summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-sirf.c
blob: 62c92c3342601e276d0310a345f101bbc091b5a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/*
 * SPI bus driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/sirfsoc_dma.h>

#define DRIVER_NAME "sirfsoc_spi"

#define SIRFSOC_SPI_CTRL		0x0000
#define SIRFSOC_SPI_CMD			0x0004
#define SIRFSOC_SPI_TX_RX_EN		0x0008
#define SIRFSOC_SPI_INT_EN		0x000C
#define SIRFSOC_SPI_INT_STATUS		0x0010
#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
#define SIRFSOC_SPI_TXFIFO_OP		0x0110
#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
#define SIRFSOC_SPI_RXFIFO_OP		0x0130
#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144

/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE		BIT(16)
#define SIRFSOC_SPI_CMD_MODE		BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x)		((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR		BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE		BIT(31)

/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN		BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN		BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)

#define SIRFSOC_SPI_INT_MASK_ALL		0x1FFF

/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE		BIT(0)
#define SIRFSOC_SPI_TX_DONE		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
#define SIRFSOC_SPI_FRM_END		BIT(10)

/* TX RX enable */
#define SIRFSOC_SPI_RX_EN		BIT(0)
#define SIRFSOC_SPI_TX_EN		BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)

#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)

/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
#define SIRFSOC_SPI_FIFO_START		BIT(1)

/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)

/* FIFO Status */
#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)

/* 256 bytes rx/tx FIFO */
#define SIRFSOC_SPI_FIFO_SIZE		256
#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)

#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)

/*
 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 * due to the limitation of dma controller
 */

#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
	ALIGNED(x->len * sspi->word_width) && (x->len * sspi->word_width < \
		2 * PAGE_SIZE))

struct sirfsoc_spi {
	struct spi_bitbang bitbang;
	struct completion rx_done;
	struct completion tx_done;

	void __iomem *base;
	u32 ctrl_freq;  /* SPI controller clock speed */
	struct clk *clk;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	/* place received word into rx buffer */
	void (*rx_word) (struct sirfsoc_spi *);
	/* get word from tx buffer for sending */
	void (*tx_word) (struct sirfsoc_spi *);

	/* number of words left to be tranmitted/received */
	unsigned int left_tx_cnt;
	unsigned int left_rx_cnt;

	/* rx & tx DMA channels */
	struct dma_chan *rx_chan;
	struct dma_chan *tx_chan;
	dma_addr_t src_start;
	dma_addr_t dst_start;
	void *dummypage;
	int word_width; /* in bytes */

	int chipselect[0];
};

static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data;
	u8 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u8) data;
		sspi->rx = rx;
	}

	sspi->left_rx_cnt--;
}

static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u8 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
	sspi->left_tx_cnt--;
}

static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data;
	u16 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u16) data;
		sspi->rx = rx;
	}

	sspi->left_rx_cnt--;
}

static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u16 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
	sspi->left_tx_cnt--;
}

static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data;
	u32 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u32) data;
		sspi->rx = rx;
	}

	sspi->left_rx_cnt--;

}

static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u32 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
	sspi->left_tx_cnt--;
}

static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
	struct sirfsoc_spi *sspi = dev_id;
	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);

	writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);

	/* Error Conditions */
	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
		complete(&sspi->rx_done);
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	}

	if (spi_stat & (SIRFSOC_SPI_FRM_END
			| SIRFSOC_SPI_RXFIFO_THD_REACH))
		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
				& SIRFSOC_SPI_FIFO_EMPTY)) &&
				sspi->left_rx_cnt)
			sspi->rx_word(sspi);

	if (spi_stat & (SIRFSOC_SPI_FIFO_EMPTY
			| SIRFSOC_SPI_TXFIFO_THD_REACH))
		while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
				& SIRFSOC_SPI_FIFO_FULL)) &&
				sspi->left_tx_cnt)
			sspi->tx_word(sspi);

	/* Received all words */
	if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
		complete(&sspi->rx_done);
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	}
	return IRQ_HANDLED;
}

static void spi_sirfsoc_dma_fini_callback(void *data)
{
	struct completion *dma_complete = data;

	complete(dma_complete);
}

static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	sspi = spi_master_get_devdata(spi->master);

	sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
	sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
	sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
	INIT_COMPLETION(sspi->rx_done);
	INIT_COMPLETION(sspi->tx_done);

	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);

	if (t->len == 1) {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
			SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	} else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
				SIRFSOC_SPI_MUL_DAT_MODE |
				SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	} else {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	}

