summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath9k/eeprom.c
blob: c22d457dbc54183f6006e970e284106f82eb8fef (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * Copyright (c) 2008-2011 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hw.h"
#include <linux/ath9k_platform.h>

void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
{
        REG_WRITE(ah, reg, val);

        if (ah->config.analog_shiftreg)
		udelay(100);
}

void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
			       u32 shift, u32 val)
{
	REG_RMW(ah, reg, ((val << shift) & mask), mask);

	if (ah->config.analog_shiftreg)
		udelay(100);
}

int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
			     int16_t targetLeft, int16_t targetRight)
{
	int16_t rv;

	if (srcRight == srcLeft) {
		rv = targetLeft;
	} else {
		rv = (int16_t) (((target - srcLeft) * targetRight +
				 (srcRight - target) * targetLeft) /
				(srcRight - srcLeft));
	}
	return rv;
}

bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
				    u16 *indexL, u16 *indexR)
{
	u16 i;

	if (target <= pList[0]) {
		*indexL = *indexR = 0;
		return true;
	}
	if (target >= pList[listSize - 1]) {
		*indexL = *indexR = (u16) (listSize - 1);
		return true;
	}

	for (i = 0; i < listSize - 1; i++) {
		if (pList[i] == target) {
			*indexL = *indexR = i;
			return true;
		}
		if (target < pList[i + 1]) {
			*indexL = i;
			*indexR = (u16) (i + 1);
			return false;
		}
	}
	return false;
}

void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
				  int eep_start_loc, int size)
{
	int i = 0, j, addr;
	u32 addrdata[8];
	u32 data[8];

	for (addr = 0; addr < size; addr++) {
		addrdata[i] = AR5416_EEPROM_OFFSET +
			((addr + eep_start_loc) << AR5416_EEPROM_S);
		i++;
		if (i == 8) {
			REG_READ_MULTI(ah, addrdata, data, i);

			for (j = 0; j < i; j++) {
				*eep_data = data[j];
				eep_data++;
			}
			i = 0;
		}
	}

	if (i != 0) {
		REG_READ_MULTI(ah, addrdata, data, i);

		for (j = 0; j < i; j++) {
			*eep_data = data[j];
			eep_data++;
		}
	}
}

static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
				      off_t offset, u16 *data)
{
	if (offset >= blob_size)
		return false;

	*data =  blob[offset];
	return true;
}

static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
				      off_t offset, u16 *data)
{
	return ath9k_hw_nvram_read_array(pdata->eeprom_data,
					 ARRAY_SIZE(pdata->eeprom_data),
					 offset, data);
}

static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
					 off_t offset, u16 *data)
{
	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
					 eeprom_blob->size / sizeof(u16),
					 offset, data);
}

bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_platform_data *pdata = ah->dev->platform_data;
	bool ret;

	if (ah->eeprom_blob)
		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
	else if (pdata && !pdata->use_eeprom)
		ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
	else
		ret = common->bus_ops->eeprom_read(common, off, data);

	if (!ret)
		ath_dbg(common, EEPROM,
			"unable to read eeprom region at offset %u\n", off);

	return ret;
}

int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
{
	u16 magic;
	u16 *eepdata;
	int i;
	bool needs_byteswap = false;
	struct ath_common *common = ath9k_hw_common(ah);

	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
		ath_err(common, "Reading Magic # failed\n");
		return -EIO;
	}

	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
		needs_byteswap = true;
		ath_dbg(common, EEPROM,
			"EEPROM needs byte-swapping to correct endianness.\n");
	} else if (magic != AR5416_EEPROM_MAGIC) {
		if (ath9k_hw_use_flash(ah)) {
			ath_dbg(common, EEPROM,
				"Ignoring invalid EEPROM magic (0x%04x).\n",
				magic);
		} else {
			ath_err(common,
				"Invalid EEPROM magic (0x%04x).\n", magic);
			return -EINVAL;
		}
	}

