summaryrefslogtreecommitdiff
path: root/drivers/thermal/thermal_debugfs.c
blob: c617e8b9f0ddfe18bcb34155e156af47e4006837 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2023 Linaro Limited
 *
 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
 *
 * Thermal subsystem debug support
 */
#include <linux/debugfs.h>
#include <linux/ktime.h>
#include <linux/list.h>
#include <linux/minmax.h>
#include <linux/mutex.h>
#include <linux/thermal.h>

#include "thermal_core.h"

static struct dentry *d_root;
static struct dentry *d_cdev;
static struct dentry *d_tz;

/*
 * Length of the string containing the thermal zone id or the cooling
 * device id, including the ending nul character. We can reasonably
 * assume there won't be more than 256 thermal zones as the maximum
 * observed today is around 32.
 */
#define IDSLENGTH 4

/*
 * The cooling device transition list is stored in a hash table where
 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
 * have dozen of states but some can have much more, so a hash table
 * is more adequate in this case, because the cost of browsing the entire
 * list when storing the transitions may not be negligible.
 */
#define CDEVSTATS_HASH_SIZE 16

/**
 * struct cdev_debugfs - per cooling device statistics structure
 * A cooling device can have a high number of states. Showing the
 * transitions on a matrix based representation can be overkill given
 * most of the transitions won't happen and we end up with a matrix
 * filled with zero. Instead, we show the transitions which actually
 * happened.
 *
 * Every transition updates the current_state and the timestamp. The
 * transitions and the durations are stored in lists.
 *
 * @total: the number of transitions for this cooling device
 * @current_state: the current cooling device state
 * @timestamp: the state change timestamp
 * @transitions: an array of lists containing the state transitions
 * @durations: an array of lists containing the residencies of each state
 */
struct cdev_debugfs {
	u32 total;
	int current_state;
	ktime_t timestamp;
	struct list_head transitions[CDEVSTATS_HASH_SIZE];
	struct list_head durations[CDEVSTATS_HASH_SIZE];
};

/**
 * struct cdev_record - Common structure for cooling device entry
 *
 * The following common structure allows to store the information
 * related to the transitions and to the state residencies. They are
 * identified with a id which is associated to a value. It is used as
 * nodes for the "transitions" and "durations" above.
 *
 * @node: node to insert the structure in a list
 * @id: identifier of the value which can be a state or a transition
 * @residency: a ktime_t representing a state residency duration
 * @count: a number of occurrences
 */
struct cdev_record {
	struct list_head node;
	int id;
	union {
                ktime_t residency;
                u64 count;
        };
};

/**
 * struct trip_stats - Thermal trip statistics
 *
 * The trip_stats structure has the relevant information to show the
 * statistics related to temperature going above a trip point.
 *
 * @timestamp: the trip crossing timestamp
 * @duration: total time when the zone temperature was above the trip point
 * @count: the number of times the zone temperature was above the trip point
 * @max: maximum recorded temperature above the trip point
 * @min: minimum recorded temperature above the trip point
 * @avg: average temperature above the trip point
 */
struct trip_stats {
	ktime_t timestamp;
	ktime_t duration;
	int count;
	int max;
	int min;
	int avg;
};

/**
 * struct tz_episode - A mitigation episode information
 *
 * The tz_episode structure describes a mitigation episode. A
 * mitigation episode begins the trip point with the lower temperature
 * is crossed the way up and ends when it is crossed the way
 * down. During this episode we can have multiple trip points crossed
 * the way up and down if there are multiple trip described in the
 * firmware after the lowest temperature trip point.
 *
 * @timestamp: first trip point crossed the way up
 * @duration: total duration of the mitigation episode
 * @node: a list element to be added to the list of tz events
 * @trip_stats: per trip point statistics, flexible array
 */
struct tz_episode {
	ktime_t timestamp;
	ktime_t duration;
	struct list_head node;
	struct trip_stats trip_stats[];
};

/**
 * struct tz_debugfs - Store all mitigation episodes for a thermal zone
 *
 * The tz_debugfs structure contains the list of the mitigation
 * episodes and has to track which trip point has been crossed in
 * order to handle correctly nested trip point mitigation episodes.
 *
 * We keep the history of the trip point crossed in an array and as we
 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
 * we keep track of the current position in the history array.
 *
 * @tz_episodes: a list of thermal mitigation episodes
 * @trips_crossed: an array of trip points crossed by id
 * @nr_trips: the number of trip points currently being crossed
 */
struct tz_debugfs {
	struct list_head tz_episodes;
	int *trips_crossed;
	int nr_trips;
};

