summaryrefslogtreecommitdiff
path: root/drivers/perf/riscv_pmu_sbi.c
blob: 391ca1422caec15b69b747bc8bcaef3c9faead23 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
// SPDX-License-Identifier: GPL-2.0
/*
 * RISC-V performance counter support.
 *
 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
 *
 * This code is based on ARM perf event code which is in turn based on
 * sparc64 and x86 code.
 */

#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt

#include <linux/mod_devicetable.h>
#include <linux/perf/riscv_pmu.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/cpu_pm.h>
#include <linux/sched/clock.h>
#include <linux/soc/andes/irq.h>
#include <linux/workqueue.h>

#include <asm/errata_list.h>
#include <asm/sbi.h>
#include <asm/cpufeature.h>
#include <asm/vendor_extensions.h>
#include <asm/vendor_extensions/andes.h>

#define ALT_SBI_PMU_OVERFLOW(__ovl)					\
asm volatile(ALTERNATIVE_2(						\
	"csrr %0, " __stringify(CSR_SCOUNTOVF),				\
	"csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),		\
		THEAD_VENDOR_ID, ERRATA_THEAD_PMU,			\
		CONFIG_ERRATA_THEAD_PMU,				\
	"csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),			\
		ANDES_VENDOR_ID,					\
		RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
		CONFIG_ANDES_CUSTOM_PMU)				\
	: "=r" (__ovl) :						\
	: "memory")

#define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)			\
asm volatile(ALTERNATIVE(						\
	"csrc " __stringify(CSR_IP) ", %0\n\t",				\
	"csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",			\
		ANDES_VENDOR_ID,					\
		RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
		CONFIG_ANDES_CUSTOM_PMU)				\
	: : "r"(__irq_mask)						\
	: "memory")

#define SYSCTL_NO_USER_ACCESS	0
#define SYSCTL_USER_ACCESS	1
#define SYSCTL_LEGACY		2

#define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
#define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
#define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)

PMU_FORMAT_ATTR(event, "config:0-47");
PMU_FORMAT_ATTR(firmware, "config:62-63");

static bool sbi_v2_available;
static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available);
#define sbi_pmu_snapshot_available() \
	static_branch_unlikely(&sbi_pmu_snapshot_available)

static struct attribute *riscv_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_firmware.attr,
	NULL,
};

static struct attribute_group riscv_pmu_format_group = {
	.name = "format",
	.attrs = riscv_arch_formats_attr,
};

static const struct attribute_group *riscv_pmu_attr_groups[] = {
	&riscv_pmu_format_group,
	NULL,
};

/* Allow user mode access by default */
static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;

/*
 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
 * per_cpu in case of harts with different pmu counters
 */
static union sbi_pmu_ctr_info *pmu_ctr_list;
static bool riscv_pmu_use_irq;
static unsigned int riscv_pmu_irq_num;
static unsigned int riscv_pmu_irq_mask;
static unsigned int riscv_pmu_irq;

/* Cache the available counters in a bitmask */
static unsigned long cmask;

struct sbi_pmu_event_data {
	union {
		union {
			struct hw_gen_event {
				uint32_t event_code:16;
				uint32_t event_type:4;
				uint32_t reserved:12;
			} hw_gen_event;
			struct hw_cache_event {
				uint32_t result_id:1;
				uint32_t op_id:2;
				uint32_t cache_id:13;
				uint32_t event_type:4;
				uint32_t reserved:12;
			} hw_cache_event;
		};
		uint32_t event_idx;
	};
};

static struct sbi_pmu_event_data pmu_hw_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
							SBI_PMU_HW_CPU_CYCLES,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
							SBI_PMU_HW_INSTRUCTIONS,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
							SBI_PMU_HW_CACHE_REFERENCES,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
							SBI_PMU_HW_CACHE_MISSES,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
							SBI_PMU_HW_BRANCH_MISSES,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
							SBI_PMU_HW_BUS_CYCLES,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
							SBI_PMU_EVENT_TYPE_HW, 0}},
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
							SBI_PMU_HW_REF_CPU_CYCLES,
							SBI_PMU_EVENT_TYPE_HW, 0}},
};

