1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
|
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2005-2014, 2018-2022 Intel Corporation
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
* Copyright (C) 2016-2017 Intel Deutschland GmbH
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include "iwl-drv.h"
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
#include "iwl-prph.h"
#include "iwl-io.h"
#include "iwl-csr.h"
#include "fw/acpi.h"
#include "fw/api/nvm-reg.h"
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
#include "mei/iwl-mei.h"
/* NVM offsets (in words) definitions */
enum nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
SUBSYSTEM_ID = 0x0A,
HW_ADDR = 0x15,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION = 0x1C0,
NVM_VERSION = 0,
RADIO_CFG = 1,
SKU = 2,
N_HW_ADDRS = 3,
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
/* NVM calibration section offset (in words) definitions */
NVM_CALIB_SECTION = 0x2B8,
XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_SDP = 0,
};
enum ext_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
/* NVM SW-Section offset (in words) definitions */
NVM_VERSION_EXT_NVM = 0,
N_HW_ADDRS_FAMILY_8000 = 3,
/* NVM PHY_SKU-Section offset (in words) definitions */
RADIO_CFG_FAMILY_EXT_NVM = 0,
SKU_FAMILY_8000 = 2,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_EXTENDED = 0,
NVM_LAR_OFFSET_OLD = 0x4C7,
NVM_LAR_OFFSET = 0x507,
NVM_LAR_ENABLED = 0x7,
};
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
NVM_SKU_CAP_11N_ENABLE = BIT(2),
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
};
/*
* These are the channel numbers in the order that they are stored in the NVM
*/
static const u16 iwl_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
static const u16 iwl_ext_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
static const u16 iwl_uhb_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181,
/* 6-7 GHz */
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
};
#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
#define NUM_2GHZ_CHANNELS 14
#define NUM_5GHZ_CHANNELS 37
#define FIRST_2GHZ_HT_MINUS 5
#define LAST_2GHZ_HT_PLUS 9
#define N_HW_ADDR_MASK 0xF
/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS 0
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS 4
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
/**
* enum iwl_nvm_channel_flags - channel flags in NVM
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
* @NVM_CHANNEL_ACTIVE: active scanning allowed
* @NVM_CHANNEL_RADAR: radar detection required
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
* on same channel on 2.4 or same UNII band on 5.2
* @NVM_CHANNEL_UNIFORM: uniform spreading required
* @NVM_CHANNEL_20MHZ: 20 MHz channel okay
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay
* @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
*/
enum iwl_nvm_channel_flags {
NVM_CHANNEL_VALID = BIT(0),
NVM_CHANNEL_IBSS = BIT(1),
NVM_CHANNEL_ACTIVE = BIT(3),
NVM_CHANNEL_RADAR = BIT(4),
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
NVM_CHANNEL_UNIFORM = BIT(7),
NVM_CHANNEL_20MHZ = BIT(8),
NVM_CHANNEL_40MHZ = BIT(9),
NVM_CHANNEL_80MHZ = BIT(10),
NVM_CHANNEL_160MHZ = BIT(11),
NVM_CHANNEL_DC_HIGH = BIT(12),
};
/**
* enum iwl_reg_capa_flags - global flags applied for the whole regulatory
* domain.
* @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
* 2.4Ghz band is allowed.
* @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
* 5Ghz band is allowed.
* @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
* @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
* @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
* @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
*/
enum iwl_reg_capa_flags {
REG_CAPA_BF_CCD_LOW_BAND = BIT(0),
REG_CAPA_BF_CCD_HIGH_BAND = BIT(1),
REG_CAPA_160MHZ_ALLOWED = BIT(2),
REG_CAPA_80MHZ_ALLOWED = BIT(3),
REG_CAPA_MCS_8_ALLOWED = BIT(4),
REG_CAPA_MCS_9_ALLOWED = BIT(5),
REG_CAPA_40MHZ_FORBIDDEN = BIT(7),
REG_CAPA_DC_HIGH_ENABLED = BIT(9),
REG_CAPA_11AX_DISABLED = BIT(10),
};
/**
* enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
* domain (version 2).
* @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
* disabled.
* @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
* 2.4Ghz band is allowed.
* @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
* 5Ghz band is allowed.
* @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
* @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
* @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
* 126, 122) are disabled.
* @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
* for this regulatory domain (uvalid only in 5Ghz).
* @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
*/
enum iwl_reg_capa_flags_v2 {
REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
REG_CAPA_V2_11AX_DISABLED = BIT(10),
};
/*
* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
* MCC update command response.
*/
#define REG_CAPA_V2_RESP_VER 6
/**
* struct iwl_reg_capa - struct for global regulatory capabilities, Used for
* handling the different APIs of reg_capa_flags.
*
* @allow_40mhz: 11n channel with a width of 40Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @disable_11ax: 11ax is forbidden for this regulatory domain.