/**
 * struct thermal_debugfs - High level structure for a thermal object in debugfs
 *
 * The thermal_debugfs structure is the common structure used by the
 * cooling device or the thermal zone to store the statistics.
 *
 * @d_top: top directory of the thermal object directory
 * @lock: per object lock to protect the internals
 *
 * @cdev_dbg: a cooling device debug structure
 * @tz_dbg: a thermal zone debug structure
 */
struct thermal_debugfs {
	struct dentry *d_top;
	struct mutex lock;
	union {
		struct cdev_debugfs cdev_dbg;
		struct tz_debugfs tz_dbg;
	};
};

void thermal_debug_init(void)
{
	d_root = debugfs_create_dir("thermal", NULL);
	if (!d_root)
		return;

	d_cdev = debugfs_create_dir("cooling_devices", d_root);
	if (!d_cdev)
		return;

	d_tz = debugfs_create_dir("thermal_zones", d_root);
}

static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
{
	struct thermal_debugfs *thermal_dbg;
	char ids[IDSLENGTH];

	thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
	if (!thermal_dbg)
		return NULL;

	mutex_init(&thermal_dbg->lock);

	snprintf(ids, IDSLENGTH, "%d", id);

	thermal_dbg->d_top = debugfs_create_dir(ids, d);
	if (!thermal_dbg->d_top) {
		kfree(thermal_dbg);
		return NULL;
	}

	return thermal_dbg;
}

static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
{
	if (!thermal_dbg)
		return;

	debugfs_remove(thermal_dbg->d_top);

	kfree(thermal_dbg);
}

static struct cdev_record *
thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
				  struct list_head *lists, int id)
{
	struct cdev_record *cdev_record;

	cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
	if (!cdev_record)
		return NULL;

	cdev_record->id = id;
	INIT_LIST_HEAD(&cdev_record->node);
	list_add_tail(&cdev_record->node,
		      &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);

	return cdev_record;
}

static struct cdev_record *
thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
				 struct list_head *lists, int id)
{
	struct cdev_record *entry;

	list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
		if (entry->id == id)
			return entry;

	return NULL;
}

static struct cdev_record *
thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
				struct list_head *lists, int id)
{
	struct cdev_record *cdev_record;

	cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
	if (cdev_record)
		return cdev_record;

	return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
}

static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
{
	int i;
	struct cdev_record *entry, *tmp;

	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {

		list_for_each_entry_safe(entry, tmp,
					 &cdev_dbg->transitions[i], node) {
			list_del(&entry->node);
			kfree(entry);
		}

		list_for_each_entry_safe(entry, tmp,
					 &cdev_dbg->durations[i], node) {
			list_del(&entry->node);
			kfree(entry);
		}
	}

	cdev_dbg->total = 0;
}

static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
{
	struct thermal_debugfs *thermal_dbg = s->private;

	mutex_lock(&thermal_dbg->lock);

	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
}

static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
	(*pos)++;

	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
}

static void cdev_seq_stop(struct seq_file *s, void *v)
{
	struct thermal_debugfs *thermal_dbg = s->private;

	mutex_unlock(&thermal_dbg->lock);
}

static int cdev_tt_seq_show(struct seq_file *s, void *v)
{
	struct thermal_debugfs *thermal_dbg = s->private;
	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
	struct list_head *transitions = cdev_dbg->transitions;
	struct cdev_record *entry;
	int i = *(loff_t *)v;

	if (!i)
		seq_puts(s, "Transition\tOccurences\n");

	list_for_each_entry(entry, &transitions[i], node) {
		/*
		 * Assuming maximum cdev states is 1024, the longer
		 * string for a transition would be "1024->1024\0"
		 */
		char buffer[11];

		snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
			 entry->id >> 16, entry->id & 0xFFFF);

		seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
	}

	return 0;
}

static const struct seq_operations tt_sops = {
	.start = cdev_seq_start,
	.next = cdev_seq_next,
	.stop = cdev_seq_stop,
	.show = cdev_tt_seq_show,
};