#define C(x) PERF_COUNT_HW_CACHE_##x
static struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
	[C(L1D)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
	[C(L1I)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
	[C(LL)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
	[C(DTLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
	[C(ITLB)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
	[C(BPU)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
	[C(NODE)] = {
		[C(OP_READ)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_WRITE)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
		[C(OP_PREFETCH)] = {
			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
		},
	},
};

static void pmu_sbi_check_event(struct sbi_pmu_event_data *edata)
{
	struct sbiret ret;

	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH,
			0, cmask, 0, edata->event_idx, 0, 0);
	if (!ret.error) {
		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
			  ret.value, 0x1, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
	} else if (ret.error == SBI_ERR_NOT_SUPPORTED) {
		/* This event cannot be monitored by any counter */
		edata->event_idx = -ENOENT;
	}
}

static void pmu_sbi_check_std_events(struct work_struct *work)
{
	for (int i = 0; i < ARRAY_SIZE(pmu_hw_event_map); i++)
		pmu_sbi_check_event(&pmu_hw_event_map[i]);

	for (int i = 0; i < ARRAY_SIZE(pmu_cache_event_map); i++)
		for (int j = 0; j < ARRAY_SIZE(pmu_cache_event_map[i]); j++)
			for (int k = 0; k < ARRAY_SIZE(pmu_cache_event_map[i][j]); k++)
				pmu_sbi_check_event(&pmu_cache_event_map[i][j][k]);
}

static DECLARE_WORK(check_std_events_work, pmu_sbi_check_std_events);

static int pmu_sbi_ctr_get_width(int idx)
{
	return pmu_ctr_list[idx].width;
}

static bool pmu_sbi_ctr_is_fw(int cidx)
{
	union sbi_pmu_ctr_info *info;

	info = &pmu_ctr_list[cidx];
	if (!info)
		return false;

	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
}

/*
 * Returns the counter width of a programmable counter and number of hardware
 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
 * return the counter width of the first programmable counter.
 */
int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
{
	int i;
	union sbi_pmu_ctr_info *info;
	u32 hpm_width = 0, hpm_count = 0;

	if (!cmask)
		return -EINVAL;

	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
		info = &pmu_ctr_list[i];
		if (!info)
			continue;
		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
			hpm_width = info->width;
		if (info->type == SBI_PMU_CTR_TYPE_HW)
			hpm_count++;
	}

	*hw_ctr_width = hpm_width;
	*num_hw_ctr = hpm_count;

	return 0;
}
EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);

static uint8_t pmu_sbi_csr_index(struct perf_event *event)
{
	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
}

static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
{
	unsigned long cflags = 0;
	bool guest_events = false;

	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
		guest_events = true;
	if (event->attr.exclude_kernel)
		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
	if (event->attr.exclude_user)
		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
	if (guest_events && event->attr.exclude_hv)
		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
	if (event->attr.exclude_host)
		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
	if (event->attr.exclude_guest)
		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;

	return cflags;
}

static int pmu_sbi_ctr_get_idx(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
	struct sbiret ret;
	int idx;
	uint64_t cbase = 0, cmask = rvpmu->cmask;
	unsigned long cflags = 0;

	cflags = pmu_sbi_get_filter_flags(event);

	/*
	 * In legacy mode, we have to force the fixed counters for those events
	 * but not in the user access mode as we want to use the other counters
	 * that support sampling/filtering.
	 */
	if ((hwc->flags & PERF_EVENT_FLAG_LEGACY) && (event->attr.type == PERF_TYPE_HARDWARE)) {
		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
			cmask = 1;
		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
			cmask = BIT(CSR_INSTRET - CSR_CYCLE);
		}
	}

	/* retrieve the available counter index */
#if defined(CONFIG_32BIT)
	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
			cmask, cflags, hwc->event_base, hwc->config,
			hwc->config >> 32);
#else
	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
			cmask, cflags, hwc->event_base, hwc->config, 0);
#endif
	if (ret.error) {
		pr_debug("Not able to find a counter for event %lx config %llx\n",
			hwc->event_base, hwc->config);
		return sbi_err_map_linux_errno(ret.error);
	}

	idx = ret.value;
	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
		return -ENOENT;

