summaryrefslogtreecommitdiff
path: root/drivers/scsi/csiostor/csio_hw_t4.c
blob: 89ecbac5478f6a14cfe60e77517f172062a0f9a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 * This file is part of the Chelsio FCoE driver for Linux.
 *
 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "csio_hw.h"
#include "csio_init.h"

/*
 * Return the specified PCI-E Configuration Space register from our Physical
 * Function.  We try first via a Firmware LDST Command since we prefer to let
 * the firmware own all of these registers, but if that fails we go for it
 * directly ourselves.
 */
static uint32_t
csio_t4_read_pcie_cfg4(struct csio_hw *hw, int reg)
{
	u32 val = 0;
	struct csio_mb *mbp;
	int rv;
	struct fw_ldst_cmd *ldst_cmd;

	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
	if (!mbp) {
		CSIO_INC_STATS(hw, n_err_nomem);
		pci_read_config_dword(hw->pdev, reg, &val);
		return val;
	}

	csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg);
	rv = csio_mb_issue(hw, mbp);

	/*
	 * If the LDST Command suucceeded, exctract the returned register
	 * value.  Otherwise read it directly ourself.
	 */
	if (rv == 0) {
		ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb);
		val = ntohl(ldst_cmd->u.pcie.data[0]);
	} else
		pci_read_config_dword(hw->pdev, reg, &val);

	mempool_free(mbp, hw->mb_mempool);

	return val;
}

static int
csio_t4_set_mem_win(struct csio_hw *hw, uint32_t win)
{
	u32 bar0;
	u32 mem_win_base;

	/*
	 * Truncation intentional: we only read the bottom 32-bits of the
	 * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
	 * read BAR0 instead of using pci_resource_start() because we could be
	 * operating from within a Virtual Machine which is trapping our
	 * accesses to our Configuration Space and we need to set up the PCI-E
	 * Memory Window decoders with the actual addresses which will be
	 * coming across the PCI-E link.
	 */
	bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
	bar0 &= PCI_BASE_ADDRESS_MEM_MASK;

	mem_win_base = bar0 + MEMWIN_BASE;

	/*
	 * Set up memory window for accessing adapter memory ranges.  (Read
	 * back MA register to ensure that changes propagate before we attempt
	 * to use the new values.)
	 */
	csio_wr_reg32(hw, mem_win_base | BIR(0) |
			  WINDOW(ilog2(MEMWIN_APERTURE) - 10),
			  PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
	csio_rd_reg32(hw,
		      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
	return 0;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void
csio_t4_pcie_intr_handler(struct csio_hw *hw)
{
	static struct intr_info sysbus_intr_info[] = {
		{ RNPP, "RXNP array parity error", -1, 1 },
		{ RPCP, "RXPC array parity error", -1, 1 },
		{ RCIP, "RXCIF array parity error", -1, 1 },
		{ RCCP, "Rx completions control array parity error", -1, 1 },
		{ RFTP, "RXFT array parity error", -1, 1 },
		{ 0, NULL, 0, 0 }
	};
	static struct intr_info pcie_port_intr_info[] = {
		{ TPCP, "TXPC array parity error", -1, 1 },
		{ TNPP, "TXNP array parity error", -1, 1 },
		{ TFTP, "TXFT array parity error", -1, 1 },
		{ TCAP, "TXCA array parity error", -1, 1 },
		{ TCIP, "TXCIF array parity error", -1, 1 },
		{ RCAP, "RXCA array parity error", -1, 1 },
		{ OTDD, "outbound request TLP discarded", -1, 1 },
		{ RDPE, "Rx data parity error", -1, 1 },
		{ TDUE, "Tx uncorrectable data error", -1, 1 },
		{ 0, NULL, 0, 0 }
	};

	static struct intr_info pcie_intr_info[] = {
		{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR, "PCI unexpected split completion error", -1,
		  0 },
		{ 0, NULL, 0, 0 }
	};

	int fat;
	fat = csio_handle_intr_status(hw,
				      PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
				      sysbus_intr_info) +
	      csio_handle_intr_status(hw,
				      PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
				      pcie_port_intr_info) +
	      csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info);
	if (fat)
		csio_hw_fatal_err(hw);
}

/*
 * csio_t4_flash_cfg_addr - return the address of the flash configuration file
 * @hw: the HW module
 *
 * Return the address within the flash where the Firmware Configuration
 * File is stored.
 */
static unsigned int
csio_t4_flash_cfg_addr(struct csio_hw *hw)
{
	return FLASH_CFG_OFFSET;
}

/*
 *      csio_t4_mc_read - read from MC through backdoor accesses
 *      @hw: the hw module
 *      @idx: not used for T4 adapter
 *      @addr: address of first byte requested
 *      @data: 64 bytes of data containing the requested address
 *      @ecc: where to store the corresponding 64-bit ECC word
 *
 *      Read 64 bytes of data from MC starting at a 64-byte-aligned address
 *      that covers the requested address @addr.  If @parity is not %NULL it
 *      is assigned the 64-bit ECC word for the read data.
 */
static int
csio_t4_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
		uint64_t *ecc)
{
	int i;

	if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST)
		return -EBUSY;
	csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR);
	csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN);
	csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN);
	csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1),
		      MC_BIST_CMD);
	i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST,
				     0, 10, 1, NULL);
	if (i)
		return i;

#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)

	for (i = 15; i >= 0; i--)
		*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
	if (ecc)
		*ecc = csio_rd_reg64(hw, MC_DATA(16));
#undef MC_DATA
	return 0;
}