DEFINE_SEQ_ATTRIBUTE(tt);

static int cdev_dt_seq_show(struct seq_file *s, void *v)
{
	struct thermal_debugfs *thermal_dbg = s->private;
	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
	struct list_head *durations = cdev_dbg->durations;
	struct cdev_record *entry;
	int i = *(loff_t *)v;

	if (!i)
		seq_puts(s, "State\tResidency\n");

	list_for_each_entry(entry, &durations[i], node) {
		s64 duration = ktime_to_ms(entry->residency);

		if (entry->id == cdev_dbg->current_state)
			duration += ktime_ms_delta(ktime_get(),
						   cdev_dbg->timestamp);

		seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
	}

	return 0;
}

static const struct seq_operations dt_sops = {
	.start = cdev_seq_start,
	.next = cdev_seq_next,
	.stop = cdev_seq_stop,
	.show = cdev_dt_seq_show,
};

DEFINE_SEQ_ATTRIBUTE(dt);

static int cdev_clear_set(void *data, u64 val)
{
	struct thermal_debugfs *thermal_dbg = data;

	if (!val)
		return -EINVAL;

	mutex_lock(&thermal_dbg->lock);

	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);

	mutex_unlock(&thermal_dbg->lock);

	return 0;
}

DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");

/**
 * thermal_debug_cdev_state_update - Update a cooling device state change
 *
 * Computes a transition and the duration of the previous state residency.
 *
 * @cdev : a pointer to a cooling device
 * @new_state: an integer corresponding to the new cooling device state
 */
void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
				     int new_state)
{
	struct thermal_debugfs *thermal_dbg = cdev->debugfs;
	struct cdev_debugfs *cdev_dbg;
	struct cdev_record *cdev_record;
	int transition, old_state;

	if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
		return;

	mutex_lock(&thermal_dbg->lock);

	cdev_dbg = &thermal_dbg->cdev_dbg;

	old_state = cdev_dbg->current_state;

	/*
	 * Get the old state information in the durations list. If
	 * this one does not exist, a new allocated one will be
	 * returned. Recompute the total duration in the old state and
	 * get a new timestamp for the new state.
	 */
	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
						      cdev_dbg->durations,
						      old_state);
	if (cdev_record) {
		ktime_t now = ktime_get();
		ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
		cdev_record->residency = ktime_add(cdev_record->residency, delta);
		cdev_dbg->timestamp = now;
	}

	cdev_dbg->current_state = new_state;
	transition = (old_state << 16) | new_state;

	/*
	 * Get the transition in the transitions list. If this one
	 * does not exist, a new allocated one will be returned.
	 * Increment the occurrence of this transition which is stored
	 * in the value field.
	 */
	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
						      cdev_dbg->transitions,
						      transition);
	if (cdev_record)
		cdev_record->count++;

	cdev_dbg->total++;

	mutex_unlock(&thermal_dbg->lock);
}

/**
 * thermal_debug_cdev_add - Add a cooling device debugfs entry
 *
 * Allocates a cooling device object for debug, initializes the
 * statistics and create the entries in sysfs.
 * @cdev: a pointer to a cooling device
 */
void thermal_debug_cdev_add(struct thermal_cooling_device *cdev)
{
	struct thermal_debugfs *thermal_dbg;
	struct cdev_debugfs *cdev_dbg;
	int i;

	thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
	if (!thermal_dbg)
		return;

	cdev_dbg = &thermal_dbg->cdev_dbg;

	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
		INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
		INIT_LIST_HEAD(&cdev_dbg->durations[i]);
	}

	cdev_dbg->current_state = 0;
	cdev_dbg->timestamp = ktime_get();

	debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
			    thermal_dbg, &tt_fops);

	debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
			    thermal_dbg, &dt_fops);

	debugfs_create_file("clear", 0200, thermal_dbg->d_top,
			    thermal_dbg, &cdev_clear_fops);

	debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
			   &cdev_dbg->total);

	cdev->debugfs = thermal_dbg;
}

/**
 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
 *
 * Frees the statistics memory data and remove the debugfs entry
 *
 * @cdev: a pointer to a cooling device
 */
void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
{
	struct thermal_debugfs *thermal_dbg = cdev->debugfs;

	if (!thermal_dbg)
		return;

	mutex_lock(&thermal_dbg->lock);

	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
	cdev->debugfs = NULL;

	mutex_unlock(&thermal_dbg->lock);

	thermal_debugfs_remove_id(thermal_dbg);
}

static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
							ktime_t now)
{
	struct tz_episode *tze;
	int i;

	tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
	if (!tze)
		return NULL;