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

	if (IS_DMA_VALID(t)) {
		struct dma_async_tx_descriptor *rx_desc, *tx_desc;
		unsigned int size = t->len * sspi->word_width;

		sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
		rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
			sspi->dst_start, size, DMA_DEV_TO_MEM,
			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		rx_desc->callback = spi_sirfsoc_dma_fini_callback;
		rx_desc->callback_param = &sspi->rx_done;

		sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
		tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
			sspi->src_start, size, DMA_MEM_TO_DEV,
			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		tx_desc->callback = spi_sirfsoc_dma_fini_callback;
		tx_desc->callback_param = &sspi->tx_done;

		dmaengine_submit(tx_desc);
		dmaengine_submit(rx_desc);
		dma_async_issue_pending(sspi->tx_chan);
		dma_async_issue_pending(sspi->rx_chan);
	} else {
		/* Send the first word to trigger the whole tx/rx process */
		sspi->tx_word(sspi);

		writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
			SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
			SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
			SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
	}

	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);

	if (!IS_DMA_VALID(t)) { /* for PIO */
		if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
			dev_err(&spi->dev, "transfer timeout\n");
	} else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
		dev_err(&spi->dev, "transfer timeout\n");
		dmaengine_terminate_all(sspi->rx_chan);
	} else
		sspi->left_rx_cnt = 0;

	/*
	 * we only wait tx-done event if transferring by DMA. for PIO,
	 * we get rx data by writing tx data, so if rx is done, tx has
	 * done earlier
	 */
	if (IS_DMA_VALID(t)) {
		if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
			dev_err(&spi->dev, "transfer timeout\n");
			dmaengine_terminate_all(sspi->tx_chan);
		}
	}

	if (IS_DMA_VALID(t)) {
		dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
		dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
	}

	/* TX, RX FIFO stop */
	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);

	return t->len - sspi->left_rx_cnt;
}

static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);

	if (sspi->chipselect[spi->chip_select] == 0) {
		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
		switch (value) {
		case BITBANG_CS_ACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			else
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			break;
		case BITBANG_CS_INACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			else
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			break;
		}
		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
	} else {
		int gpio = sspi->chipselect[spi->chip_select];
		gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
	}
}

static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	u8 bits_per_word = 0;
	int hz = 0;
	u32 regval;
	u32 txfifo_ctrl, rxfifo_ctrl;
	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;

	sspi = spi_master_get_devdata(spi->master);

	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;

	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
	if (regval > 0xFFFF || regval < 0) {
		dev_err(&spi->dev, "Speed %d not supported\n", hz);
		return -EINVAL;
	}

	switch (bits_per_word) {
	case 8:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
		sspi->rx_word = spi_sirfsoc_rx_word_u8;
		sspi->tx_word = spi_sirfsoc_tx_word_u8;
		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_BYTE;
		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_BYTE;
		sspi->word_width = 1;
		break;
	case 12:
	case 16:
		regval |= (bits_per_word ==  12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
		sspi->rx_word = spi_sirfsoc_rx_word_u16;
		sspi->tx_word = spi_sirfsoc_tx_word_u16;
		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_WORD;
		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_WORD;
		sspi->word_width = 2;
		break;
	case 32:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
		sspi->rx_word = spi_sirfsoc_rx_word_u32;
		sspi->tx_word = spi_sirfsoc_tx_word_u32;
		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_DWORD;
		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_DWORD;
		sspi->word_width = 4;
		break;
	default:
		BUG();
	}

	if (!(spi->mode & SPI_CS_HIGH))
		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
	if (!(spi->mode & SPI_LSB_FIRST))
		regval |= SIRFSOC_SPI_TRAN_MSB;
	if (spi->mode & SPI_CPOL)
		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;

	/*
	 * Data should be driven at least 1/2 cycle before the fetch edge to make
	 * sure that data gets stable at the fetch edge.
	 */
	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
	else
		regval |= SIRFSOC_SPI_DRV_POS_EDGE;

	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(2),
		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
	writel(SIRFSOC_SPI_FIFO_SC(2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);

	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);

	if (IS_DMA_VALID(t)) {
		/* Enable DMA mode for RX, TX */
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
	} else {
		/* Enable IO mode for RX, TX */
		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
	}

	return 0;
}

static int spi_sirfsoc_setup(struct spi_device *spi)
{
	struct sirfsoc_spi *sspi;

	if (!spi->max_speed_hz)
		return -EINVAL;

	sspi = spi_master_get_devdata(spi->master);

	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

	return spi_sirfsoc_setup_transfer(spi, NULL);
}

static int spi_sirfsoc_probe(struct platform_device *pdev)
{
	struct sirfsoc_spi *sspi;
	struct spi_master *master;
	struct resource *mem_res;
	int num_cs, cs_gpio, irq;
	u32 rx_dma_ch, tx_dma_ch;
	dma_cap_mask_t dma_cap_mask;
	int i;
	int ret;

	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-num-chipselects", &num_cs);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get chip select number\n");
		goto err_cs;
	}

