summaryrefslogtreecommitdiff
path: root/drivers/rtc/interface.c
blob: 925006d331099699e27b26012050b81cd3acbcce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
 * RTC subsystem, interface functions
 *
 * Copyright (C) 2005 Tower Technologies
 * Author: Alessandro Zummo <a.zummo@towertech.it>
 *
 * based on arch/arm/common/rtctime.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/rtc.h>
#include <linux/sched.h>
#include <linux/log2.h>
#include <linux/workqueue.h>

static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);

static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;
	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->read_time)
		err = -EINVAL;
	else {
		memset(tm, 0, sizeof(struct rtc_time));
		err = rtc->ops->read_time(rtc->dev.parent, tm);
	}
	return err;
}

int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	err = __rtc_read_time(rtc, tm);
	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_read_time);

int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;

	err = rtc_valid_tm(tm);
	if (err != 0)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	if (!rtc->ops)
		err = -ENODEV;
	else if (rtc->ops->set_time)
		err = rtc->ops->set_time(rtc->dev.parent, tm);
	else if (rtc->ops->set_mmss) {
		unsigned long secs;
		err = rtc_tm_to_time(tm, &secs);
		if (err == 0)
			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
	} else
		err = -EINVAL;

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_time);

int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	if (!rtc->ops)
		err = -ENODEV;
	else if (rtc->ops->set_mmss)
		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
	else if (rtc->ops->read_time && rtc->ops->set_time) {
		struct rtc_time new, old;

		err = rtc->ops->read_time(rtc->dev.parent, &old);
		if (err == 0) {
			rtc_time_to_tm(secs, &new);

			/*
			 * avoid writing when we're going to change the day of
			 * the month. We will retry in the next minute. This
			 * basically means that if the RTC must not drift
			 * by more than 1 minute in 11 minutes.
			 */
			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
				(new.tm_hour == 23 && new.tm_min == 59)))
				err = rtc->ops->set_time(rtc->dev.parent,
						&new);
		}
	}
	else
		err = -EINVAL;

	mutex_unlock(&rtc->ops_lock);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_mmss);

int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;
	if (rtc->ops == NULL)
		err = -ENODEV;
	else if (!rtc->ops->read_alarm)
		err = -EINVAL;
	else {
		memset(alarm, 0, sizeof(struct rtc_wkalrm));
		alarm->enabled = rtc->aie_timer.enabled;
		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
	}
	mutex_unlock(&rtc->ops_lock);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_read_alarm);

int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	struct rtc_time tm;
	long now, scheduled;
	int err;

	err = rtc_valid_tm(&alarm->time);
	if (err)
		return err;
	rtc_tm_to_time(&alarm->time, &scheduled);

	/* Make sure we're not setting alarms in the past */
	err = __rtc_read_time(rtc, &tm);
	rtc_tm_to_time(&tm, &now);
	if (scheduled <= now)
		return -ETIME;
	/*
	 * XXX - We just checked to make sure the alarm time is not
	 * in the past, but there is still a race window where if
	 * the is alarm set for the next second and the second ticks
	 * over right here, before we set the alarm.
	 */

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->set_alarm)
		err = -EINVAL;
	else
		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);

	return err;
}

int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	err = rtc_valid_tm(&alarm->time);
	if (err != 0)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;
	if (rtc->aie_timer.enabled) {
		rtc_timer_remove(rtc, &rtc->aie_timer);
	}
	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
	rtc->aie_timer.period = ktime_set(0, 0);
	if (alarm->enabled) {
		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
	}
	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_alarm);

int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
	int err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	if (rtc->aie_timer.enabled != enabled) {
		if (enabled)
			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
		else
			rtc_timer_remove(rtc, &rtc->aie_timer);
	}

	if (err)
		return err;

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->alarm_irq_enable)
		err = -EINVAL;
	else
		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);

int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
	int err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	/* make sure we're changing state */
	if (rtc->uie_rtctimer.enabled == enabled)
		goto out;

	if (enabled) {
		struct rtc_time tm;
		ktime_t now, onesec;

		__rtc_read_time(rtc, &tm);
		onesec = ktime_set(1, 0);
		now = rtc_tm_to_ktime(tm);
		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
		rtc->uie_rtctimer.period = ktime_set(1, 0);
		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
	} else
		rtc_timer_remove(rtc, &rtc->uie_rtctimer);

out:
	mutex_unlock(&rtc->ops_lock);
	return err;

}
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);


/**
 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 * @rtc: pointer to the rtc device
 *
 * This function is called when an AIE, UIE or PIE mode interrupt
 * has occured (or been emulated).
 *
 * Triggers the registered irq_task function callback.
 */
static void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
{
	unsigned long flags;