	INIT_LIST_HEAD(&tze->node);
	tze->timestamp = now;

	for (i = 0; i < tz->num_trips; i++) {
		tze->trip_stats[i].min = INT_MAX;
		tze->trip_stats[i].max = INT_MIN;
	}

	return tze;
}

void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
			      const struct thermal_trip *trip)
{
	struct tz_episode *tze;
	struct tz_debugfs *tz_dbg;
	struct thermal_debugfs *thermal_dbg = tz->debugfs;
	int temperature = tz->temperature;
	int trip_id = thermal_zone_trip_id(tz, trip);
	ktime_t now = ktime_get();

	if (!thermal_dbg)
		return;

	mutex_lock(&thermal_dbg->lock);

	tz_dbg = &thermal_dbg->tz_dbg;

	/*
	 * The mitigation is starting. A mitigation can contain
	 * several episodes where each of them is related to a
	 * temperature crossing a trip point. The episodes are
	 * nested. That means when the temperature is crossing the
	 * first trip point, the duration begins to be measured. If
	 * the temperature continues to increase and reaches the
	 * second trip point, the duration of the first trip must be
	 * also accumulated.
	 *
	 * eg.
	 *
	 * temp
	 *   ^
	 *   |             --------
	 * trip 2         /        \         ------
	 *   |           /|        |\      /|      |\
	 * trip 1       / |        | `----  |      | \
	 *   |         /| |        |        |      | |\
	 * trip 0     / | |        |        |      | | \
	 *   |       /| | |        |        |      | | |\
	 *   |      / | | |        |        |      | | | `--
	 *   |     /  | | |        |        |      | | |
	 *   |-----   | | |        |        |      | | |
	 *   |        | | |        |        |      | | |
	 *    --------|-|-|--------|--------|------|-|-|------------------> time
	 *            | | |<--t2-->|        |<-t2'>| | |
	 *            | |                            | |
	 *            | |<------------t1------------>| |
	 *            |                                |
	 *            |<-------------t0--------------->|
	 *
	 */
	if (!tz_dbg->nr_trips) {
		tze = thermal_debugfs_tz_event_alloc(tz, now);
		if (!tze)
			goto unlock;

		list_add(&tze->node, &tz_dbg->tz_episodes);
	}

	/*
	 * Each time a trip point is crossed the way up, the trip_id
	 * is stored in the trip_crossed array and the nr_trips is
	 * incremented. A nr_trips equal to zero means we are entering
	 * a mitigation episode.
	 *
	 * The trip ids may not be in the ascending order but the
	 * result in the array trips_crossed will be in the ascending
	 * temperature order. The function detecting when a trip point
	 * is crossed the way down will handle the very rare case when
	 * the trip points may have been reordered during this
	 * mitigation episode.
	 */
	tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;

	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
	tze->trip_stats[trip_id].timestamp = now;
	tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, temperature);
	tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, temperature);
	tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
		(temperature - tze->trip_stats[trip_id].avg) /
		tze->trip_stats[trip_id].count;

unlock:
	mutex_unlock(&thermal_dbg->lock);
}

void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
				const struct thermal_trip *trip)
{
	struct thermal_debugfs *thermal_dbg = tz->debugfs;
	struct tz_episode *tze;
	struct tz_debugfs *tz_dbg;
	ktime_t delta, now = ktime_get();
	int trip_id = thermal_zone_trip_id(tz, trip);
	int i;

	if (!thermal_dbg)
		return;

	mutex_lock(&thermal_dbg->lock);

	tz_dbg = &thermal_dbg->tz_dbg;

	/*
	 * The temperature crosses the way down but there was not
	 * mitigation detected before. That may happen when the
	 * temperature is greater than a trip point when registering a
	 * thermal zone, which is a common use case as the kernel has
	 * no mitigation mechanism yet at boot time.
	 */
	if (!tz_dbg->nr_trips)
		goto out;

	for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
		if (tz_dbg->trips_crossed[i] == trip_id)
			break;
	}

	if (i < 0)
		goto out;

	tz_dbg->nr_trips--;

	if (i < tz_dbg->nr_trips)
		tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];

	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);

	delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp);

	tze->trip_stats[trip_id].duration =
		ktime_add(delta, tze->trip_stats[trip_id].duration);