/*
 *      csio_t4_edc_read - read from EDC through backdoor accesses
 *      @hw: the hw module
 *      @idx: which EDC to access
 *      @addr: address of first byte requested
 *      @data: 64 bytes of data containing the requested address
 *      @ecc: where to store the corresponding 64-bit ECC word
 *
 *      Read 64 bytes of data from EDC starting at a 64-byte-aligned address
 *      that covers the requested address @addr.  If @parity is not %NULL it
 *      is assigned the 64-bit ECC word for the read data.
 */
static int
csio_t4_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
		uint64_t *ecc)
{
	int i;

	idx *= EDC_STRIDE;
	if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST)
		return -EBUSY;
	csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx);
	csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx);
	csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx);
	csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST,
		      EDC_BIST_CMD + idx);
	i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST,
				     0, 10, 1, NULL);
	if (i)
		return i;

#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)

	for (i = 15; i >= 0; i--)
		*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
	if (ecc)
		*ecc = csio_rd_reg64(hw, EDC_DATA(16));
#undef EDC_DATA
	return 0;
}

/*
 * csio_t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 * @hw: the csio_hw
 * @win: PCI-E memory Window to use
 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
 * @addr: address within indicated memory type
 * @len: amount of memory to transfer
 * @buf: host memory buffer
 * @dir: direction of transfer 1 => read, 0 => write
 *
 * Reads/writes an [almost] arbitrary memory region in the firmware: the
 * firmware memory address, length and host buffer must be aligned on
 * 32-bit boudaries.  The memory is transferred as a raw byte sequence
 * from/to the firmware's memory.  If this memory contains data
 * structures which contain multi-byte integers, it's the callers
 * responsibility to perform appropriate byte order conversions.
 */
static int
csio_t4_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
		u32 len, uint32_t *buf, int dir)
{
	u32 pos, start, offset, memoffset, bar0;
	u32 edc_size, mc_size, mem_reg, mem_aperture, mem_base;

	/*
	 * Argument sanity checks ...
	 */
	if ((addr & 0x3) || (len & 0x3))
		return -EINVAL;

	/* Offset into the region of memory which is being accessed
	 * MEM_EDC0 = 0
	 * MEM_EDC1 = 1
	 * MEM_MC   = 2 -- T4
	 */
	edc_size  = EDRAM_SIZE_GET(csio_rd_reg32(hw, MA_EDRAM0_BAR));
	if (mtype != MEM_MC1)
		memoffset = (mtype * (edc_size * 1024 * 1024));
	else {
		mc_size = EXT_MEM_SIZE_GET(csio_rd_reg32(hw,
							 MA_EXT_MEMORY_BAR));
		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
	}

	/* Determine the PCIE_MEM_ACCESS_OFFSET */
	addr = addr + memoffset;

	/*
	 * Each PCI-E Memory Window is programmed with a window size -- or
	 * "aperture" -- which controls the granularity of its mapping onto
	 * adapter memory.  We need to grab that aperture in order to know
	 * how to use the specified window.  The window is also programmed
	 * with the base address of the Memory Window in BAR0's address
	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
	 * the address is relative to BAR0.
	 */
	mem_reg = csio_rd_reg32(hw,
			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
	mem_aperture = 1 << (WINDOW(mem_reg) + 10);
	mem_base = GET_PCIEOFST(mem_reg) << 10;

	bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
	bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
	mem_base -= bar0;

	start = addr & ~(mem_aperture-1);
	offset = addr - start;

	csio_dbg(hw, "csio_t4_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
		 mem_reg, mem_aperture);
	csio_dbg(hw, "csio_t4_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
		 mem_base, memoffset);
	csio_dbg(hw, "csio_t4_memory_rw: bar0: 0x%x, start:0x%x, offset:0x%x\n",
		 bar0, start, offset);
	csio_dbg(hw, "csio_t4_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
		 mtype, addr, len);

	for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
		/*
		 * Move PCI-E Memory Window to our current transfer
		 * position.  Read it back to ensure that changes propagate
		 * before we attempt to use the new value.
		 */
		csio_wr_reg32(hw, pos,
			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
		csio_rd_reg32(hw,
			PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));

		while (offset < mem_aperture && len > 0) {
			if (dir)
				*buf++ = csio_rd_reg32(hw, mem_base + offset);
			else
				csio_wr_reg32(hw, *buf++, mem_base + offset);

			offset += sizeof(__be32);
			len -= sizeof(__be32);
		}
	}
	return 0;
}

/*
 * csio_t4_dfs_create_ext_mem - setup debugfs for MC to read the values
 * @hw: the csio_hw
 *
 * This function creates files in the debugfs with external memory region MC.
 */
static void
csio_t4_dfs_create_ext_mem(struct csio_hw *hw)
{
	u32 size;
	int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE);
	if (i & EXT_MEM_ENABLE) {
		size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR);
		csio_add_debugfs_mem(hw, "mc", MEM_MC,
				     EXT_MEM_SIZE_GET(size));
	}
}

/* T4 adapter specific function */
struct csio_hw_chip_ops t4_ops = {
	.chip_set_mem_win		= csio_t4_set_mem_win,
	.chip_pcie_intr_handler		= csio_t4_pcie_intr_handler,
	.chip_flash_cfg_addr		= csio_t4_flash_cfg_addr,
	.chip_mc_read			= csio_t4_mc_read,
	.chip_edc_read			= csio_t4_edc_read,
	.chip_memory_rw			= csio_t4_memory_rw,
	.chip_dfs_create_ext_mem	= csio_t4_dfs_create_ext_mem,
};