summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-fsl-espi.c
blob: e60581283a247c24c9795ffd7bdcf2fee34b0e22 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Freescale eSPI controller driver.
 *
 * Copyright 2010 Freescale Semiconductor, Inc.
 */
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/fsl_devices.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/pm_runtime.h>
#include <sysdev/fsl_soc.h>

/* eSPI Controller registers */
#define ESPI_SPMODE	0x00	/* eSPI mode register */
#define ESPI_SPIE	0x04	/* eSPI event register */
#define ESPI_SPIM	0x08	/* eSPI mask register */
#define ESPI_SPCOM	0x0c	/* eSPI command register */
#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */

#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)

/* eSPI Controller mode register definitions */
#define SPMODE_ENABLE		BIT(31)
#define SPMODE_LOOP		BIT(30)
#define SPMODE_TXTHR(x)		((x) << 8)
#define SPMODE_RXTHR(x)		((x) << 0)

/* eSPI Controller CS mode register definitions */
#define CSMODE_CI_INACTIVEHIGH	BIT(31)
#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
#define CSMODE_REV		BIT(29)
#define CSMODE_DIV16		BIT(28)
#define CSMODE_PM(x)		((x) << 24)
#define CSMODE_POL_1		BIT(20)
#define CSMODE_LEN(x)		((x) << 16)
#define CSMODE_BEF(x)		((x) << 12)
#define CSMODE_AFT(x)		((x) << 8)
#define CSMODE_CG(x)		((x) << 3)

#define FSL_ESPI_FIFO_SIZE	32
#define FSL_ESPI_RXTHR		15

/* Default mode/csmode for eSPI controller */
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
		| CSMODE_AFT(0) | CSMODE_CG(1))

/* SPIE register values */
#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
#define	SPIE_DON		BIT(14)	/* TX done */
#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */

/* SPIM register values */
#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
#define	SPIM_DON		BIT(14)	/* TX done */
#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */

/* SPCOM register values */
#define SPCOM_CS(x)		((x) << 30)
#define SPCOM_DO		BIT(28) /* Dual output */
#define SPCOM_TO		BIT(27) /* TX only */
#define SPCOM_RXSKIP(x)		((x) << 16)
#define SPCOM_TRANLEN(x)	((x) << 0)

#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */

#define AUTOSUSPEND_TIMEOUT 2000

struct fsl_espi {
	struct device *dev;
	void __iomem *reg_base;

	struct list_head *m_transfers;
	struct spi_transfer *tx_t;
	unsigned int tx_pos;
	bool tx_done;
	struct spi_transfer *rx_t;
	unsigned int rx_pos;
	bool rx_done;

	bool swab;
	unsigned int rxskip;

	spinlock_t lock;

	u32 spibrg;             /* SPIBRG input clock */

	struct completion done;
};

struct fsl_espi_cs {
	u32 hw_mode;
};

static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
{
	return ioread32be(espi->reg_base + offset);
}

static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
{
	return ioread16be(espi->reg_base + offset);
}

static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
{
	return ioread8(espi->reg_base + offset);
}

static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
				      u32 val)
{
	iowrite32be(val, espi->reg_base + offset);
}

static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
					u16 val)
{
	iowrite16be(val, espi->reg_base + offset);
}

static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
				       u8 val)
{
	iowrite8(val, espi->reg_base + offset);
}

static int fsl_espi_check_message(struct spi_message *m)
{
	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
	struct spi_transfer *t, *first;

	if (m->frame_length > SPCOM_TRANLEN_MAX) {
		dev_err(espi->dev, "message too long, size is %u bytes\n",
			m->frame_length);
		return -EMSGSIZE;
	}

	first = list_first_entry(&m->transfers, struct spi_transfer,
				 transfer_list);

	list_for_each_entry(t, &m->transfers, transfer_list) {
		if (first->bits_per_word != t->bits_per_word ||
		    first->speed_hz != t->speed_hz) {
			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
			return -EINVAL;
		}
	}