*/
struct iwl_reg_capa {
u16 allow_40mhz;
u16 allow_80mhz;
u16 allow_160mhz;
u16 disable_11ax;
};
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
int chan, u32 flags)
{
#define CHECK_AND_PRINT_I(x) \
((flags & NVM_CHANNEL_##x) ? " " #x : "")
if (!(flags & NVM_CHANNEL_VALID)) {
IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
chan, flags);
return;
}
/* Note: already can print up to 101 characters, 110 is the limit! */
IWL_DEBUG_DEV(dev, level,
"Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
chan, flags,
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(INDOOR_ONLY),
CHECK_AND_PRINT_I(GO_CONCURRENT),
CHECK_AND_PRINT_I(UNIFORM),
CHECK_AND_PRINT_I(20MHZ),
CHECK_AND_PRINT_I(40MHZ),
CHECK_AND_PRINT_I(80MHZ),
CHECK_AND_PRINT_I(160MHZ),
CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
u32 nvm_flags, const struct iwl_cfg *cfg)
{
u32 flags = IEEE80211_CHAN_NO_HT40;
if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
if (ch_num <= LAST_2GHZ_HT_PLUS)
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
if (ch_num >= FIRST_2GHZ_HT_MINUS)
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
else
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
}
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
flags |= IEEE80211_CHAN_NO_80MHZ;
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
flags |= IEEE80211_CHAN_NO_160MHZ;
if (!(nvm_flags & NVM_CHANNEL_IBSS))
flags |= IEEE80211_CHAN_NO_IR;
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
flags |= IEEE80211_CHAN_NO_IR;
if (nvm_flags & NVM_CHANNEL_RADAR)
flags |= IEEE80211_CHAN_RADAR;
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
flags |= IEEE80211_CHAN_INDOOR_ONLY;
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
(flags & IEEE80211_CHAN_NO_IR))
flags |= IEEE80211_CHAN_IR_CONCURRENT;
return flags;
}
static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
{
if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
return NL80211_BAND_6GHZ;
}
if (ch_idx >= NUM_2GHZ_CHANNELS)
return NL80211_BAND_5GHZ;
return NL80211_BAND_2GHZ;
}
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const void * const nvm_ch_flags,
u32 sbands_flags, bool v4)
{
int ch_idx;
int n_channels = 0;
struct ieee80211_channel *channel;
u32 ch_flags;
int num_of_ch;
const u16 *nvm_chan;
if (cfg->uhb_supported) {
num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
nvm_chan = iwl_uhb_nvm_channels;
} else if (cfg->nvm_type == IWL_NVM_EXT) {
num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
nvm_chan = iwl_ext_nvm_channels;
} else {
num_of_ch = IWL_NVM_NUM_CHANNELS;
nvm_chan = iwl_nvm_channels;
}
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
enum nl80211_band band =
iwl_nl80211_band_from_channel_idx(ch_idx);
if (v4)
ch_flags =
__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
else
ch_flags =
__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
if (band == NL80211_BAND_5GHZ &&
!data->sku_cap_band_52ghz_enable)
continue;
/* workaround to disable wide channels in 5GHz */
if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
band == NL80211_BAND_5GHZ) {
ch_flags &= ~(NVM_CHANNEL_40MHZ |
NVM_CHANNEL_80MHZ |
NVM_CHANNEL_160MHZ);
}
if (ch_flags & NVM_CHANNEL_160MHZ)
data->vht160_supported = true;
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
!(ch_flags & NVM_CHANNEL_VALID)) {
/*
* Channels might become valid later if lar is
* supported, hence we still want to add them to
* the list of supported channels to cfg80211.
*/
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
nvm_chan[ch_idx], ch_flags);
continue;
}
channel = &data->channels[n_channels];
n_channels++;
channel->hw_value = nvm_chan[ch_idx];
channel->band = band;
channel->center_freq =
ieee80211_channel_to_frequency(
channel->hw_value, channel->band);
/* Initialize regulatory-based run-time data */
/*
* Default value - highest tx power value. max_power
* is not used in mvm, and is used for backwards compatibility
*/
channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
/* don't put limitations in case we're using LAR */
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
ch_idx, band,
ch_flags, cfg);
else
channel->flags = 0;
/* TODO: Don't put limitations on UHB devices as we still don't
* have NVM for them
*/
if (cfg->uhb_supported)
channel->flags = 0;
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
channel->hw_value, ch_flags);
IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
channel->hw_value, channel->max_power);
}
return n_channels;
}
static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_sta_vht_cap *vht_cap,
u8 tx_chains, u8 rx_chains)
{
const struct iwl_cfg *cfg = trans->cfg;
int num_rx_ants = num_of_ant(rx_chains);
int num_tx_ants = num_of_ant(tx_chains);
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
IEEE80211_VHT_MAX_AMPDU_1024K <<
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
if (data->vht160_supported)
vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
IEEE80211_VHT_CAP_SHORT_GI_160;
if (cfg->vht_mu_mimo_supported)
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
if (cfg->ht_params->ldpc)
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
if (data->sku_cap_mimo_disabled) {
num_rx_ants = 1;
num_tx_ants = 1;
}
if (num_tx_ants > 1)