	if (needs_byteswap) {
		if (ah->ah_flags & AH_NO_EEP_SWAP) {
			ath_info(common,
				 "Ignoring endianness difference in EEPROM magic bytes.\n");
		} else {
			eepdata = (u16 *)(&ah->eeprom);

			for (i = 0; i < size; i++)
				eepdata[i] = swab16(eepdata[i]);
		}
	}

	if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
		*swap_needed = true;
		ath_dbg(common, EEPROM,
			"Big Endian EEPROM detected according to EEPMISC register.\n");
	} else {
		*swap_needed = false;
	}

	return 0;
}

bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
{
	u32 i, sum = 0;
	u16 *eepdata = (u16 *)(&ah->eeprom);
	struct ath_common *common = ath9k_hw_common(ah);

	for (i = 0; i < size; i++)
		sum ^= eepdata[i];

	if (sum != 0xffff) {
		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
		return false;
	}

	return true;
}

bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
{
	struct ath_common *common = ath9k_hw_common(ah);

	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
			ah->eep_ops->get_eeprom_ver(ah),
			ah->eep_ops->get_eeprom_rev(ah));
		return false;
	}

	return true;
}

void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
			     u8 *pVpdList, u16 numIntercepts,
			     u8 *pRetVpdList)
{
	u16 i, k;
	u8 currPwr = pwrMin;
	u16 idxL = 0, idxR = 0;

	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
					       numIntercepts, &(idxL),
					       &(idxR));
		if (idxR < 1)
			idxR = 1;
		if (idxL == numIntercepts - 1)
			idxL = (u16) (numIntercepts - 2);
		if (pPwrList[idxL] == pPwrList[idxR])
			k = pVpdList[idxL];
		else
			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
				  (pPwrList[idxR] - pPwrList[idxL]));
		pRetVpdList[i] = (u8) k;
		currPwr += 2;
	}
}

void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
				       struct ath9k_channel *chan,
				       struct cal_target_power_leg *powInfo,
				       u16 numChannels,
				       struct cal_target_power_leg *pNewPower,
				       u16 numRates, bool isExtTarget)
{
	struct chan_centers centers;
	u16 clo, chi;
	int i;
	int matchIndex = -1, lowIndex = -1;
	u16 freq;

	ath9k_hw_get_channel_centers(ah, chan, &centers);
	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;

	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
				       IS_CHAN_2GHZ(chan))) {
		matchIndex = 0;
	} else {
		for (i = 0; (i < numChannels) &&
			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
						       IS_CHAN_2GHZ(chan))) {
				matchIndex = i;
				break;
			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
						IS_CHAN_2GHZ(chan)) && i > 0 &&
				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
						IS_CHAN_2GHZ(chan))) {
				lowIndex = i - 1;
				break;
			}
		}
		if ((matchIndex == -1) && (lowIndex == -1))
			matchIndex = i - 1;
	}

	if (matchIndex != -1) {
		*pNewPower = powInfo[matchIndex];
	} else {
		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
					 IS_CHAN_2GHZ(chan));
		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
					 IS_CHAN_2GHZ(chan));

		for (i = 0; i < numRates; i++) {
			pNewPower->tPow2x[i] =
				(u8)ath9k_hw_interpolate(freq, clo, chi,
						powInfo[lowIndex].tPow2x[i],
						powInfo[lowIndex + 1].tPow2x[i]);
		}
	}
}

void ath9k_hw_get_target_powers(struct ath_hw *ah,
				struct ath9k_channel *chan,
				struct cal_target_power_ht *powInfo,
				u16 numChannels,
				struct cal_target_power_ht *pNewPower,
				u16 numRates, bool isHt40Target)
{
	struct chan_centers centers;
	u16 clo, chi;
	int i;
	int matchIndex = -1, lowIndex = -1;
	u16 freq;

	ath9k_hw_get_channel_centers(ah, chan, &centers);
	freq = isHt40Target ? centers.synth_center : centers.ctl_center;