	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
	    first->bits_per_word != 16) {
		dev_err(espi->dev,
			"MSB-first transfer not supported for wordsize %u\n",
			first->bits_per_word);
		return -EINVAL;
	}

	return 0;
}

static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
{
	struct spi_transfer *t;
	unsigned int i = 0, rxskip = 0;

	/*
	 * prerequisites for ESPI rxskip mode:
	 * - message has two transfers
	 * - first transfer is a write and second is a read
	 *
	 * In addition the current low-level transfer mechanism requires
	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
	 * the TX FIFO isn't re-filled.
	 */
	list_for_each_entry(t, &m->transfers, transfer_list) {
		if (i == 0) {
			if (!t->tx_buf || t->rx_buf ||
			    t->len > FSL_ESPI_FIFO_SIZE)
				return 0;
			rxskip = t->len;
		} else if (i == 1) {
			if (t->tx_buf || !t->rx_buf)
				return 0;
		}
		i++;
	}

	return i == 2 ? rxskip : 0;
}

static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
{
	u32 tx_fifo_avail;
	unsigned int tx_left;
	const void *tx_buf;

	/* if events is zero transfer has not started and tx fifo is empty */
	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
start:
	tx_left = espi->tx_t->len - espi->tx_pos;
	tx_buf = espi->tx_t->tx_buf;
	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
		if (tx_left >= 4) {
			if (!tx_buf)
				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
			else if (espi->swab)
				fsl_espi_write_reg(espi, ESPI_SPITF,
					swahb32p(tx_buf + espi->tx_pos));
			else
				fsl_espi_write_reg(espi, ESPI_SPITF,
					*(u32 *)(tx_buf + espi->tx_pos));
			espi->tx_pos += 4;
			tx_left -= 4;
			tx_fifo_avail -= 4;
		} else if (tx_left >= 2 && tx_buf && espi->swab) {
			fsl_espi_write_reg16(espi, ESPI_SPITF,
					swab16p(tx_buf + espi->tx_pos));
			espi->tx_pos += 2;
			tx_left -= 2;
			tx_fifo_avail -= 2;
		} else {
			if (!tx_buf)
				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
			else
				fsl_espi_write_reg8(espi, ESPI_SPITF,
					*(u8 *)(tx_buf + espi->tx_pos));
			espi->tx_pos += 1;
			tx_left -= 1;
			tx_fifo_avail -= 1;
		}
	}

	if (!tx_left) {
		/* Last transfer finished, in rxskip mode only one is needed */
		if (list_is_last(&espi->tx_t->transfer_list,
		    espi->m_transfers) || espi->rxskip) {
			espi->tx_done = true;
			return;
		}
		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
		espi->tx_pos = 0;
		/* continue with next transfer if tx fifo is not full */
		if (tx_fifo_avail)
			goto start;
	}
}

static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
{
	u32 rx_fifo_avail = SPIE_RXCNT(events);
	unsigned int rx_left;
	void *rx_buf;

start:
	rx_left = espi->rx_t->len - espi->rx_pos;
	rx_buf = espi->rx_t->rx_buf;
	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
		if (rx_left >= 4) {
			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);

			if (rx_buf && espi->swab)
				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
			else if (rx_buf)
				*(u32 *)(rx_buf + espi->rx_pos) = val;
			espi->rx_pos += 4;
			rx_left -= 4;
			rx_fifo_avail -= 4;
		} else if (rx_left >= 2 && rx_buf && espi->swab) {
			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);

			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
			espi->rx_pos += 2;
			rx_left -= 2;
			rx_fifo_avail -= 2;
		} else {
			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);

			if (rx_buf)
				*(u8 *)(rx_buf + espi->rx_pos) = val;
			espi->rx_pos += 1;
			rx_left -= 1;
			rx_fifo_avail -= 1;
		}
	}

	if (!rx_left) {
		if (list_is_last(&espi->rx_t->transfer_list,
		    espi->m_transfers)) {
			espi->rx_done = true;
			return;
		}
		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
		espi->rx_pos = 0;
		/* continue with next transfer if rx fifo is not empty */
		if (rx_fifo_avail)
			goto start;
	}
}

static void fsl_espi_setup_transfer(struct spi_device *spi,
					struct spi_transfer *t)
{
	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
	u32 hw_mode_old = cs->hw_mode;