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
else
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
switch (iwlwifi_mod_params.amsdu_size) {
case IWL_AMSDU_DEF:
if (trans->trans_cfg->mq_rx_supported)
vht_cap->cap |=
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
else
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
break;
case IWL_AMSDU_2K:
if (trans->trans_cfg->mq_rx_supported)
vht_cap->cap |=
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
else
WARN(1, "RB size of 2K is not supported by this device\n");
break;
case IWL_AMSDU_4K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
break;
case IWL_AMSDU_8K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
break;
case IWL_AMSDU_12K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
break;
default:
break;
}
vht_cap->vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
/* this works because NOT_SUPPORTED == 3 */
vht_cap->vht_mcs.rx_mcs_map |=
cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
}
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
vht_cap->vht_mcs.tx_highest |=
cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
}
static const u8 iwl_vendor_caps[] = {
0xdd, /* vendor element */
0x06, /* length */
0x00, 0x17, 0x35, /* Intel OUI */
0x08, /* type (Intel Capabilities) */
/* followed by 16 bits of capabilities */
#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0)
IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
0x00
};
static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
{
.types_mask = BIT(NL80211_IFTYPE_STATION),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
.mac_cap_info[4] =
IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
.mac_cap_info[5] =
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
.phy_cap_info[3] =
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
.phy_cap_info[4] =
IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
.phy_cap_info[6] =
IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
.phy_cap_info[7] =
IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
.phy_cap_info[8] =
IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
.phy_cap_info[9] =
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
.phy_cap_info[10] =
IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
},
/*
* Set default Tx/Rx HE MCS NSS Support field.
* Indicate support for up to 2 spatial streams and all
* MCS, without any special cases
*/
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
/*
* Set default PPE thresholds, with PPET16 set to 0,
* PPET8 set to 7
*/
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
.phy_cap_info[1] =
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK |
IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK,
.phy_cap_info[3] =
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
.phy_cap_info[4] =
IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
.phy_cap_info[6] =
IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
.phy_cap_info[8] =
IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
},
/* For all MCS and bandwidth, set 2 NSS for both Tx and
* Rx - note we don't set the only_20mhz, but due to this
* being a union, it gets set correctly anyway.
*/
.eht_mcs_nss_supp = {
.bw._80 = {
.rx_tx_mcs9_max_nss = 0x22,
.rx_tx_mcs11_max_nss = 0x22,
.rx_tx_mcs13_max_nss = 0x22,
},
.bw._160 = {
.rx_tx_mcs9_max_nss = 0x22,
.rx_tx_mcs11_max_nss = 0x22,
.rx_tx_mcs13_max_nss = 0x22,
},
.bw._320 = {
.rx_tx_mcs9_max_nss = 0x22,
.rx_tx_mcs11_max_nss = 0x22,
.rx_tx_mcs13_max_nss = 0x22,
},
},
/*
* PPE thresholds for NSS = 2, and RU index bitmap set
* to 0xc.
*/
.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
},
},
{
.types_mask = BIT(NL80211_IFTYPE_AP),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
.phy_cap_info[3] =
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
.phy_cap_info[6] =
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
.phy_cap_info[7] =
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
.phy_cap_info[8] =
IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
.phy_cap_info[9] =
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
},
/*
* Set default Tx/Rx HE MCS NSS Support field.
* Indicate support for up to 2 spatial streams and all
* MCS, without any special cases
*/
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
/*
* Set default PPE thresholds, with PPET16 set to 0,
* PPET8 set to 7
*/
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
},
.eht_cap = {
.has_eht = true,
.eht_cap_elem = {
.mac_cap_info[0] =
IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
.phy_cap_info[0] =
IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
.phy_cap_info[5] =
IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
},
/* For all MCS and bandwidth, set 2 NSS for both Tx and
* Rx - note we don't set the only_20mhz, but due to this
* being a union, it gets set correctly anyway.
*/
.eht_mcs_nss_supp = {
.bw._80 = {
.rx_tx_mcs9_max_nss = 0x22,
.rx_tx_mcs11_max_nss = 0x22,
.rx_tx_mcs13_max_nss = 0x22,
},
.bw._160 = {
.rx_tx_mcs9_max_nss = 0x22,
.rx_tx_mcs11_max_nss = 0x22,
.rx_tx_mcs13_max_nss = 0x22,
},
.bw._320 = {
.rx_tx_mcs9_max_nss = 0x22,
.rx_tx_mcs11_max_nss = 0x22,
.rx_tx_mcs13_max_nss = 0x22,
},
},
/*
* PPE thresholds for NSS = 2, and RU index bitmap set
* to 0xc.