	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
		matchIndex = 0;
	} else {
		for (i = 0; (i < numChannels) &&
			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
						       IS_CHAN_2GHZ(chan))) {
				matchIndex = i;
				break;
			} else
				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
						IS_CHAN_2GHZ(chan)) && i > 0 &&
				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
						IS_CHAN_2GHZ(chan))) {
					lowIndex = i - 1;
					break;
				}
		}
		if ((matchIndex == -1) && (lowIndex == -1))
			matchIndex = i - 1;
	}

	if (matchIndex != -1) {
		*pNewPower = powInfo[matchIndex];
	} else {
		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
					 IS_CHAN_2GHZ(chan));
		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
					 IS_CHAN_2GHZ(chan));

		for (i = 0; i < numRates; i++) {
			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
						clo, chi,
						powInfo[lowIndex].tPow2x[i],
						powInfo[lowIndex + 1].tPow2x[i]);
		}
	}
}

u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
				bool is2GHz, int num_band_edges)
{
	u16 twiceMaxEdgePower = MAX_RATE_POWER;
	int i;

	for (i = 0; (i < num_band_edges) &&
		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
			break;
		} else if ((i > 0) &&
			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
						      is2GHz))) {
			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
					       is2GHz) < freq &&
			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
				twiceMaxEdgePower =
					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
			}
			break;
		}
	}

	return twiceMaxEdgePower;
}

u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
			      u8 antenna_reduction)
{
	u16 reduction = antenna_reduction;

	/*
	 * Reduce scaled Power by number of chains active
	 * to get the per chain tx power level.
	 */
	switch (ar5416_get_ntxchains(ah->txchainmask)) {
	case 1:
		break;
	case 2:
		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
		break;
	case 3:
		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
		break;
	}

	if (power_limit > reduction)
		power_limit -= reduction;
	else
		power_limit = 0;

	return min_t(u16, power_limit, MAX_RATE_POWER);
}

void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);

	switch (ar5416_get_ntxchains(ah->txchainmask)) {
	case 1:
		break;
	case 2:
		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
		break;
	case 3:
		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
		break;
	default:
		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
		break;
	}
}

void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
				struct ath9k_channel *chan,
				void *pRawDataSet,
				u8 *bChans, u16 availPiers,
				u16 tPdGainOverlap,
				u16 *pPdGainBoundaries, u8 *pPDADCValues,
				u16 numXpdGains)
{
	int i, j, k;
	int16_t ss;
	u16 idxL = 0, idxR = 0, numPiers;
	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];

	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
	u8 minPwrT4[AR5416_NUM_PD_GAINS];
	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
	int16_t vpdStep;
	int16_t tmpVal;
	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
	bool match;
	int16_t minDelta = 0;
	struct chan_centers centers;
	int pdgain_boundary_default;
	struct cal_data_per_freq *data_def = pRawDataSet;
	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
	int intercepts;

	if (AR_SREV_9287(ah))
		intercepts = AR9287_PD_GAIN_ICEPTS;
	else
		intercepts = AR5416_PD_GAIN_ICEPTS;

	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
	ath9k_hw_get_channel_centers(ah, chan, &centers);

	for (numPiers = 0; numPiers < availPiers; numPiers++) {
		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
			break;
	}

	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
							     IS_CHAN_2GHZ(chan)),
					       bChans, numPiers, &idxL, &idxR);