	/* Additional sanity check for the counter id */
	if (pmu_sbi_ctr_is_fw(idx)) {
		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
			return idx;
	} else {
		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
			return idx;
	}

	return -ENOENT;
}

static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
{

	struct hw_perf_event *hwc = &event->hw;
	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
	int idx = hwc->idx;

	if (pmu_sbi_ctr_is_fw(idx))
		clear_bit(idx, cpuc->used_fw_ctrs);
	else
		clear_bit(idx, cpuc->used_hw_ctrs);
}

static int pmu_event_find_cache(u64 config)
{
	unsigned int cache_type, cache_op, cache_result, ret;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;

	return ret;
}

static bool pmu_sbi_is_fw_event(struct perf_event *event)
{
	u32 type = event->attr.type;
	u64 config = event->attr.config;

	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
		return true;
	else
		return false;
}

static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
{
	u32 type = event->attr.type;
	u64 config = event->attr.config;
	u64 raw_config_val;
	int ret;

	/*
	 * Ensure we are finished checking standard hardware events for
	 * validity before allowing userspace to configure any events.
	 */
	flush_work(&check_std_events_work);

	switch (type) {
	case PERF_TYPE_HARDWARE:
		if (config >= PERF_COUNT_HW_MAX)
			return -EINVAL;
		ret = pmu_hw_event_map[event->attr.config].event_idx;
		break;
	case PERF_TYPE_HW_CACHE:
		ret = pmu_event_find_cache(config);
		break;
	case PERF_TYPE_RAW:
		/*
		 * As per SBI specification, the upper 16 bits must be unused
		 * for a raw event.
		 * Bits 63:62 are used to distinguish between raw events
		 * 00 - Hardware raw event
		 * 10 - SBI firmware events
		 * 11 - Risc-V platform specific firmware event
		 */
		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
		switch (config >> 62) {
		case 0:
			ret = RISCV_PMU_RAW_EVENT_IDX;
			*econfig = raw_config_val;
			break;
		case 2:
			ret = (raw_config_val & 0xFFFF) |
				(SBI_PMU_EVENT_TYPE_FW << 16);
			break;
		case 3:
			/*
			 * For Risc-V platform specific firmware events
			 * Event code - 0xFFFF
			 * Event data - raw event encoding
			 */
			ret = SBI_PMU_EVENT_TYPE_FW << 16 | RISCV_PLAT_FW_EVENT;
			*econfig = raw_config_val;
			break;
		}
		break;
	default:
		ret = -ENOENT;
		break;
	}

	return ret;
}

static void pmu_sbi_snapshot_free(struct riscv_pmu *pmu)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);

		if (!cpu_hw_evt->snapshot_addr)
			continue;

		free_page((unsigned long)cpu_hw_evt->snapshot_addr);
		cpu_hw_evt->snapshot_addr = NULL;
		cpu_hw_evt->snapshot_addr_phys = 0;
	}
}

static int pmu_sbi_snapshot_alloc(struct riscv_pmu *pmu)
{
	int cpu;
	struct page *snapshot_page;

	for_each_possible_cpu(cpu) {
		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);

		snapshot_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
		if (!snapshot_page) {
			pmu_sbi_snapshot_free(pmu);
			return -ENOMEM;
		}
		cpu_hw_evt->snapshot_addr = page_to_virt(snapshot_page);
		cpu_hw_evt->snapshot_addr_phys = page_to_phys(snapshot_page);
	}

	return 0;
}

static int pmu_sbi_snapshot_disable(void)
{
	struct sbiret ret;

	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, SBI_SHMEM_DISABLE,
			SBI_SHMEM_DISABLE, 0, 0, 0, 0);
	if (ret.error) {
		pr_warn("failed to disable snapshot shared memory\n");
		return sbi_err_map_linux_errno(ret.error);
	}

	return 0;
}

static int pmu_sbi_snapshot_setup(struct riscv_pmu *pmu, int cpu)
{
	struct cpu_hw_events *cpu_hw_evt;
	struct sbiret ret = {0};

	cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
	if (!cpu_hw_evt->snapshot_addr_phys)
		return -EINVAL;

	if (cpu_hw_evt->snapshot_set_done)
		return 0;

	if (IS_ENABLED(CONFIG_32BIT))
		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
				cpu_hw_evt->snapshot_addr_phys,
				(u64)(cpu_hw_evt->snapshot_addr_phys) >> 32, 0, 0, 0, 0);
	else
		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
				cpu_hw_evt->snapshot_addr_phys, 0, 0, 0, 0, 0);