*/
.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
},
},
};
static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_supported_band *sband,
u8 tx_chains, u8 rx_chains)
{
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap = {};
struct ieee80211_sband_iftype_data *iftype_data;
u16 he_6ghz_capa = 0;
u32 exp;
int i;
if (sband->band != NL80211_BAND_6GHZ)
return;
/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
tx_chains, rx_chains);
WARN_ON(!ht_cap.ht_supported);
iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
WARN_ON(!vht_cap.vht_supported);
he_6ghz_capa |=
u16_encode_bits(ht_cap.ampdu_density,
IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
exp = u32_get_bits(vht_cap.cap,
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
he_6ghz_capa |=
u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
he_6ghz_capa |=
u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
/* we know it's writable - we set it before ourselves */
iftype_data = (void *)(uintptr_t)sband->iftype_data;
for (i = 0; i < sband->n_iftype_data; i++)
iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
}
static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_supported_band *sband,
struct ieee80211_sband_iftype_data *iftype_data,
u8 tx_chains, u8 rx_chains,
const struct iwl_fw *fw)
{
bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
iftype_data->eht_cap.has_eht = false;
/* Advertise an A-MPDU exponent extension based on
* operating band
*/
if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
else if (sband->band != NL80211_BAND_2GHZ)
iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
else
iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
switch (sband->band) {
case NL80211_BAND_2GHZ:
iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
break;
case NL80211_BAND_6GHZ:
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
fallthrough;
case NL80211_BAND_5GHZ:
iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
break;
default:
WARN_ON(1);
break;
}
if ((tx_chains & rx_chains) == ANT_AB) {
iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
if (!is_ap) {
iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
IEEE80211_HE_PHY_CAP7_MAX_NC_2;
if (iftype_data->eht_cap.has_eht) {
/*
* Set the number of sounding dimensions for each
* bandwidth to 1 to indicate the maximal supported
* value of TXVECTOR parameter NUM_STS of 2
*/
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
/*
* Set the MAX NC to 1 to indicate sounding feedback of
* 2 supported by the beamfomee.
*/
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
}
}
} else {
if (iftype_data->eht_cap.has_eht) {
struct ieee80211_eht_mcs_nss_supp *mcs_nss =
&iftype_data->eht_cap.eht_mcs_nss_supp;
memset(mcs_nss, 0x11, sizeof(*mcs_nss));
}
if (!is_ap) {
/* If not 2x2, we need to indicate 1x1 in the
* Midamble RX Max NSTS - but not for AP mode
*/
iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
IEEE80211_HE_PHY_CAP7_MAX_NC_1;
}
}
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
case IWL_CFG_RF_TYPE_GF:
case IWL_CFG_RF_TYPE_MR:
case IWL_CFG_RF_TYPE_MS:
iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
if (!is_ap)
iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
break;
}
if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
iftype_data->eht_cap.has_eht) {
iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
}
if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
IEEE80211_HE_MAC_CAP2_BCAST_TWT;
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
!is_ap) {
iftype_data->vendor_elems.data = iwl_vendor_caps;
iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
}
}
static void iwl_init_he_hw_capab(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_supported_band *sband,
u8 tx_chains, u8 rx_chains,
const struct iwl_fw *fw)
{
struct ieee80211_sband_iftype_data *iftype_data;
int i;
/* should only initialize once */
if (WARN_ON(sband->iftype_data))
return;
BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
switch (sband->band) {
case NL80211_BAND_2GHZ:
iftype_data = data->iftd.low;
break;
case NL80211_BAND_5GHZ:
iftype_data = data->iftd.high;
break;
case NL80211_BAND_6GHZ:
iftype_data = data->iftd.uhb;
break;
default:
WARN_ON(1);
return;
}
memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
sband->iftype_data = iftype_data;
sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
for (i = 0; i < sband->n_iftype_data; i++)
iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
tx_chains, rx_chains, fw);
iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
}
static void iwl_init_sbands(struct iwl_trans *trans,
struct iwl_nvm_data *data,
const void *nvm_ch_flags, u8 tx_chains,
u8 rx_chains, u32 sbands_flags, bool v4,
const struct iwl_fw *fw)
{
struct device *dev = trans->dev;
const struct iwl_cfg *cfg = trans->cfg;
int n_channels;
int n_used = 0;
struct ieee80211_supported_band *sband;
n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
sbands_flags, v4);
sband = &data->bands[NL80211_BAND_2GHZ];
sband->band = NL80211_BAND_2GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
sband->n_bitrates = N_RATES_24;
n_used += iwl_init_sband_channels(data, sband, n_channels,
NL80211_BAND_2GHZ);
iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
tx_chains, rx_chains);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
fw);
sband = &data->bands[NL80211_BAND_5GHZ];
sband->band = NL80211_BAND_5GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels,
NL80211_BAND_5GHZ);
iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
tx_chains, rx_chains);
if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
tx_chains, rx_chains);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
fw);
/* 6GHz band. */
sband = &data->bands[NL80211_BAND_6GHZ];
sband->band = NL80211_BAND_6GHZ;
/* use the same rates as 5GHz band */
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels,
NL80211_BAND_6GHZ);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
fw);
else
sband->n_channels = 0;
if (n_channels != n_used)
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
n_used, n_channels);
}
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
const __le16 *phy_sku)
{
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + SKU);
return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
}
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
{
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + NVM_VERSION);
else
return le32_to_cpup((const __le32 *)(nvm_sw +
NVM_VERSION_EXT_NVM));
}
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
const __le16 *phy_sku)
{
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + RADIO_CFG);
return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
}
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
{
int n_hw_addr;
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
return n_hw_addr & N_HW_ADDR_MASK;
}
static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
u32 radio_cfg)
{
if (cfg->nvm_type != IWL_NVM_EXT) {
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
return;
}
/* set the radio configuration for family 8000 */
data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
}
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
const u8 *hw_addr;
hw_addr = (const u8 *)&mac_addr0;
dest[0] = hw_addr[3];
dest[1] = hw_addr[2];
dest[2] = hw_addr[1];
dest[3] = hw_addr[0];
hw_addr = (const u8 *)&mac_addr1;
dest[4] = hw_addr[1];
dest[5] = hw_addr[0];
}
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
struct iwl_nvm_data *data)
{
__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
CSR_MAC_ADDR0_STRAP(trans)));
__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
CSR_MAC_ADDR1_STRAP(trans)));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
/*
* If the OEM fused a valid address, use it instead of the one in the
* OTP
*/
if (is_valid_ether_addr(data->hw_addr))
return;
mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *mac_override,
const __be16 *nvm_hw)
{
const u8 *hw_addr;
if (mac_override) {
static const u8 reserved_mac[] = {
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
};
hw_addr = (const u8 *)(mac_override +
MAC_ADDRESS_OVERRIDE_EXT_NVM);
/*
* Store the MAC address from MAO section.