	/* mark one irq of the appropriate mode */
	spin_lock_irqsave(&rtc->irq_lock, flags);
	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
	spin_unlock_irqrestore(&rtc->irq_lock, flags);

	/* call the task func */
	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task)
		rtc->irq_task->func(rtc->irq_task->private_data);
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);

	wake_up_interruptible(&rtc->irq_queue);
	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
}


/**
 * rtc_aie_update_irq - AIE mode rtctimer hook
 * @private: pointer to the rtc_device
 *
 * This functions is called when the aie_timer expires.
 */
void rtc_aie_update_irq(void *private)
{
	struct rtc_device *rtc = (struct rtc_device *)private;
	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
}


/**
 * rtc_uie_update_irq - UIE mode rtctimer hook
 * @private: pointer to the rtc_device
 *
 * This functions is called when the uie_timer expires.
 */
void rtc_uie_update_irq(void *private)
{
	struct rtc_device *rtc = (struct rtc_device *)private;
	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
}


/**
 * rtc_pie_update_irq - PIE mode hrtimer hook
 * @timer: pointer to the pie mode hrtimer
 *
 * This function is used to emulate PIE mode interrupts
 * using an hrtimer. This function is called when the periodic
 * hrtimer expires.
 */
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
{
	struct rtc_device *rtc;
	ktime_t period;
	int count;
	rtc = container_of(timer, struct rtc_device, pie_timer);

	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
	count = hrtimer_forward_now(timer, period);

	rtc_handle_legacy_irq(rtc, count, RTC_PF);

	return HRTIMER_RESTART;
}

/**
 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 * @rtc: the rtc device
 * @num: how many irqs are being reported (usually one)
 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 * Context: any
 */
void rtc_update_irq(struct rtc_device *rtc,
		unsigned long num, unsigned long events)
{
	schedule_work(&rtc->irqwork);
}
EXPORT_SYMBOL_GPL(rtc_update_irq);

static int __rtc_match(struct device *dev, void *data)
{
	char *name = (char *)data;

	if (strcmp(dev_name(dev), name) == 0)
		return 1;
	return 0;
}

struct rtc_device *rtc_class_open(char *name)
{
	struct device *dev;
	struct rtc_device *rtc = NULL;

	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
	if (dev)
		rtc = to_rtc_device(dev);

	if (rtc) {
		if (!try_module_get(rtc->owner)) {
			put_device(dev);
			rtc = NULL;
		}
	}

	return rtc;
}
EXPORT_SYMBOL_GPL(rtc_class_open);

void rtc_class_close(struct rtc_device *rtc)
{
	module_put(rtc->owner);
	put_device(&rtc->dev);
}
EXPORT_SYMBOL_GPL(rtc_class_close);

int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
{
	int retval = -EBUSY;

	if (task == NULL || task->func == NULL)
		return -EINVAL;

	/* Cannot register while the char dev is in use */
	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
		return -EBUSY;

	spin_lock_irq(&rtc->irq_task_lock);
	if (rtc->irq_task == NULL) {
		rtc->irq_task = task;
		retval = 0;
	}
	spin_unlock_irq(&rtc->irq_task_lock);

	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);

	return retval;
}
EXPORT_SYMBOL_GPL(rtc_irq_register);

void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
{
	spin_lock_irq(&rtc->irq_task_lock);
	if (rtc->irq_task == task)
		rtc->irq_task = NULL;
	spin_unlock_irq(&rtc->irq_task_lock);
}
EXPORT_SYMBOL_GPL(rtc_irq_unregister);

/**
 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 * @rtc: the rtc device
 * @task: currently registered with rtc_irq_register()
 * @enabled: true to enable periodic IRQs
 * Context: any
 *
 * Note that rtc_irq_set_freq() should previously have been used to
 * specify the desired frequency of periodic IRQ task->func() callbacks.
 */
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
{
	int err = 0;
	unsigned long flags;

	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task != NULL && task == NULL)
		err = -EBUSY;
	if (rtc->irq_task != task)
		err = -EACCES;

	if (enabled) {
		ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
	} else {
		hrtimer_cancel(&rtc->pie_timer);
	}
	rtc->pie_enabled = enabled;
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_state);

/**
 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 * @rtc: the rtc device
 * @task: currently registered with rtc_irq_register()
 * @freq: positive frequency with which task->func() will be called
 * Context: any
 *
 * Note that rtc_irq_set_state() is used to enable or disable the
 * periodic IRQs.
 */
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
{
	int err = 0;
	unsigned long flags;

	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task != NULL && task == NULL)
		err = -EBUSY;
	if (rtc->irq_task != task)
		err = -EACCES;
	if (err == 0) {
		rtc->irq_freq = freq;
		if (rtc->pie_enabled) {
			ktime_t period;
			hrtimer_cancel(&rtc->pie_timer);
			period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
			hrtimer_start(&rtc->pie_timer, period,
					HRTIMER_MODE_REL);
		}
	}
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);