	/* mask out bits we are going to set */
	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));

	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);

	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;

	if (pm > 15) {
		cs->hw_mode |= CSMODE_DIV16;
		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
	}

	cs->hw_mode |= CSMODE_PM(pm);

	/* don't write the mode register if the mode doesn't change */
	if (cs->hw_mode != hw_mode_old)
		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
				   cs->hw_mode);
}

static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
{
	struct fsl_espi *espi = spi_master_get_devdata(spi->master);
	unsigned int rx_len = t->len;
	u32 mask, spcom;
	int ret;

	reinit_completion(&espi->done);

	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
	spcom = SPCOM_CS(spi->chip_select);
	spcom |= SPCOM_TRANLEN(t->len - 1);

	/* configure RXSKIP mode */
	if (espi->rxskip) {
		spcom |= SPCOM_RXSKIP(espi->rxskip);
		rx_len = t->len - espi->rxskip;
		if (t->rx_nbits == SPI_NBITS_DUAL)
			spcom |= SPCOM_DO;
	}

	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);

	/* enable interrupts */
	mask = SPIM_DON;
	if (rx_len > FSL_ESPI_FIFO_SIZE)
		mask |= SPIM_RXT;
	fsl_espi_write_reg(espi, ESPI_SPIM, mask);

	/* Prevent filling the fifo from getting interrupted */
	spin_lock_irq(&espi->lock);
	fsl_espi_fill_tx_fifo(espi, 0);
	spin_unlock_irq(&espi->lock);

	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
	if (ret == 0)
		dev_err(espi->dev, "Transfer timed out!\n");

	/* disable rx ints */
	fsl_espi_write_reg(espi, ESPI_SPIM, 0);

	return ret == 0 ? -ETIMEDOUT : 0;
}

static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
{
	struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
	struct spi_device *spi = m->spi;
	int ret;

	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;

	espi->m_transfers = &m->transfers;
	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
				      transfer_list);
	espi->tx_pos = 0;
	espi->tx_done = false;
	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
				      transfer_list);
	espi->rx_pos = 0;
	espi->rx_done = false;

	espi->rxskip = fsl_espi_check_rxskip_mode(m);
	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
		return -EINVAL;
	}

	/* In RXSKIP mode skip first transfer for reads */
	if (espi->rxskip)
		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);

	fsl_espi_setup_transfer(spi, trans);

	ret = fsl_espi_bufs(spi, trans);

	spi_transfer_delay_exec(trans);

	return ret;
}

static int fsl_espi_do_one_msg(struct spi_master *master,
			       struct spi_message *m)
{
	unsigned int delay_usecs = 0, rx_nbits = 0;
	unsigned int delay_nsecs = 0, delay_nsecs1 = 0;
	struct spi_transfer *t, trans = {};
	int ret;

	ret = fsl_espi_check_message(m);
	if (ret)
		goto out;

	list_for_each_entry(t, &m->transfers, transfer_list) {
		if (t->delay_usecs) {
			if (t->delay_usecs > delay_usecs) {
				delay_usecs = t->delay_usecs;
				delay_nsecs = delay_usecs * 1000;
			}
		} else {
			delay_nsecs1 = spi_delay_to_ns(&t->delay, t);
			if (delay_nsecs1 > delay_nsecs)
				delay_nsecs = delay_nsecs1;
		}
		if (t->rx_nbits > rx_nbits)
			rx_nbits = t->rx_nbits;
	}

	t = list_first_entry(&m->transfers, struct spi_transfer,
			     transfer_list);

	trans.len = m->frame_length;
	trans.speed_hz = t->speed_hz;
	trans.bits_per_word = t->bits_per_word;
	trans.delay.value = delay_nsecs;
	trans.delay.unit = SPI_DELAY_UNIT_NSECS;
	trans.rx_nbits = rx_nbits;

	if (trans.len)
		ret = fsl_espi_trans(m, &trans);

	m->actual_length = ret ? 0 : trans.len;
out:
	if (m->status == -EINPROGRESS)
		m->status = ret;

	spi_finalize_current_message(master);

	return ret;
}

static int fsl_espi_setup(struct spi_device *spi)
{
	struct fsl_espi *espi;
	u32 loop_mode;
	struct fsl_espi_cs *cs = spi_get_ctldata(spi);

	if (!cs) {
		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
		if (!cs)
			return -ENOMEM;
		spi_set_ctldata(spi, cs);
	}

	espi = spi_master_get_devdata(spi->master);

	pm_runtime_get_sync(espi->dev);