* No byte swapping is required in MAO section
*/
memcpy(data->hw_addr, hw_addr, ETH_ALEN);
/*
* Force the use of the OTP MAC address in case of reserved MAC
* address in the NVM, or if address is given but invalid.
*/
if (is_valid_ether_addr(data->hw_addr) &&
memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
return;
IWL_ERR(trans,
"mac address from nvm override section is not valid\n");
}
if (nvm_hw) {
/* read the mac address from WFMP registers */
__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
WFMP_MAC_ADDR_0));
__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
WFMP_MAC_ADDR_1));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
return;
}
IWL_ERR(trans, "mac address is not found\n");
}
static int iwl_set_hw_address(struct iwl_trans *trans,
const struct iwl_cfg *cfg,
struct iwl_nvm_data *data, const __be16 *nvm_hw,
const __le16 *mac_override)
{
if (cfg->mac_addr_from_csr) {
iwl_set_hw_address_from_csr(trans, data);
} else if (cfg->nvm_type != IWL_NVM_EXT) {
const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
} else {
iwl_set_hw_address_family_8000(trans, cfg, data,
mac_override, nvm_hw);
}
if (!is_valid_ether_addr(data->hw_addr)) {
IWL_ERR(trans, "no valid mac address was found\n");
return -EINVAL;
}
if (!trans->csme_own)
IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
return 0;
}
static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
const __be16 *nvm_hw)
{
/*
* Workaround a bug in Indonesia SKUs where the regulatory in
* some 7000-family OTPs erroneously allow wide channels in
* 5GHz. To check for Indonesia, we take the SKU value from
* bits 1-4 in the subsystem ID and check if it is either 5 or
* 9. In those cases, we need to force-disable wide channels
* in 5GHz otherwise the FW will throw a sysassert when we try
* to use them.
*/
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
/*
* Unlike the other sections in the NVM, the hw
* section uses big-endian.
*/
u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
u8 sku = (subsystem_id & 0x1e) >> 1;
if (sku == 5 || sku == 9) {
IWL_DEBUG_EEPROM(trans->dev,
"disabling wide channels in 5GHz (0x%0x %d)\n",
subsystem_id, sku);
return true;
}
}
return false;
}
struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
const struct iwl_mei_nvm *mei_nvm,
const struct iwl_fw *fw)
{
struct iwl_nvm_data *data;
u32 sbands_flags = 0;
u8 rx_chains = fw->valid_rx_ant;
u8 tx_chains = fw->valid_rx_ant;
if (cfg->uhb_supported)
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_UHB),
GFP_KERNEL);
else
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_EXT),
GFP_KERNEL);
if (!data)
return NULL;
BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
IWL_NVM_NUM_CHANNELS_UHB);
data->nvm_version = mei_nvm->nvm_version;
iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
if (data->valid_tx_ant)
tx_chains &= data->valid_tx_ant;
if (data->valid_rx_ant)
rx_chains &= data->valid_rx_ant;
data->sku_cap_mimo_disabled = false;
data->sku_cap_band_24ghz_enable = true;
data->sku_cap_band_52ghz_enable = true;
data->sku_cap_11n_enable =
!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
data->sku_cap_11ac_enable = true;
data->sku_cap_11ax_enable =
mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
data->n_hw_addrs = mei_nvm->n_hw_addrs;
/* If no valid mac address was found - bail out */
if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
kfree(data);
return NULL;
}
if (data->lar_enabled &&
fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
sbands_flags, true, fw);
return data;
}
IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
const struct iwl_fw *fw,
const __be16 *nvm_hw, const __le16 *nvm_sw,
const __le16 *nvm_calib, const __le16 *regulatory,
const __le16 *mac_override, const __le16 *phy_sku,
u8 tx_chains, u8 rx_chains)
{
struct iwl_nvm_data *data;
bool lar_enabled;
u32 sku, radio_cfg;
u32 sbands_flags = 0;
u16 lar_config;
const __le16 *ch_section;
if (cfg->uhb_supported)
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_UHB),
GFP_KERNEL);
else if (cfg->nvm_type != IWL_NVM_EXT)
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS),
GFP_KERNEL);
else
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_EXT),
GFP_KERNEL);
if (!data)
return NULL;
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
iwl_set_radio_cfg(cfg, data, radio_cfg);
if (data->valid_tx_ant)
tx_chains &= data->valid_tx_ant;
if (data->valid_rx_ant)
rx_chains &= data->valid_rx_ant;
sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
data->sku_cap_11n_enable = false;
data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
(sku & NVM_SKU_CAP_11AC_ENABLE);
data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
if (cfg->nvm_type != IWL_NVM_EXT) {
/* Checking for required sections */
if (!nvm_calib) {
IWL_ERR(trans,
"Can't parse empty Calib NVM sections\n");
kfree(data);
return NULL;
}
ch_section = cfg->nvm_type == IWL_NVM_SDP ?
