1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Microsemi Ocelot Switch driver
* Copyright (c) 2019 Microsemi Corporation
*/
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include "ocelot_ace.h"
static int ocelot_flower_parse_action(struct flow_cls_offload *f,
struct ocelot_ace_rule *ace)
{
const struct flow_action_entry *a;
s64 burst;
u64 rate;
int i;
if (!flow_offload_has_one_action(&f->rule->action))
return -EOPNOTSUPP;
if (!flow_action_basic_hw_stats_check(&f->rule->action,
f->common.extack))
return -EOPNOTSUPP;
flow_action_for_each(i, a, &f->rule->action) {
switch (a->id) {
case FLOW_ACTION_DROP:
ace->action = OCELOT_ACL_ACTION_DROP;
break;
case FLOW_ACTION_TRAP:
ace->action = OCELOT_ACL_ACTION_TRAP;
break;
case FLOW_ACTION_POLICE:
ace->action = OCELOT_ACL_ACTION_POLICE;
rate = a->police.rate_bytes_ps;
ace->pol.rate = div_u64(rate, 1000) * 8;
burst = rate * PSCHED_NS2TICKS(a->police.burst);
ace->pol.burst = div_u64(burst, PSCHED_TICKS_PER_SEC);
break;
default:
return -EOPNOTSUPP;
}
}
return 0;
}
static int ocelot_flower_parse(struct flow_cls_offload *f,
struct ocelot_ace_rule *ace)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
u16 proto = ntohs(f->common.protocol);
bool match_protocol = true;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_PORTS) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS))) {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
/* The hw support mac matches only for MAC_ETYPE key,
* therefore if other matches(port, tcp flags, etc) are added
* then just bail out
*/
if ((dissector->used_keys &
(BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_CONTROL))) !=
(BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_CONTROL)))
return -EOPNOTSUPP;
flow_rule_match_eth_addrs(rule, &match);
ace->type = OCELOT_ACE_TYPE_ETYPE;
ether_addr_copy(ace->frame.etype.dmac.value,
match.key->dst);
ether_addr_copy(ace->frame.etype.smac.value,
match.key->src);
ether_addr_copy(ace->frame.etype.dmac.mask,
match.mask->dst);
ether_addr_copy(ace->frame.etype.smac.mask,
match.mask->src);
goto finished_key_parsing;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
if (ntohs(match.key->n_proto) == ETH_P_IP) {
ace->type = OCELOT_ACE_TYPE_IPV4;
ace->frame.ipv4.proto.value[0] =
match.key->ip_proto;
ace->frame.ipv4.proto.mask[0] =
match.mask->ip_proto;
match_protocol = false;
}
if (ntohs(match.key->n_proto) == ETH_P_IPV6) {
ace->type = OCELOT_ACE_TYPE_IPV6;
ace->frame.ipv6.proto.value[0] =
match.key->ip_proto;
ace->frame.ipv6.proto.mask[0] =
match.mask->ip_proto;
match_protocol = false;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) &&
proto == ETH_P_IP) {
struct flow_match_ipv4_addrs match;
u8 *tmp;
flow_rule_match_ipv4_addrs(rule, &match);
tmp = &ace->frame.ipv4.sip.value.addr[0];
memcpy(tmp, &match.key->src, 4);
tmp = &ace->frame.ipv4.sip.mask.addr[0];
memcpy(tmp, &match.mask->src, 4);
tmp = &ace->frame.ipv4.dip.value.addr[0];
memcpy(tmp, &match.key->dst, 4);
tmp = &ace->frame.ipv4.dip.mask.addr[0];
memcpy(tmp, &match.mask->dst, 4);
match_protocol = false;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) &&
proto == ETH_P_IPV6) {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
ace->frame.ipv4.sport.value = ntohs(match.key->src);
ace->frame.ipv4.sport.mask = ntohs(match.mask->src);
ace->frame.ipv4.dport.value = ntohs(match.key->dst);
ace->frame.ipv4.dport.mask = ntohs(match.mask->dst);
match_protocol = false;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
ace->type = OCELOT_ACE_TYPE_ANY;
ace->vlan.vid.value = match.key->vlan_id;
ace->vlan.vid.mask = match.mask->vlan_id;
ace->vlan.pcp.value[0] = match.key->vlan_priority;
ace->vlan.pcp.mask[0] = match.mask->vlan_priority;
match_protocol = false;
}
finished_key_parsing:
if (match_protocol && proto != ETH_P_ALL) {
/* TODO: support SNAP, LLC etc */
if (proto < ETH_P_802_3_MIN)
return -EOPNOTSUPP;
ace->type = OCELOT_ACE_TYPE_ETYPE;
*(u16 *)ace->frame.etype.etype.value = htons(proto);
*(u16 *)ace->frame.etype.etype.mask = 0xffff;
}
/* else, a rule of type OCELOT_ACE_TYPE_ANY is implicitly added */
ace->prio = f->common.prio;
ace->id = f->cookie;
return ocelot_flower_parse_action(f, ace);
}
static
struct ocelot_ace_rule *ocelot_ace_rule_create(struct ocelot *ocelot, int port,
struct flow_cls_offload *f)
{
struct ocelot_ace_rule *ace;
ace = kzalloc(sizeof(*ace), GFP_KERNEL);
if (!ace)
return NULL;
ace->ingress_port_mask = BIT(port);
return ace;
}
int ocelot_cls_flower_replace(struct ocelot *ocelot, int port,
struct flow_cls_offload *f, bool ingress)
{
struct ocelot_ace_rule *ace;
int ret;
ace = ocelot_ace_rule_create(ocelot, port, f);
if (!ace)
return -ENOMEM;
ret = ocelot_flower_parse(f, ace);
if (ret) {
kfree(ace);
return ret;
}
return ocelot_ace_rule_offload_add(ocelot, ace, f->common.extack);
}
EXPORT_SYMBOL_GPL(ocelot_cls_flower_replace);
int ocelot_cls_flower_destroy(struct ocelot *ocelot, int port,
struct flow_cls_offload *f, bool ingress)
{
struct ocelot_ace_rule ace;
ace.prio = f->common.prio;
ace.id = f->cookie;
return ocelot_ace_rule_offload_del(ocelot, &ace);
}
EXPORT_SYMBOL_GPL(ocelot_cls_flower_destroy);
int ocelot_cls_flower_stats(struct ocelot *ocelot, int port,
struct flow_cls_offload *f, bool ingress)
{
struct ocelot_ace_rule ace;
int ret;
ace.prio = f->common.prio;
ace.id = f->cookie;
ret = ocelot_ace_rule_stats_update(ocelot, &ace);
if (ret)
return ret;
flow_stats_update(&f->stats, 0x0, ace.stats.pkts, 0x0,
FLOW_ACTION_HW_STATS_IMMEDIATE);
return 0;
}
EXPORT_SYMBOL_GPL(ocelot_cls_flower_stats);
int ocelot_setup_tc_cls_flower(struct ocelot_port_private *priv,
struct flow_cls_offload *f,
bool ingress)
{
struct ocelot *ocelot = priv->port.ocelot;
int port = priv->chip_port;
if (!ingress)
return -EOPNOTSUPP;
switch (f->command) {
case FLOW_CLS_REPLACE:
return ocelot_cls_flower_replace(ocelot, port, f, ingress);
case FLOW_CLS_DESTROY:
return ocelot_cls_flower_destroy(ocelot, port, f, ingress);
case FLOW_CLS_STATS:
return ocelot_cls_flower_stats(ocelot, port, f, ingress);
default:
return -EOPNOTSUPP;
}
}
|