	if (match) {
		if (AR_SREV_9287(ah)) {
			for (i = 0; i < numXpdGains; i++) {
				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						data_9287[idxL].pwrPdg[i],
						data_9287[idxL].vpdPdg[i],
						intercepts,
						vpdTableI[i]);
			}
		} else if (eeprom_4k) {
			for (i = 0; i < numXpdGains; i++) {
				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						data_4k[idxL].pwrPdg[i],
						data_4k[idxL].vpdPdg[i],
						intercepts,
						vpdTableI[i]);
			}
		} else {
			for (i = 0; i < numXpdGains; i++) {
				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						data_def[idxL].pwrPdg[i],
						data_def[idxL].vpdPdg[i],
						intercepts,
						vpdTableI[i]);
			}
		}
	} else {
		for (i = 0; i < numXpdGains; i++) {
			if (AR_SREV_9287(ah)) {
				pVpdL = data_9287[idxL].vpdPdg[i];
				pPwrL = data_9287[idxL].pwrPdg[i];
				pVpdR = data_9287[idxR].vpdPdg[i];
				pPwrR = data_9287[idxR].pwrPdg[i];
			} else if (eeprom_4k) {
				pVpdL = data_4k[idxL].vpdPdg[i];
				pPwrL = data_4k[idxL].pwrPdg[i];
				pVpdR = data_4k[idxR].vpdPdg[i];
				pPwrR = data_4k[idxR].pwrPdg[i];
			} else {
				pVpdL = data_def[idxL].vpdPdg[i];
				pPwrL = data_def[idxL].pwrPdg[i];
				pVpdR = data_def[idxR].vpdPdg[i];
				pPwrR = data_def[idxR].pwrPdg[i];
			}

			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);

			maxPwrT4[i] =
				min(pPwrL[intercepts - 1],
				    pPwrR[intercepts - 1]);


			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						pPwrL, pVpdL,
						intercepts,
						vpdTableL[i]);
			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						pPwrR, pVpdR,
						intercepts,
						vpdTableR[i]);

			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
				vpdTableI[i][j] =
					(u8)(ath9k_hw_interpolate((u16)
					     FREQ2FBIN(centers.
						       synth_center,
						       IS_CHAN_2GHZ
						       (chan)),
					     bChans[idxL], bChans[idxR],
					     vpdTableL[i][j], vpdTableR[i][j]));
			}
		}
	}

	k = 0;

	for (i = 0; i < numXpdGains; i++) {
		if (i == (numXpdGains - 1))
			pPdGainBoundaries[i] =
				(u16)(maxPwrT4[i] / 2);
		else
			pPdGainBoundaries[i] =
				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);

		pPdGainBoundaries[i] =
			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);

		minDelta = 0;

		if (i == 0) {
			if (AR_SREV_9280_20_OR_LATER(ah))
				ss = (int16_t)(0 - (minPwrT4[i] / 2));
			else
				ss = 0;
		} else {
			ss = (int16_t)((pPdGainBoundaries[i - 1] -
					(minPwrT4[i] / 2)) -
				       tPdGainOverlap + 1 + minDelta);
		}
		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
			ss++;
		}

		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
				(minPwrT4[i] / 2));
		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
			tgtIndex : sizeCurrVpdTable;

		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
			pPDADCValues[k++] = vpdTableI[i][ss++];
		}

		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
				    vpdTableI[i][sizeCurrVpdTable - 2]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		if (tgtIndex >= maxIndex) {
			while ((ss <= tgtIndex) &&
			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
						    (ss - maxIndex + 1) * vpdStep));
				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
							 255 : tmpVal);
				ss++;
			}
		}
	}

	if (eeprom_4k)
		pdgain_boundary_default = 58;
	else
		pdgain_boundary_default = pPdGainBoundaries[i - 1];

	while (i < AR5416_PD_GAINS_IN_MASK) {
		pPdGainBoundaries[i] = pdgain_boundary_default;
		i++;
	}

	while (k < AR5416_NUM_PDADC_VALUES) {
		pPDADCValues[k] = pPDADCValues[k - 1];
		k++;
	}
}

int ath9k_hw_eeprom_init(struct ath_hw *ah)
{
	int status;

	if (AR_SREV_9300_20_OR_LATER(ah))
		ah->eep_ops = &eep_ar9300_ops;
	else if (AR_SREV_9287(ah)) {
		ah->eep_ops = &eep_ar9287_ops;
	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
		ah->eep_ops = &eep_4k_ops;
	} else {
		ah->eep_ops = &eep_def_ops;
	}

	if (!ah->eep_ops->fill_eeprom(ah))
		return -EIO;

	status = ah->eep_ops->check_eeprom(ah);

	return status;
}