	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-dma-rx-channel", &rx_dma_ch);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get rx dma channel\n");
		goto err_cs;
	}

	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-dma-tx-channel", &tx_dma_ch);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get tx dma channel\n");
		goto err_cs;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);

	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem_res) {
		dev_err(&pdev->dev, "Unable to get IO resource\n");
		ret = -ENODEV;
		goto free_master;
	}
	master->num_chipselect = num_cs;

	for (i = 0; i < master->num_chipselect; i++) {
		cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
		if (cs_gpio < 0) {
			dev_err(&pdev->dev, "can't get cs gpio from DT\n");
			ret = -ENODEV;
			goto free_master;
		}

		sspi->chipselect[i] = cs_gpio;
		if (cs_gpio == 0)
			continue; /* use cs from spi controller */

		ret = gpio_request(cs_gpio, DRIVER_NAME);
		if (ret) {
			while (i > 0) {
				i--;
				if (sspi->chipselect[i] > 0)
					gpio_free(sspi->chipselect[i]);
			}
			dev_err(&pdev->dev, "fail to request cs gpios\n");
			goto free_master;
		}
	}

	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
	if (IS_ERR(sspi->base)) {
		ret = PTR_ERR(sspi->base);
		goto free_master;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto free_master;
	}
	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
				DRIVER_NAME, sspi);
	if (ret)
		goto free_master;

	sspi->bitbang.master = spi_master_get(master);
	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
	sspi->bitbang.master->setup = spi_sirfsoc_setup;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;

	/* request DMA channels */
	dma_cap_zero(dma_cap_mask);
	dma_cap_set(DMA_INTERLEAVE, dma_cap_mask);

	sspi->rx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
		(void *)rx_dma_ch);
	if (!sspi->rx_chan) {
		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
		goto free_master;
	}
	sspi->tx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
		(void *)tx_dma_ch);
	if (!sspi->tx_chan) {
		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
		goto free_rx_dma;
	}

	sspi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sspi->clk)) {
		ret = PTR_ERR(sspi->clk);
		goto free_tx_dma;
	}
	clk_prepare_enable(sspi->clk);
	sspi->ctrl_freq = clk_get_rate(sspi->clk);

	init_completion(&sspi->rx_done);
	init_completion(&sspi->tx_done);

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	/* We are not using dummy delay between command and data */
	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);

	sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
	if (!sspi->dummypage)
		goto free_clk;

	ret = spi_bitbang_start(&sspi->bitbang);
	if (ret)
		goto free_dummypage;

	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);

	return 0;
free_dummypage:
	kfree(sspi->dummypage);
free_clk:
	clk_disable_unprepare(sspi->clk);
	clk_put(sspi->clk);
free_tx_dma:
	dma_release_channel(sspi->tx_chan);
free_rx_dma:
	dma_release_channel(sspi->rx_chan);
free_master:
	spi_master_put(master);
err_cs:
	return ret;
}

static int  spi_sirfsoc_remove(struct platform_device *pdev)
{
	struct spi_master *master;
	struct sirfsoc_spi *sspi;
	int i;

	master = platform_get_drvdata(pdev);
	sspi = spi_master_get_devdata(master);

	spi_bitbang_stop(&sspi->bitbang);
	for (i = 0; i < master->num_chipselect; i++) {
		if (sspi->chipselect[i] > 0)
			gpio_free(sspi->chipselect[i]);
	}
	kfree(sspi->dummypage);
	clk_disable_unprepare(sspi->clk);
	clk_put(sspi->clk);
	dma_release_channel(sspi->rx_chan);
	dma_release_channel(sspi->tx_chan);
	spi_master_put(master);
	return 0;
}

#ifdef CONFIG_PM
static int spi_sirfsoc_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct spi_master *master = platform_get_drvdata(pdev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_disable(sspi->clk);
	return 0;
}

static int spi_sirfsoc_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct spi_master *master = platform_get_drvdata(pdev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_enable(sspi->clk);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

	return 0;
}

static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
	.suspend = spi_sirfsoc_suspend,
	.resume = spi_sirfsoc_resume,
};
#endif

static const struct of_device_id spi_sirfsoc_of_match[] = {
	{ .compatible = "sirf,prima2-spi", },
	{ .compatible = "sirf,marco-spi", },
	{}
};
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);

static struct platform_driver spi_sirfsoc_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.owner = THIS_MODULE,
#ifdef CONFIG_PM
		.pm     = &spi_sirfsoc_pm_ops,
#endif
		.of_match_table = spi_sirfsoc_of_match,
	},
	.probe = spi_sirfsoc_probe,
	.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);

MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
		"Barry Song <Baohua.Song@csr.com>");
MODULE_LICENSE("GPL v2");