®ulatory[NVM_CHANNELS_SDP] :
&nvm_sw[NVM_CHANNELS];
/* in family 8000 Xtal calibration values moved to OTP */
data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
lar_enabled = true;
} else {
u16 lar_offset = data->nvm_version < 0xE39 ?
NVM_LAR_OFFSET_OLD :
NVM_LAR_OFFSET;
lar_config = le16_to_cpup(regulatory + lar_offset);
data->lar_enabled = !!(lar_config &
NVM_LAR_ENABLED);
lar_enabled = data->lar_enabled;
ch_section = ®ulatory[NVM_CHANNELS_EXTENDED];
}
/* If no valid mac address was found - bail out */
if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
kfree(data);
return NULL;
}
if (lar_enabled &&
fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
sbands_flags, false, fw);
data->calib_version = 255;
return data;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
int ch_idx, u16 nvm_flags,
struct iwl_reg_capa reg_capa,
const struct iwl_cfg *cfg)
{
u32 flags = NL80211_RRF_NO_HT40;
if (ch_idx < NUM_2GHZ_CHANNELS &&
(nvm_flags & NVM_CHANNEL_40MHZ)) {
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
flags &= ~NL80211_RRF_NO_HT40PLUS;
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
flags &= ~NL80211_RRF_NO_HT40MINUS;
} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
flags &= ~NL80211_RRF_NO_HT40PLUS;
else
flags &= ~NL80211_RRF_NO_HT40MINUS;
}
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
flags |= NL80211_RRF_NO_80MHZ;
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
flags |= NL80211_RRF_NO_160MHZ;
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
flags |= NL80211_RRF_NO_IR;
if (nvm_flags & NVM_CHANNEL_RADAR)
flags |= NL80211_RRF_DFS;
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
flags |= NL80211_RRF_NO_OUTDOOR;
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
(flags & NL80211_RRF_NO_IR))
flags |= NL80211_RRF_GO_CONCURRENT;
/*
* reg_capa is per regulatory domain so apply it for every channel
*/
if (ch_idx >= NUM_2GHZ_CHANNELS) {
if (!reg_capa.allow_40mhz)
flags |= NL80211_RRF_NO_HT40;
if (!reg_capa.allow_80mhz)
flags |= NL80211_RRF_NO_80MHZ;
if (!reg_capa.allow_160mhz)
flags |= NL80211_RRF_NO_160MHZ;
}
if (reg_capa.disable_11ax)
flags |= NL80211_RRF_NO_HE;
return flags;
}
static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
{
struct iwl_reg_capa reg_capa;
if (resp_ver >= REG_CAPA_V2_RESP_VER) {
reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
} else {
reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
}
return reg_capa;
}
struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
int num_of_ch, __le32 *channels, u16 fw_mcc,
u16 geo_info, u16 cap, u8 resp_ver)
{
int ch_idx;
u16 ch_flags;
u32 reg_rule_flags, prev_reg_rule_flags = 0;
const u16 *nvm_chan;
struct ieee80211_regdomain *regd, *copy_rd;
struct ieee80211_reg_rule *rule;
enum nl80211_band band;
int center_freq, prev_center_freq = 0;
int valid_rules = 0;
bool new_rule;
int max_num_ch;
struct iwl_reg_capa reg_capa;
if (cfg->uhb_supported) {
max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
nvm_chan = iwl_uhb_nvm_channels;
} else if (cfg->nvm_type == IWL_NVM_EXT) {
max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
nvm_chan = iwl_ext_nvm_channels;
} else {
max_num_ch = IWL_NVM_NUM_CHANNELS;
nvm_chan = iwl_nvm_channels;
}
if (num_of_ch > max_num_ch) {
IWL_DEBUG_DEV(dev, IWL_DL_LAR,
"Num of channels (%d) is greater than expected. Truncating to %d\n",
num_of_ch, max_num_ch);
num_of_ch = max_num_ch;
}
if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
return ERR_PTR(-EINVAL);
IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
num_of_ch);
/* build a regdomain rule for every valid channel */
regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
if (!regd)
return ERR_PTR(-ENOMEM);
/* set alpha2 from FW. */
regd->alpha2[0] = fw_mcc >> 8;
regd->alpha2[1] = fw_mcc & 0xff;
/* parse regulatory capability flags */
reg_capa = iwl_get_reg_capa(cap, resp_ver);
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
band = iwl_nl80211_band_from_channel_idx(ch_idx);
center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
band);
new_rule = false;
if (!(ch_flags & NVM_CHANNEL_VALID)) {
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
nvm_chan[ch_idx], ch_flags);
continue;
}
reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