	/* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
	if (ret.error) {
		if (ret.error != SBI_ERR_NOT_SUPPORTED)
			pr_warn("pmu snapshot setup failed with error %ld\n", ret.error);
		return sbi_err_map_linux_errno(ret.error);
	}

	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
	cpu_hw_evt->snapshot_set_done = true;

	return 0;
}

static u64 pmu_sbi_ctr_read(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int idx = hwc->idx;
	struct sbiret ret;
	u64 val = 0;
	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
	union sbi_pmu_ctr_info info = pmu_ctr_list[idx];

	/* Read the value from the shared memory directly only if counter is stopped */
	if (sbi_pmu_snapshot_available() && (hwc->state & PERF_HES_STOPPED)) {
		val = sdata->ctr_values[idx];
		return val;
	}

	if (pmu_sbi_is_fw_event(event)) {
		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
				hwc->idx, 0, 0, 0, 0, 0);
		if (ret.error)
			return 0;

		val = ret.value;
		if (IS_ENABLED(CONFIG_32BIT) && sbi_v2_available && info.width >= 32) {
			ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ_HI,
					hwc->idx, 0, 0, 0, 0, 0);
			if (!ret.error)
				val |= ((u64)ret.value << 32);
			else
				WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
					  ret.error);
		}
	} else {
		val = riscv_pmu_ctr_read_csr(info.csr);
		if (IS_ENABLED(CONFIG_32BIT))
			val |= ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 32;
	}

	return val;
}

static void pmu_sbi_set_scounteren(void *arg)
{
	struct perf_event *event = (struct perf_event *)arg;

	if (event->hw.idx != -1)
		csr_write(CSR_SCOUNTEREN,
			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
}

static void pmu_sbi_reset_scounteren(void *arg)
{
	struct perf_event *event = (struct perf_event *)arg;

	if (event->hw.idx != -1)
		csr_write(CSR_SCOUNTEREN,
			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
}

static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
{
	struct sbiret ret;
	struct hw_perf_event *hwc = &event->hw;
	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;

	/* There is no benefit setting SNAPSHOT FLAG for a single counter */
#if defined(CONFIG_32BIT)
	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
			1, flag, ival, ival >> 32, 0);
#else
	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
			1, flag, ival, 0, 0);
#endif
	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
		pr_err("Starting counter idx %d failed with error %d\n",
			hwc->idx, sbi_err_map_linux_errno(ret.error));

	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
		pmu_sbi_set_scounteren((void *)event);
}

static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
{
	struct sbiret ret;
	struct hw_perf_event *hwc = &event->hw;
	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;

	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
		pmu_sbi_reset_scounteren((void *)event);

	if (sbi_pmu_snapshot_available())
		flag |= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;

	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
	if (!ret.error && sbi_pmu_snapshot_available()) {
		/*
		 * The counter snapshot is based on the index base specified by hwc->idx.
		 * The actual counter value is updated in shared memory at index 0 when counter
		 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
		 * the counter value to shared memory. However, if hwc->idx is zero, the counter
		 * value is already correctly updated in shared memory, requiring no further
		 * adjustment.
		 */
		if (hwc->idx > 0) {
			sdata->ctr_values[hwc->idx] = sdata->ctr_values[0];
			sdata->ctr_values[0] = 0;
		}
	} else if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
		flag != SBI_PMU_STOP_FLAG_RESET) {
		pr_err("Stopping counter idx %d failed with error %d\n",
			hwc->idx, sbi_err_map_linux_errno(ret.error));
	}
}

static int pmu_sbi_find_num_ctrs(void)
{
	struct sbiret ret;

	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
	if (!ret.error)
		return ret.value;
	else
		return sbi_err_map_linux_errno(ret.error);
}

static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
{
	struct sbiret ret;
	int i, num_hw_ctr = 0, num_fw_ctr = 0;
	union sbi_pmu_ctr_info cinfo;

	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
	if (!pmu_ctr_list)
		return -ENOMEM;

	for (i = 0; i < nctr; i++) {
		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
		if (ret.error)
			/* The logical counter ids are not expected to be contiguous */
			continue;

		*mask |= BIT(i);

		cinfo.value = ret.value;
		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
			num_fw_ctr++;
		else
			num_hw_ctr++;
		pmu_ctr_list[i].value = cinfo.value;
	}