	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
	/* mask out bits we are going to set */
	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
			 | CSMODE_REV);

	if (spi->mode & SPI_CPHA)
		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
	if (spi->mode & SPI_CPOL)
		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
	if (!(spi->mode & SPI_LSB_FIRST))
		cs->hw_mode |= CSMODE_REV;

	/* Handle the loop mode */
	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
	loop_mode &= ~SPMODE_LOOP;
	if (spi->mode & SPI_LOOP)
		loop_mode |= SPMODE_LOOP;
	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);

	fsl_espi_setup_transfer(spi, NULL);

	pm_runtime_mark_last_busy(espi->dev);
	pm_runtime_put_autosuspend(espi->dev);

	return 0;
}

static void fsl_espi_cleanup(struct spi_device *spi)
{
	struct fsl_espi_cs *cs = spi_get_ctldata(spi);

	kfree(cs);
	spi_set_ctldata(spi, NULL);
}

static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
{
	if (!espi->rx_done)
		fsl_espi_read_rx_fifo(espi, events);

	if (!espi->tx_done)
		fsl_espi_fill_tx_fifo(espi, events);

	if (!espi->tx_done || !espi->rx_done)
		return;

	/* we're done, but check for errors before returning */
	events = fsl_espi_read_reg(espi, ESPI_SPIE);

	if (!(events & SPIE_DON))
		dev_err(espi->dev,
			"Transfer done but SPIE_DON isn't set!\n");

	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
		dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
			SPIE_RXCNT(events), SPIE_TXCNT(events));
	}

	complete(&espi->done);
}

static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
{
	struct fsl_espi *espi = context_data;
	u32 events;

	spin_lock(&espi->lock);

	/* Get interrupt events(tx/rx) */
	events = fsl_espi_read_reg(espi, ESPI_SPIE);
	if (!events) {
		spin_unlock(&espi->lock);
		return IRQ_NONE;
	}

	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);

	fsl_espi_cpu_irq(espi, events);

	/* Clear the events */
	fsl_espi_write_reg(espi, ESPI_SPIE, events);

	spin_unlock(&espi->lock);

	return IRQ_HANDLED;
}

#ifdef CONFIG_PM
static int fsl_espi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct fsl_espi *espi = spi_master_get_devdata(master);
	u32 regval;

	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
	regval &= ~SPMODE_ENABLE;
	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);

	return 0;
}

static int fsl_espi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct fsl_espi *espi = spi_master_get_devdata(master);
	u32 regval;

	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
	regval |= SPMODE_ENABLE;
	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);

	return 0;
}
#endif

static size_t fsl_espi_max_message_size(struct spi_device *spi)
{
	return SPCOM_TRANLEN_MAX;
}

static void fsl_espi_init_regs(struct device *dev, bool initial)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct fsl_espi *espi = spi_master_get_devdata(master);
	struct device_node *nc;
	u32 csmode, cs, prop;
	int ret;

	/* SPI controller initializations */
	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);

	/* Init eSPI CS mode register */
	for_each_available_child_of_node(master->dev.of_node, nc) {
		/* get chip select */
		ret = of_property_read_u32(nc, "reg", &cs);
		if (ret || cs >= master->num_chipselect)
			continue;

		csmode = CSMODE_INIT_VAL;

		/* check if CSBEF is set in device tree */
		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
		if (!ret) {
			csmode &= ~(CSMODE_BEF(0xf));
			csmode |= CSMODE_BEF(prop);
		}

		/* check if CSAFT is set in device tree */
		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
		if (!ret) {
			csmode &= ~(CSMODE_AFT(0xf));
			csmode |= CSMODE_AFT(prop);
		}