ch_flags, reg_capa,
cfg);
/* we can't continue the same rule */
if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
center_freq - prev_center_freq > 20) {
valid_rules++;
new_rule = true;
}
rule = ®d->reg_rules[valid_rules - 1];
if (new_rule)
rule->freq_range.start_freq_khz =
MHZ_TO_KHZ(center_freq - 10);
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
/* this doesn't matter - not used by FW */
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
rule->power_rule.max_eirp =
DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
rule->flags = reg_rule_flags;
/* rely on auto-calculation to merge BW of contiguous chans */
rule->flags |= NL80211_RRF_AUTO_BW;
rule->freq_range.max_bandwidth_khz = 0;
prev_center_freq = center_freq;
prev_reg_rule_flags = reg_rule_flags;
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
nvm_chan[ch_idx], ch_flags);
if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
band == NL80211_BAND_2GHZ)
continue;
reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
}
/*
* Certain firmware versions might report no valid channels
* if booted in RF-kill, i.e. not all calibrations etc. are
* running. We'll get out of this situation later when the
* rfkill is removed and we update the regdomain again, but
* since cfg80211 doesn't accept an empty regdomain, add a
* dummy (unusable) rule here in this case so we can init.
*/
if (!valid_rules) {
valid_rules = 1;
rule = ®d->reg_rules[valid_rules - 1];
rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
rule->power_rule.max_eirp =
DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
}
regd->n_reg_rules = valid_rules;
/*
* Narrow down regdom for unused regulatory rules to prevent hole
* between reg rules to wmm rules.
*/
copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
GFP_KERNEL);
if (!copy_rd)
copy_rd = ERR_PTR(-ENOMEM);
kfree(regd);
return copy_rd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
#define MAX_NVM_FILE_LEN 16384
void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
unsigned int len)
{
#define IWL_4165_DEVICE_ID 0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
if (section == NVM_SECTION_TYPE_PHY_SKU &&
hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
(data[4] & NVM_SKU_CAP_MIMO_DISABLE))
/* OTP 0x52 bug work around: it's a 1x1 device */
data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
/*
* Reads external NVM from a file into mvm->nvm_sections
*
* HOW TO CREATE THE NVM FILE FORMAT:
* ------------------------------
* 1. create hex file, format:
* 3800 -> header
* 0000 -> header
* 5a40 -> data
*
* rev - 6 bit (word1)
* len - 10 bit (word1)
* id - 4 bit (word2)
* rsv - 12 bit (word2)
*
* 2. flip 8bits with 8 bits per line to get the right NVM file format
*
* 3. create binary file from the hex file
*
* 4. save as "iNVM_xxx.bin" under /lib/firmware
*/
int iwl_read_external_nvm(struct iwl_trans *trans,
const char *nvm_file_name,
struct iwl_nvm_section *nvm_sections)
{
int ret, section_size;
u16 section_id;
const struct firmware *fw_entry;
const struct {
__le16 word1;
__le16 word2;
u8 data[];
} *file_sec;
const u8 *eof;
u8 *temp;
int max_section_size;
const __le32 *dword_buff;
#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0 (0x2A504C54)
#define NVM_HEADER_1 (0x4E564D2A)
#define NVM_HEADER_SIZE (4 * sizeof(u32))
IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
/* Maximal size depends on NVM version */
if (trans->cfg->nvm_type != IWL_NVM_EXT)
max_section_size = IWL_MAX_NVM_SECTION_SIZE;
else
max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
/*
* Obtain NVM image via request_firmware. Since we already used
* request_firmware_nowait() for the firmware binary load and only
* get here after that we assume the NVM request can be satisfied
* synchronously.
*/
ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
if (ret) {
IWL_ERR(trans, "ERROR: %s isn't available %d\n",
nvm_file_name, ret);
return ret;
}
IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
nvm_file_name, fw_entry->size);
if (fw_entry->size > MAX_NVM_FILE_LEN) {
IWL_ERR(trans, "NVM file too large\n");
ret = -EINVAL;
goto out;
}
eof = fw_entry->data + fw_entry->size;
dword_buff = (const __le32 *)fw_entry->data;
/* some NVM file will contain a header.