	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);

	return 0;
}

static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
{
	/*
	 * No need to check the error because we are disabling all the counters
	 * which may include counters that are not enabled yet.
	 */
	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
		  0, pmu->cmask, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
}

static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
{
	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
	unsigned long flag = 0;
	int i, idx;
	struct sbiret ret;
	u64 temp_ctr_overflow_mask = 0;

	if (sbi_pmu_snapshot_available())
		flag = SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;

	/* Reset the shadow copy to avoid save/restore any value from previous overflow */
	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);

	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
		/* No need to check the error here as we can't do anything about the error */
		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, i * BITS_PER_LONG,
				cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
		if (!ret.error && sbi_pmu_snapshot_available()) {
			/* Save the counter values to avoid clobbering */
			for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
				cpu_hw_evt->snapshot_cval_shcopy[i * BITS_PER_LONG + idx] =
							sdata->ctr_values[idx];
			/* Save the overflow mask to avoid clobbering */
			temp_ctr_overflow_mask |= sdata->ctr_overflow_mask << (i * BITS_PER_LONG);
		}
	}

	/* Restore the counter values to the shared memory for used hw counters */
	if (sbi_pmu_snapshot_available()) {
		for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS)
			sdata->ctr_values[idx] = cpu_hw_evt->snapshot_cval_shcopy[idx];
		if (temp_ctr_overflow_mask)
			sdata->ctr_overflow_mask = temp_ctr_overflow_mask;
	}
}

/*
 * This function starts all the used counters in two step approach.
 * Any counter that did not overflow can be start in a single step
 * while the overflowed counters need to be started with updated initialization
 * value.
 */
static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events *cpu_hw_evt,
					      u64 ctr_ovf_mask)
{
	int idx = 0, i;
	struct perf_event *event;
	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
	unsigned long ctr_start_mask = 0;
	uint64_t max_period;
	struct hw_perf_event *hwc;
	u64 init_val = 0;

	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
		ctr_start_mask = cpu_hw_evt->used_hw_ctrs[i] & ~ctr_ovf_mask;
		/* Start all the counters that did not overflow in a single shot */
		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, i * BITS_PER_LONG, ctr_start_mask,
			0, 0, 0, 0);
	}

	/* Reinitialize and start all the counter that overflowed */
	while (ctr_ovf_mask) {
		if (ctr_ovf_mask & 0x01) {
			event = cpu_hw_evt->events[idx];
			hwc = &event->hw;
			max_period = riscv_pmu_ctr_get_width_mask(event);
			init_val = local64_read(&hwc->prev_count) & max_period;
#if defined(CONFIG_32BIT)
			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
				  flag, init_val, init_val >> 32, 0);
#else
			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
				  flag, init_val, 0, 0);
#endif
			perf_event_update_userpage(event);
		}
		ctr_ovf_mask = ctr_ovf_mask >> 1;
		idx++;
	}
}

static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events *cpu_hw_evt,
						   u64 ctr_ovf_mask)
{
	int i, idx = 0;
	struct perf_event *event;
	unsigned long flag = SBI_PMU_START_FLAG_INIT_SNAPSHOT;
	u64 max_period, init_val = 0;
	struct hw_perf_event *hwc;
	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;

	for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
		if (ctr_ovf_mask & BIT(idx)) {
			event = cpu_hw_evt->events[idx];
			hwc = &event->hw;
			max_period = riscv_pmu_ctr_get_width_mask(event);
			init_val = local64_read(&hwc->prev_count) & max_period;
			cpu_hw_evt->snapshot_cval_shcopy[idx] = init_val;
		}
		/*
		 * We do not need to update the non-overflow counters the previous
		 * value should have been there already.
		 */
	}

	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
		/* Restore the counter values to relative indices for used hw counters */
		for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
			sdata->ctr_values[idx] =
					cpu_hw_evt->snapshot_cval_shcopy[idx + i * BITS_PER_LONG];
		/* Start all the counters in a single shot */
		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx * BITS_PER_LONG,
			  cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
	}
}

static void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
					u64 ctr_ovf_mask)
{
	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);

	if (sbi_pmu_snapshot_available())
		pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt, ctr_ovf_mask);
	else
		pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt, ctr_ovf_mask);
}

static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
{
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct hw_perf_event *hw_evt;
	union sbi_pmu_ctr_info *info;
	int lidx, hidx, fidx;
	struct riscv_pmu *pmu;
	struct perf_event *event;
	u64 overflow;
	u64 overflowed_ctrs = 0;
	struct cpu_hw_events *cpu_hw_evt = dev;
	u64 start_clock = sched_clock();
	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;

	if (WARN_ON_ONCE(!cpu_hw_evt))
		return IRQ_NONE;