	/*
	 * This event closes the mitigation as we are crossing the
	 * last trip point the way down.
	 */
	if (!tz_dbg->nr_trips)
		tze->duration = ktime_sub(now, tze->timestamp);

out:
	mutex_unlock(&thermal_dbg->lock);
}

void thermal_debug_update_temp(struct thermal_zone_device *tz)
{
	struct thermal_debugfs *thermal_dbg = tz->debugfs;
	struct tz_episode *tze;
	struct tz_debugfs *tz_dbg;
	int trip_id, i;

	if (!thermal_dbg)
		return;

	mutex_lock(&thermal_dbg->lock);

	tz_dbg = &thermal_dbg->tz_dbg;

	if (!tz_dbg->nr_trips)
		goto out;

	for (i = 0; i < tz_dbg->nr_trips; i++) {
		trip_id = tz_dbg->trips_crossed[i];
		tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
		tze->trip_stats[trip_id].count++;
		tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature);
		tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature);
		tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
			(tz->temperature - tze->trip_stats[trip_id].avg) /
			tze->trip_stats[trip_id].count;
	}
out:
	mutex_unlock(&thermal_dbg->lock);
}

static void *tze_seq_start(struct seq_file *s, loff_t *pos)
{
	struct thermal_zone_device *tz = s->private;
	struct thermal_debugfs *thermal_dbg = tz->debugfs;
	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;

	mutex_lock(&thermal_dbg->lock);

	return seq_list_start(&tz_dbg->tz_episodes, *pos);
}

static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct thermal_zone_device *tz = s->private;
	struct thermal_debugfs *thermal_dbg = tz->debugfs;
	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;

	return seq_list_next(v, &tz_dbg->tz_episodes, pos);
}

static void tze_seq_stop(struct seq_file *s, void *v)
{
	struct thermal_zone_device *tz = s->private;
	struct thermal_debugfs *thermal_dbg = tz->debugfs;

	mutex_unlock(&thermal_dbg->lock);
}

static int tze_seq_show(struct seq_file *s, void *v)
{
	struct thermal_zone_device *tz = s->private;
	struct thermal_trip *trip;
	struct tz_episode *tze;
	const char *type;
	int trip_id;

	tze = list_entry((struct list_head *)v, struct tz_episode, node);

	seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n",
		   ktime_to_us(tze->timestamp),
		   ktime_to_ms(tze->duration));

	seq_printf(s, "| trip |     type | temp(°mC) | hyst(°mC) |  duration  |  avg(°mC) |  min(°mC) |  max(°mC) |\n");

	for_each_trip(tz, trip) {
		/*
		 * There is no possible mitigation happening at the
		 * critical trip point, so the stats will be always
		 * zero, skip this trip point
		 */
		if (trip->type == THERMAL_TRIP_CRITICAL)
			continue;

		if (trip->type == THERMAL_TRIP_PASSIVE)
			type = "passive";
		else if (trip->type == THERMAL_TRIP_ACTIVE)
			type = "active";
		else
			type = "hot";

		trip_id = thermal_zone_trip_id(tz, trip);

		seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n",
			   4 , trip_id,
			   8, type,
			   9, trip->temperature,
			   9, trip->hysteresis,
			   10, ktime_to_ms(tze->trip_stats[trip_id].duration),
			   9, tze->trip_stats[trip_id].avg,
			   9, tze->trip_stats[trip_id].min,
			   9, tze->trip_stats[trip_id].max);
	}

	return 0;
}

static const struct seq_operations tze_sops = {
	.start = tze_seq_start,
	.next = tze_seq_next,
	.stop = tze_seq_stop,
	.show = tze_seq_show,
};

DEFINE_SEQ_ATTRIBUTE(tze);

void thermal_debug_tz_add(struct thermal_zone_device *tz)
{
	struct thermal_debugfs *thermal_dbg;
	struct tz_debugfs *tz_dbg;

	thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
	if (!thermal_dbg)
		return;

	tz_dbg = &thermal_dbg->tz_dbg;

	tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
	if (!tz_dbg->trips_crossed) {
		thermal_debugfs_remove_id(thermal_dbg);
		return;
	}

	INIT_LIST_HEAD(&tz_dbg->tz_episodes);

	debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, tz, &tze_fops);

	tz->debugfs = thermal_dbg;
}

void thermal_debug_tz_remove(struct thermal_zone_device *tz)
{
	struct thermal_debugfs *thermal_dbg = tz->debugfs;

	if (!thermal_dbg)
		return;

	mutex_lock(&thermal_dbg->lock);

	tz->debugfs = NULL;

	mutex_unlock(&thermal_dbg->lock);

	thermal_debugfs_remove_id(thermal_dbg);
}