summaryrefslogtreecommitdiff
path: root/drivers/of/of_reserved_mem.c
blob: 1977ee0adcb1b46b730d26e8a82fad93ce25beb8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// SPDX-License-Identifier: GPL-2.0+
/*
 * Device tree based initialization code for reserved memory.
 *
 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
 * Author: Josh Cartwright <joshc@codeaurora.org>
 */

#define pr_fmt(fmt)	"OF: reserved mem: " fmt

#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/of_reserved_mem.h>
#include <linux/sort.h>
#include <linux/slab.h>
#include <linux/memblock.h>

#define MAX_RESERVED_REGIONS	32
static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
static int reserved_mem_count;

int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
	phys_addr_t *res_base)
{
	phys_addr_t base;
	/*
	 * We use __memblock_alloc_base() because memblock_alloc_base()
	 * panic()s on allocation failure.
	 */
	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
	align = !align ? SMP_CACHE_BYTES : align;
	base = __memblock_alloc_base(size, align, end);
	if (!base)
		return -ENOMEM;

	/*
	 * Check if the allocated region fits in to start..end window
	 */
	if (base < start) {
		memblock_free(base, size);
		return -ENOMEM;
	}

	*res_base = base;
	if (nomap)
		return memblock_remove(base, size);
	return 0;
}

/**
 * res_mem_save_node() - save fdt node for second pass initialization
 */
void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
				      phys_addr_t base, phys_addr_t size)
{
	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];

	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
		pr_err("not enough space all defined regions.\n");
		return;
	}

	rmem->fdt_node = node;
	rmem->name = uname;
	rmem->base = base;
	rmem->size = size;

	reserved_mem_count++;
	return;
}

/**
 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
 *			  and 'alloc-ranges' properties
 */
static int __init __reserved_mem_alloc_size(unsigned long node,
	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
{
	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
	phys_addr_t start = 0, end = 0;
	phys_addr_t base = 0, align = 0, size;
	int len;
	const __be32 *prop;
	int nomap;
	int ret;

	prop = of_get_flat_dt_prop(node, "size", &len);
	if (!prop)
		return -EINVAL;

	if (len != dt_root_size_cells * sizeof(__be32)) {
		pr_err("invalid size property in '%s' node.\n", uname);
		return -EINVAL;
	}
	size = dt_mem_next_cell(dt_root_size_cells, &prop);

	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;

	prop = of_get_flat_dt_prop(node, "alignment", &len);
	if (prop) {
		if (len != dt_root_addr_cells * sizeof(__be32)) {
			pr_err("invalid alignment property in '%s' node.\n",
				uname);
			return -EINVAL;
		}
		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
	}

	/* Need adjust the alignment to satisfy the CMA requirement */
	if (IS_ENABLED(CONFIG_CMA)
	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
	    && of_get_flat_dt_prop(node, "reusable", NULL)
	    && !of_get_flat_dt_prop(node, "no-map", NULL)) {
		unsigned long order =
			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);

		align = max(align, (phys_addr_t)PAGE_SIZE << order);
	}

	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
	if (prop) {

		if (len % t_len != 0) {
			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
			       uname);
			return -EINVAL;
		}

		base = 0;

		while (len > 0) {
			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
			end = start + dt_mem_next_cell(dt_root_size_cells,
						       &prop);

			ret = early_init_dt_alloc_reserved_memory_arch(size,
					align, start, end, nomap, &base);
			if (ret == 0) {
				pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
					uname, &base,
					(unsigned long)size / SZ_1M);
				break;
			}
			len -= t_len;
		}

	} else {
		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
							0, 0, nomap, &base);
		if (ret == 0)
			pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
				uname, &base, (unsigned long)size / SZ_1M);
	}

	if (base == 0) {
		pr_info("failed to allocate memory for node '%s'\n", uname);
		return -ENOMEM;
	}

	*res_base = base;
	*res_size = size;

	return 0;
}

static const struct of_device_id __rmem_of_table_sentinel
	__used __section(__reservedmem_of_table_end);

/**
 * res_mem_init_node() - call region specific reserved memory init code
 */
static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
{
	extern const struct of_device_id __reservedmem_of_table[];
	const struct of_device_id *i;

	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
		reservedmem_of_init_fn initfn = i->data;
		const char *compat = i->compatible;

		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
			continue;

		if (initfn(rmem) == 0) {
			pr_info("initialized node %s, compatible id %s\n",
				rmem->name, compat);
			return 0;
		}
	}
	return -ENOENT;
}

static int __init __rmem_cmp(const void *a, const void *b)
{
	const struct reserved_mem *ra = a, *rb = b;

	if (ra->base < rb->base)
		return -1;

	if (ra->base > rb->base)
		return 1;

	return 0;
}

static void __init __rmem_check_for_overlap(void)
{
	int i;

	if (reserved_mem_count < 2)
		return;

