);
}

static inline int btrfs_is_leaf(struct node *n)
{
	return (btrfs_header_level(&n->header) == 0);
}

struct tree_buffer *alloc_free_block(struct ctree_root *root);
int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf);
int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks);
int search_slot(struct ctree_root *root, struct btrfs_key *key,
		struct ctree_path *p, int ins_len, int cow);
void release_path(struct ctree_root *root, struct ctree_path *p);
void init_path(struct ctree_path *p);
int del_item(struct ctree_root *root, struct ctree_path *path);
int insert_item(struct ctree_root *root, struct btrfs_key *key,
		void *data, int data_size);
int next_leaf(struct ctree_root *root, struct ctree_path *path);
int leaf_free_space(struct leaf *leaf);
int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap);
int btrfs_finish_extent_commit(struct ctree_root *root);
#endif