	/* Firmware counter don't support overflow yet */
	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
	if (fidx == RISCV_MAX_COUNTERS) {
		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
		return IRQ_NONE;
	}

	event = cpu_hw_evt->events[fidx];
	if (!event) {
		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
		return IRQ_NONE;
	}

	pmu = to_riscv_pmu(event->pmu);
	pmu_sbi_stop_hw_ctrs(pmu);

	/* Overflow status register should only be read after counter are stopped */
	if (sbi_pmu_snapshot_available())
		overflow = sdata->ctr_overflow_mask;
	else
		ALT_SBI_PMU_OVERFLOW(overflow);

	/*
	 * Overflow interrupt pending bit should only be cleared after stopping
	 * all the counters to avoid any race condition.
	 */
	ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);

	/* No overflow bit is set */
	if (!overflow)
		return IRQ_NONE;

	regs = get_irq_regs();

	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
		struct perf_event *event = cpu_hw_evt->events[lidx];

		/* Skip if invalid event or user did not request a sampling */
		if (!event || !is_sampling_event(event))
			continue;

		info = &pmu_ctr_list[lidx];
		/* Do a sanity check */
		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
			continue;

		if (sbi_pmu_snapshot_available())
			/* SBI implementation already updated the logical indicies */
			hidx = lidx;
		else
			/* compute hardware counter index */
			hidx = info->csr - CSR_CYCLE;

		/* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
		if (!(overflow & BIT(hidx)))
			continue;

		/*
		 * Keep a track of overflowed counters so that they can be started
		 * with updated initial value.
		 */
		overflowed_ctrs |= BIT(lidx);
		hw_evt = &event->hw;
		/* Update the event states here so that we know the state while reading */
		hw_evt->state |= PERF_HES_STOPPED;
		riscv_pmu_event_update(event);
		hw_evt->state |= PERF_HES_UPTODATE;
		perf_sample_data_init(&data, 0, hw_evt->last_period);
		if (riscv_pmu_event_set_period(event)) {
			/*
			 * Unlike other ISAs, RISC-V don't have to disable interrupts
			 * to avoid throttling here. As per the specification, the
			 * interrupt remains disabled until the OF bit is set.
			 * Interrupts are enabled again only during the start.
			 * TODO: We will need to stop the guest counters once
			 * virtualization support is added.
			 */
			perf_event_overflow(event, &data, regs);
		}
		/* Reset the state as we are going to start the counter after the loop */
		hw_evt->state = 0;
	}

	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
	perf_sample_event_took(sched_clock() - start_clock);

	return IRQ_HANDLED;
}

static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
{
	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);

	/*
	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
	 * legacy option but that will be removed in the future.
	 */
	if (sysctl_perf_user_access == SYSCTL_LEGACY)
		csr_write(CSR_SCOUNTEREN, 0x7);
	else
		csr_write(CSR_SCOUNTEREN, 0x2);

	/* Stop all the counters so that they can be enabled from perf */
	pmu_sbi_stop_all(pmu);

	if (riscv_pmu_use_irq) {
		cpu_hw_evt->irq = riscv_pmu_irq;
		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
	}

	if (sbi_pmu_snapshot_available())
		return pmu_sbi_snapshot_setup(pmu, cpu);

	return 0;
}

static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
{
	if (riscv_pmu_use_irq) {
		disable_percpu_irq(riscv_pmu_irq);
	}

	/* Disable all counters access for user mode now */
	csr_write(CSR_SCOUNTEREN, 0x0);

	if (sbi_pmu_snapshot_available())
		return pmu_sbi_snapshot_disable();

	return 0;
}

static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
{
	int ret;
	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
	struct irq_domain *domain = NULL;