	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
	     __rmem_cmp, NULL);
	for (i = 0; i < reserved_mem_count - 1; i++) {
		struct reserved_mem *this, *next;

		this = &reserved_mem[i];
		next = &reserved_mem[i + 1];
		if (!(this->base && next->base))
			continue;
		if (this->base + this->size > next->base) {
			phys_addr_t this_end, next_end;

			this_end = this->base + this->size;
			next_end = next->base + next->size;
			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
			       this->name, &this->base, &this_end,
			       next->name, &next->base, &next_end);
		}
	}
}

/**
 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
 */
void __init fdt_init_reserved_mem(void)
{
	int i;

	/* check for overlapping reserved regions */
	__rmem_check_for_overlap();

	for (i = 0; i < reserved_mem_count; i++) {
		struct reserved_mem *rmem = &reserved_mem[i];
		unsigned long node = rmem->fdt_node;
		int len;
		const __be32 *prop;
		int err = 0;

		prop = of_get_flat_dt_prop(node, "phandle", &len);
		if (!prop)
			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
		if (prop)
			rmem->phandle = of_read_number(prop, len/4);

		if (rmem->size == 0)
			err = __reserved_mem_alloc_size(node, rmem->name,
						 &rmem->base, &rmem->size);
		if (err == 0)
			__reserved_mem_init_node(rmem);
	}
}

static inline struct reserved_mem *__find_rmem(struct device_node *node)
{
	unsigned int i;

	if (!node->phandle)
		return NULL;

	for (i = 0; i < reserved_mem_count; i++)
		if (reserved_mem[i].phandle == node->phandle)
			return &reserved_mem[i];
	return NULL;
}

struct rmem_assigned_device {
	struct device *dev;
	struct reserved_mem *rmem;
	struct list_head list;
};

static LIST_HEAD(of_rmem_assigned_device_list);
static DEFINE_MUTEX(of_rmem_assigned_device_mutex);

/**
 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
 *					  given device
 * @dev:	Pointer to the device to configure
 * @np:		Pointer to the device_node with 'reserved-memory' property
 * @idx:	Index of selected region
 *
 * This function assigns respective DMA-mapping operations based on reserved
 * memory region specified by 'memory-region' property in @np node to the @dev
 * device. When driver needs to use more than one reserved memory region, it
 * should allocate child devices and initialize regions by name for each of
 * child device.
 *
 * Returns error code or zero on success.
 */
int of_reserved_mem_device_init_by_idx(struct device *dev,
				       struct device_node *np, int idx)
{
	struct rmem_assigned_device *rd;
	struct device_node *target;
	struct reserved_mem *rmem;
	int ret;

	if (!np || !dev)
		return -EINVAL;

	target = of_parse_phandle(np, "memory-region", idx);
	if (!target)
		return -ENODEV;

	rmem = __find_rmem(target);
	of_node_put(target);

	if (!rmem || !rmem->ops || !rmem->ops->device_init)
		return -EINVAL;

	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
	if (!rd)
		return -ENOMEM;

	ret = rmem->ops->device_init(rmem, dev);
	if (ret == 0) {
		rd->dev = dev;
		rd->rmem = rmem;

		mutex_lock(&of_rmem_assigned_device_mutex);
		list_add(&rd->list, &of_rmem_assigned_device_list);
		mutex_unlock(&of_rmem_assigned_device_mutex);
		/* ensure that dma_ops is set for virtual devices
		 * using reserved memory
		 */
		of_dma_configure(dev, np, true);

		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
	} else {
		kfree(rd);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);

/**
 * of_reserved_mem_device_release() - release reserved memory device structures
 * @dev:	Pointer to the device to deconfigure
 *
 * This function releases structures allocated for memory region handling for
 * the given device.
 */
void of_reserved_mem_device_release(struct device *dev)
{
	struct rmem_assigned_device *rd;
	struct reserved_mem *rmem = NULL;

	mutex_lock(&of_rmem_assigned_device_mutex);
	list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
		if (rd->dev == dev) {
			rmem = rd->rmem;
			list_del(&rd->list);
			kfree(rd);
			break;
		}
	}
	mutex_unlock(&of_rmem_assigned_device_mutex);

	if (!rmem || !rmem->ops || !rmem->ops->device_release)
		return;

	rmem->ops->device_release(rmem, dev);
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);

/**
 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
 * @np:		node pointer of the desired reserved-memory region
 *
 * This function allows drivers to acquire a reference to the reserved_mem
 * struct based on a device node handle.
 *
 * Returns a reserved_mem reference, or NULL on error.
 */
struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
{
	const char *name;
	int i;

	if (!np->full_name)
		return NULL;

	name = kbasename(np->full_name);
	for (i = 0; i < reserved_mem_count; i++)
		if (!strcmp(reserved_mem[i].name, name))
			return &reserved_mem[i];

	return NULL;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);