* The header is identified by 2 dwords header as follow:
* dword[0] = 0x2A504C54
* dword[1] = 0x4E564D2A
*
* This header must be skipped when providing the NVM data to the FW.
*/
if (fw_entry->size > NVM_HEADER_SIZE &&
dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
IWL_INFO(trans, "NVM Manufacturing date %08X\n",
le32_to_cpu(dword_buff[3]));
/* nvm file validation, dword_buff[2] holds the file version */
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
trans->hw_rev_step == SILICON_C_STEP &&
le32_to_cpu(dword_buff[2]) < 0xE4A) {
ret = -EFAULT;
goto out;
}
} else {
file_sec = (const void *)fw_entry->data;
}
while (true) {
if (file_sec->data > eof) {
IWL_ERR(trans,
"ERROR - NVM file too short for section header\n");
ret = -EINVAL;
break;
}
/* check for EOF marker */
if (!file_sec->word1 && !file_sec->word2) {
ret = 0;
break;
}
if (trans->cfg->nvm_type != IWL_NVM_EXT) {
section_size =
2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
} else {
section_size = 2 * EXT_NVM_WORD2_LEN(
le16_to_cpu(file_sec->word2));
section_id = EXT_NVM_WORD1_ID(
le16_to_cpu(file_sec->word1));
}
if (section_size > max_section_size) {
IWL_ERR(trans, "ERROR - section too large (%d)\n",
section_size);
ret = -EINVAL;
break;
}
if (!section_size) {
IWL_ERR(trans, "ERROR - section empty\n");
ret = -EINVAL;
break;
}
if (file_sec->data + section_size > eof) {
IWL_ERR(trans,
"ERROR - NVM file too short for section (%d bytes)\n",
section_size);
ret = -EINVAL;
break;
}
if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
"Invalid NVM section ID %d\n", section_id)) {
ret = -EINVAL;
break;
}
temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
if (!temp) {
ret = -ENOMEM;
break;
}
iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
kfree(nvm_sections[section_id].data);
nvm_sections[section_id].data = temp;
nvm_sections[section_id].length = section_size;
/* advance to the next section */
file_sec = (const void *)(file_sec->data + section_size);
}
out:
release_firmware(fw_entry);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
const struct iwl_fw *fw)
{
struct iwl_nvm_get_info cmd = {};
struct iwl_nvm_data *nvm;
struct iwl_host_cmd hcmd = {
.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
.data = { &cmd, },
.len = { sizeof(cmd) },
.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
};
int ret;
bool empty_otp;
u32 mac_flags;
u32 sbands_flags = 0;
/*
* All the values in iwl_nvm_get_info_rsp v4 are the same as
* in v3, except for the channel profile part of the
* regulatory. So we can just access the new struct, with the
* exception of the latter.
*/
struct iwl_nvm_get_info_rsp *rsp;
struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
bool v4 = fw_has_api(&fw->ucode_capa,
IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
void *channel_profile;
ret = iwl_trans_send_cmd(trans, &hcmd);
if (ret)
return ERR_PTR(ret);
if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
"Invalid payload len in NVM response from FW %d",
iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
ret = -EINVAL;
goto out;
}
rsp = (void *)hcmd.resp_pkt->data;
empty_otp = !!(le32_to_cpu(rsp->general.flags) &
NVM_GENERAL_FLAGS_EMPTY_OTP);
if (empty_otp)
IWL_INFO(trans, "OTP is empty\n");
nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
if (!nvm) {
ret = -ENOMEM;
goto out;
}
iwl_set_hw_address_from_csr(trans, nvm);
/* TODO: if platform NVM has MAC address - override it here */
if (!is_valid_ether_addr(nvm->hw_addr)) {
IWL_ERR(trans, "no valid mac address was found\n");
ret = -EINVAL;
goto err_free;
}
IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
/* Initialize general data */
nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
nvm->n_hw_addrs = rsp->general.n_hw_addrs;
if (nvm->n_hw_addrs == 0)
IWL_WARN(trans,
"Firmware declares no reserved mac addresses. OTP is empty: %d\n",
empty_otp);
/* Initialize MAC sku data */
mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
nvm->sku_cap_11ac_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
nvm->sku_cap_11n_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
nvm->sku_cap_11ax_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
nvm->sku_cap_band_24ghz_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
nvm->sku_cap_band_52ghz_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
nvm->sku_cap_mimo_disabled =
!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
nvm->sku_cap_11be_enable = true;
/* Initialize PHY sku data */
nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
fw_has_capa(&fw->ucode_capa,
IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
nvm->lar_enabled = true;
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
}
rsp_v3 = (void *)rsp;
channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
(void *)rsp_v3->regulatory.channel_profile;
iwl_init_sbands(trans, nvm,
channel_profile,
nvm->valid_tx_ant & fw->valid_tx_ant,
nvm->valid_rx_ant & fw->valid_rx_ant,
sbands_flags, v4, fw);
iwl_free_resp(&hcmd);
return nvm;
err_free:
kfree(nvm);
out:
iwl_free_resp(&hcmd);
return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);
|