/**
 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 * @rtc rtc device
 * @timer timer being added.
 *
 * Enqueues a timer onto the rtc devices timerqueue and sets
 * the next alarm event appropriately.
 *
 * Sets the enabled bit on the added timer.
 *
 * Must hold ops_lock for proper serialization of timerqueue
 */
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
{
	timer->enabled = 1;
	timerqueue_add(&rtc->timerqueue, &timer->node);
	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
		struct rtc_wkalrm alarm;
		int err;
		alarm.time = rtc_ktime_to_tm(timer->node.expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME)
			schedule_work(&rtc->irqwork);
		else if (err) {
			timerqueue_del(&rtc->timerqueue, &timer->node);
			timer->enabled = 0;
			return err;
		}
	}
	return 0;
}

/**
 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 * @rtc rtc device
 * @timer timer being removed.
 *
 * Removes a timer onto the rtc devices timerqueue and sets
 * the next alarm event appropriately.
 *
 * Clears the enabled bit on the removed timer.
 *
 * Must hold ops_lock for proper serialization of timerqueue
 */
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
{
	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
	timerqueue_del(&rtc->timerqueue, &timer->node);
	timer->enabled = 0;
	if (next == &timer->node) {
		struct rtc_wkalrm alarm;
		int err;
		next = timerqueue_getnext(&rtc->timerqueue);
		if (!next)
			return;
		alarm.time = rtc_ktime_to_tm(next->expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME)
			schedule_work(&rtc->irqwork);
	}
}

/**
 * rtc_timer_do_work - Expires rtc timers
 * @rtc rtc device
 * @timer timer being removed.
 *
 * Expires rtc timers. Reprograms next alarm event if needed.
 * Called via worktask.
 *
 * Serializes access to timerqueue via ops_lock mutex
 */
void rtc_timer_do_work(struct work_struct *work)
{
	struct rtc_timer *timer;
	struct timerqueue_node *next;
	ktime_t now;
	struct rtc_time tm;

	struct rtc_device *rtc =
		container_of(work, struct rtc_device, irqwork);

	mutex_lock(&rtc->ops_lock);
again:
	__rtc_read_time(rtc, &tm);
	now = rtc_tm_to_ktime(tm);
	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
		if (next->expires.tv64 > now.tv64)
			break;

		/* expire timer */
		timer = container_of(next, struct rtc_timer, node);
		timerqueue_del(&rtc->timerqueue, &timer->node);
		timer->enabled = 0;
		if (timer->task.func)
			timer->task.func(timer->task.private_data);

		/* Re-add/fwd periodic timers */
		if (ktime_to_ns(timer->period)) {
			timer->node.expires = ktime_add(timer->node.expires,
							timer->period);
			timer->enabled = 1;
			timerqueue_add(&rtc->timerqueue, &timer->node);
		}
	}

	/* Set next alarm */
	if (next) {
		struct rtc_wkalrm alarm;
		int err;
		alarm.time = rtc_ktime_to_tm(next->expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME)
			goto again;
	}

	mutex_unlock(&rtc->ops_lock);
}


/* rtc_timer_init - Initializes an rtc_timer
 * @timer: timer to be intiialized
 * @f: function pointer to be called when timer fires
 * @data: private data passed to function pointer
 *
 * Kernel interface to initializing an rtc_timer.
 */
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
{
	timerqueue_init(&timer->node);
	timer->enabled = 0;
	timer->task.func = f;
	timer->task.private_data = data;
}

/* rtc_timer_start - Sets an rtc_timer to fire in the future
 * @ rtc: rtc device to be used
 * @ timer: timer being set
 * @ expires: time at which to expire the timer
 * @ period: period that the timer will recur
 *
 * Kernel interface to set an rtc_timer
 */
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
			ktime_t expires, ktime_t period)
{
	int ret = 0;
	mutex_lock(&rtc->ops_lock);
	if (timer->enabled)
		rtc_timer_remove(rtc, timer);

	timer->node.expires = expires;
	timer->period = period;

	ret = rtc_timer_enqueue(rtc, timer);

	mutex_unlock(&rtc->ops_lock);
	return ret;
}

/* rtc_timer_cancel - Stops an rtc_timer
 * @ rtc: rtc device to be used
 * @ timer: timer being set
 *
 * Kernel interface to cancel an rtc_timer
 */
int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
{
	int ret = 0;
	mutex_lock(&rtc->ops_lock);
	if (timer->enabled)
		rtc_timer_remove(rtc, timer);
	mutex_unlock(&rtc->ops_lock);
	return ret;
}