	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
		riscv_pmu_irq_num = RV_IRQ_PMU;
		riscv_pmu_use_irq = true;
	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
		   riscv_cached_marchid(0) == 0 &&
		   riscv_cached_mimpid(0) == 0) {
		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
		riscv_pmu_use_irq = true;
	} else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID,
						       RISCV_ISA_VENDOR_EXT_XANDESPMU) &&
		   IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
		riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
		riscv_pmu_use_irq = true;
	}

	riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);

	if (!riscv_pmu_use_irq)
		return -EOPNOTSUPP;

	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
					  DOMAIN_BUS_ANY);
	if (!domain) {
		pr_err("Failed to find INTC IRQ root domain\n");
		return -ENODEV;
	}

	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
	if (!riscv_pmu_irq) {
		pr_err("Failed to map PMU interrupt for node\n");
		return -ENODEV;
	}

	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
	if (ret) {
		pr_err("registering percpu irq failed [%d]\n", ret);
		return ret;
	}

	return 0;
}

#ifdef CONFIG_CPU_PM
static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
				void *v)
{
	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
	struct perf_event *event;
	int idx;

	if (!enabled)
		return NOTIFY_OK;

	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
		event = cpuc->events[idx];
		if (!event)
			continue;

		switch (cmd) {
		case CPU_PM_ENTER:
			/*
			 * Stop and update the counter
			 */
			riscv_pmu_stop(event, PERF_EF_UPDATE);
			break;
		case CPU_PM_EXIT:
		case CPU_PM_ENTER_FAILED:
			/*
			 * Restore and enable the counter.
			 */
			riscv_pmu_start(event, PERF_EF_RELOAD);
			break;
		default:
			break;
		}
	}

	return NOTIFY_OK;
}

static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
{
	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
}

static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
{
	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
}
#else
static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
#endif

static void riscv_pmu_destroy(struct riscv_pmu *pmu)
{
	if (sbi_v2_available) {
		if (sbi_pmu_snapshot_available()) {
			pmu_sbi_snapshot_disable();
			pmu_sbi_snapshot_free(pmu);
		}
	}
	riscv_pm_pmu_unregister(pmu);
	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
}

static void pmu_sbi_event_init(struct perf_event *event)
{
	/*
	 * The permissions are set at event_init so that we do not depend
	 * on the sysctl value that can change.
	 */
	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
	else
		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
}

static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
{
	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
		return;

	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
			return;
		}
	}

	/*
	 * The user mmapped the event to directly access it: this is where
	 * we determine based on sysctl_perf_user_access if we grant userspace
	 * the direct access to this event. That means that within the same
	 * task, some events may be directly accessible and some other may not,
	 * if the user changes the value of sysctl_perf_user_accesss in the
	 * meantime.
	 */

	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;

	/*
	 * We must enable userspace access *before* advertising in the user page
	 * that it is possible to do so to avoid any race.
	 * And we must notify all cpus here because threads that currently run
	 * on other cpus will try to directly access the counter too without
	 * calling pmu_sbi_ctr_start.
	 */
	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
		on_each_cpu_mask(mm_cpumask(mm),
				 pmu_sbi_set_scounteren, (void *)event, 1);
}

static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
{
	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
		return;

	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
			return;
		}
	}

	/*
	 * Here we can directly remove user access since the user does not have
	 * access to the user page anymore so we avoid the racy window where the
	 * user could have read cap_user_rdpmc to true right before we disable
	 * it.
	 */
	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;

	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
		on_each_cpu_mask(mm_cpumask(mm),
				 pmu_sbi_reset_scounteren, (void *)event, 1);
}

static void riscv_pmu_update_counter_access(void *info)
{
	if (sysctl_perf_user_access == SYSCTL_LEGACY)
		csr_write(CSR_SCOUNTEREN, 0x7);
	else
		csr_write(CSR_SCOUNTEREN, 0x2);
}

static int riscv_pmu_proc_user_access_handler(const struct ctl_table *table,
					      int write, void *buffer,
					      size_t *lenp, loff_t *ppos)
{
	int prev = sysctl_perf_user_access;
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);

	/*
	 * Test against the previous value since we clear SCOUNTEREN when
	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
	 * not do that if that was already the case.
	 */
	if (ret || !write || prev == sysctl_perf_user_access)
		return ret;