		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);

		if (initial)
			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
	}

	/* Enable SPI interface */
	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
}

static int fsl_espi_probe(struct device *dev, struct resource *mem,
			  unsigned int irq, unsigned int num_cs)
{
	struct spi_master *master;
	struct fsl_espi *espi;
	int ret;

	master = spi_alloc_master(dev, sizeof(struct fsl_espi));
	if (!master)
		return -ENOMEM;

	dev_set_drvdata(dev, master);

	master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
			    SPI_LSB_FIRST | SPI_LOOP;
	master->dev.of_node = dev->of_node;
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
	master->setup = fsl_espi_setup;
	master->cleanup = fsl_espi_cleanup;
	master->transfer_one_message = fsl_espi_do_one_msg;
	master->auto_runtime_pm = true;
	master->max_message_size = fsl_espi_max_message_size;
	master->num_chipselect = num_cs;

	espi = spi_master_get_devdata(master);
	spin_lock_init(&espi->lock);

	espi->dev = dev;
	espi->spibrg = fsl_get_sys_freq();
	if (espi->spibrg == -1) {
		dev_err(dev, "Can't get sys frequency!\n");
		ret = -EINVAL;
		goto err_probe;
	}
	/* determined by clock divider fields DIV16/PM in register SPMODEx */
	master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
	master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);

	init_completion(&espi->done);

	espi->reg_base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(espi->reg_base)) {
		ret = PTR_ERR(espi->reg_base);
		goto err_probe;
	}

	/* Register for SPI Interrupt */
	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
	if (ret)
		goto err_probe;

	fsl_espi_init_regs(dev, true);

	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(dev);
	pm_runtime_set_active(dev);
	pm_runtime_enable(dev);
	pm_runtime_get_sync(dev);

	ret = devm_spi_register_master(dev, master);
	if (ret < 0)
		goto err_pm;

	dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);

	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return 0;

err_pm:
	pm_runtime_put_noidle(dev);
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
err_probe:
	spi_master_put(master);
	return ret;
}

static int of_fsl_espi_get_chipselects(struct device *dev)
{
	struct device_node *np = dev->of_node;
	u32 num_cs;
	int ret;

	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
	if (ret) {
		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
		return 0;
	}

	return num_cs;
}

static int of_fsl_espi_probe(struct platform_device *ofdev)
{
	struct device *dev = &ofdev->dev;
	struct device_node *np = ofdev->dev.of_node;
	struct resource mem;
	unsigned int irq, num_cs;
	int ret;

	if (of_property_read_bool(np, "mode")) {
		dev_err(dev, "mode property is not supported on ESPI!\n");
		return -EINVAL;
	}

	num_cs = of_fsl_espi_get_chipselects(dev);
	if (!num_cs)
		return -EINVAL;

	ret = of_address_to_resource(np, 0, &mem);
	if (ret)
		return ret;

	irq = irq_of_parse_and_map(np, 0);
	if (!irq)
		return -EINVAL;

	return fsl_espi_probe(dev, &mem, irq, num_cs);
}

static int of_fsl_espi_remove(struct platform_device *dev)
{
	pm_runtime_disable(&dev->dev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int of_fsl_espi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

	return pm_runtime_force_suspend(dev);
}

static int of_fsl_espi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	fsl_espi_init_regs(dev, false);

	ret = pm_runtime_force_resume(dev);
	if (ret < 0)
		return ret;

	return spi_master_resume(master);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops espi_pm = {
	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
			   fsl_espi_runtime_resume, NULL)
	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
};

static const struct of_device_id of_fsl_espi_match[] = {
	{ .compatible = "fsl,mpc8536-espi" },
	{}
};
MODULE_DEVICE_TABLE(of, of_fsl_espi_match);

static struct platform_driver fsl_espi_driver = {
	.driver = {
		.name = "fsl_espi",
		.of_match_table = of_fsl_espi_match,
		.pm = &espi_pm,
	},
	.probe		= of_fsl_espi_probe,
	.remove		= of_fsl_espi_remove,
};
module_platform_driver(fsl_espi_driver);

MODULE_AUTHOR("Mingkai Hu");
MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
MODULE_LICENSE("GPL");