	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);

	return 0;
}

static struct ctl_table sbi_pmu_sysctl_table[] = {
	{
		.procname       = "perf_user_access",
		.data		= &sysctl_perf_user_access,
		.maxlen		= sizeof(unsigned int),
		.mode           = 0644,
		.proc_handler	= riscv_pmu_proc_user_access_handler,
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_TWO,
	},
};

static int pmu_sbi_device_probe(struct platform_device *pdev)
{
	struct riscv_pmu *pmu = NULL;
	int ret = -ENODEV;
	int num_counters;

	pr_info("SBI PMU extension is available\n");
	pmu = riscv_pmu_alloc();
	if (!pmu)
		return -ENOMEM;

	num_counters = pmu_sbi_find_num_ctrs();
	if (num_counters < 0) {
		pr_err("SBI PMU extension doesn't provide any counters\n");
		goto out_free;
	}

	/* It is possible to get from SBI more than max number of counters */
	if (num_counters > RISCV_MAX_COUNTERS) {
		num_counters = RISCV_MAX_COUNTERS;
		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
	}

	/* cache all the information about counters now */
	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
		goto out_free;

	ret = pmu_sbi_setup_irqs(pmu, pdev);
	if (ret < 0) {
		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
	}

	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
	pmu->pmu.parent = &pdev->dev;
	pmu->cmask = cmask;
	pmu->ctr_start = pmu_sbi_ctr_start;
	pmu->ctr_stop = pmu_sbi_ctr_stop;
	pmu->event_map = pmu_sbi_event_map;
	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
	pmu->ctr_read = pmu_sbi_ctr_read;
	pmu->event_init = pmu_sbi_event_init;
	pmu->event_mapped = pmu_sbi_event_mapped;
	pmu->event_unmapped = pmu_sbi_event_unmapped;
	pmu->csr_index = pmu_sbi_csr_index;

	ret = riscv_pm_pmu_register(pmu);
	if (ret)
		goto out_unregister;

	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
	if (ret)
		goto out_unregister;

	/* SBI PMU Snapsphot is only available in SBI v2.0 */
	if (sbi_v2_available) {
		int cpu;

		ret = pmu_sbi_snapshot_alloc(pmu);
		if (ret)
			goto out_unregister;

		cpu = get_cpu();

		ret = pmu_sbi_snapshot_setup(pmu, cpu);
		if (ret) {
			/* Snapshot is an optional feature. Continue if not available */
			pmu_sbi_snapshot_free(pmu);
		} else {
			pr_info("SBI PMU snapshot detected\n");
			/*
			 * We enable it once here for the boot cpu. If snapshot shmem setup
			 * fails during cpu hotplug process, it will fail to start the cpu
			 * as we can not handle hetergenous PMUs with different snapshot
			 * capability.
			 */
			static_branch_enable(&sbi_pmu_snapshot_available);
		}
		put_cpu();
	}

	register_sysctl("kernel", sbi_pmu_sysctl_table);

	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
	if (ret)
		goto out_unregister;

	/* Asynchronously check which standard events are available */
	schedule_work(&check_std_events_work);

	return 0;

out_unregister:
	riscv_pmu_destroy(pmu);

out_free:
	kfree(pmu);
	return ret;
}

static struct platform_driver pmu_sbi_driver = {
	.probe		= pmu_sbi_device_probe,
	.driver		= {
		.name	= RISCV_PMU_SBI_PDEV_NAME,
	},
};

static int __init pmu_sbi_devinit(void)
{
	int ret;
	struct platform_device *pdev;

	if (sbi_spec_version < sbi_mk_version(0, 3) ||
	    !sbi_probe_extension(SBI_EXT_PMU)) {
		return 0;
	}

	if (sbi_spec_version >= sbi_mk_version(2, 0))
		sbi_v2_available = true;

	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
				      "perf/riscv/pmu:starting",
				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
	if (ret) {
		pr_err("CPU hotplug notifier could not be registered: %d\n",
		       ret);
		return ret;
	}

	ret = platform_driver_register(&pmu_sbi_driver);
	if (ret)
		return ret;

	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
	if (IS_ERR(pdev)) {
		platform_driver_unregister(&pmu_sbi_driver);
		return PTR_ERR(pdev);
	}

	/* Notify legacy implementation that SBI pmu is available*/
	riscv_pmu_legacy_skip_init();

	return ret;
}
device_initcall(pmu_sbi_devinit)