summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/igb/e1000_i210.c
blob: ddb3cf51b9b91825875fa2ecbb84e69fef09dff0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
  Copyright(c) 2007-2013 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************/

/* e1000_i210
 * e1000_i211
 */

#include <linux/types.h>
#include <linux/if_ether.h>

#include "e1000_hw.h"
#include "e1000_i210.h"

/**
 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 */
static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = rd32(E1000_SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == timeout) {
		/* In rare circumstances, the SW semaphore may already be held
		 * unintentionally. Clear the semaphore once before giving up.
		 */
		if (hw->dev_spec._82575.clear_semaphore_once) {
			hw->dev_spec._82575.clear_semaphore_once = false;
			igb_put_hw_semaphore(hw);
			for (i = 0; i < timeout; i++) {
				swsm = rd32(E1000_SWSM);
				if (!(swsm & E1000_SWSM_SMBI))
					break;

				udelay(50);
			}
		}

		/* If we do not have the semaphore here, we have to give up. */
		if (i == timeout) {
			hw_dbg("Driver can't access device - SMBI bit is set.\n");
			return -E1000_ERR_NVM;
		}
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(E1000_SWSM);
		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		igb_put_hw_semaphore(hw);
		hw_dbg("Driver can't access the NVM\n");
		return -E1000_ERR_NVM;
	}

	return E1000_SUCCESS;
}

/**
 *  igb_acquire_nvm_i210 - Request for access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
{
	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_release_nvm_i210 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
void igb_release_nvm_i210(struct e1000_hw *hw)
{
	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
}

/**
 *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = E1000_SUCCESS;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore_i210(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/* Firmware currently using resource (fwmask) */
		igb_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);
out:
	return ret_val;
}

/**
 *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
		; /* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);
}

/**
 *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
 *  @hw: pointer to the HW structure
 *  @offset: offset of word in the Shadow Ram to read
 *  @words: number of words to read
 *  @data: word read from the Shadow Ram
 *
 *  Reads a 16 bit word from the Shadow Ram using the EERD register.
 *  Uses necessary synchronization semaphores.
 **/
s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
			     u16 *data)
{
	s32 status = E1000_SUCCESS;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
			status = igb_read_nvm_eerd(hw, offset, count,
						     data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

		if (status != E1000_SUCCESS)
			break;
	}

	return status;
}

/**
 *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow Ram to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow Ram
 *
 *  Writes data to Shadow Ram at offset using EEWR register.
 *
 *  If igb_update_nvm_checksum is not called after this function , the
 *  Shadow Ram will most likely contain an invalid checksum.
 **/
static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
				u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i, k, eewr = 0;
	u32 attempts = 100000;
	s32 ret_val = E1000_SUCCESS;

	/* A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
			(data[i] << E1000_NVM_RW_REG_DATA) |
			E1000_NVM_RW_REG_START;

		wr32(E1000_SRWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (E1000_NVM_RW_REG_DONE &
			    rd32(E1000_SRWR)) {
				ret_val = E1000_SUCCESS;
				break;
			}
			udelay(5);
	}

		if (ret_val != E1000_SUCCESS) {
			hw_dbg("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

/**
 *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow RAM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow RAM
 *
 *  Writes data to Shadow RAM at offset using EEWR register.
 *
 *  If e1000_update_nvm_checksum is not called after this function , the
 *  data will not be committed to FLASH and also Shadow RAM will most likely
 *  contain an invalid checksum.
 *
 *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
 *  partially written.
 **/
s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
			      u16 *data)
{
	s32 status = E1000_SUCCESS;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to write in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
			E1000_EERD_EEWR_MAX_COUNT : (words - i);
		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
			status = igb_write_nvm_srwr(hw, offset, count,
						      data + i);
			hw->nvm.ops.release(hw);
		} else {
			status = E1000_ERR_SWFW_SYNC;
		}

		if (status != E1000_SUCCESS)
			break;
	}

	return status;
}

/**
 *  igb_read_nvm_i211 - Read NVM wrapper function for I211
 *  @hw: pointer to the HW structure
 *  @words: number of words to read
 *  @data: pointer to the data read
 *
 *  Wrapper function to return data formerly found in the NVM.
 **/
s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
			       u16 *data)
{
	s32 ret_val = E1000_SUCCESS;

	/* Only the MAC addr is required to be present in the iNVM */
	switch (offset) {
	case NVM_MAC_ADDR:
		ret_val = igb_read_invm_i211(hw, offset, &data[0]);
		ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
		ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
		if (ret_val != E1000_SUCCESS)
			hw_dbg("MAC Addr not found in iNVM\n");
		break;
	case NVM_INIT_CTRL_2:
		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
		if (ret_val != E1000_SUCCESS) {
			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
			ret_val = E1000_SUCCESS;
		}
		break;
	case NVM_INIT_CTRL_4:
		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
		if (ret_val != E1000_SUCCESS) {
			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
			ret_val = E1000_SUCCESS;
		}
		break;
	case NVM_LED_1_CFG:
		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
		if (ret_val != E1000_SUCCESS) {
			*data = NVM_LED_1_CFG_DEFAULT_I211;
			ret_val = E1000_SUCCESS;
		}
		break;
	case NVM_LED_0_2_CFG:
		igb_read_invm_i211(hw, offset, data);
		if (ret_val != E1000_SUCCESS) {
			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
			ret_val = E1000_SUCCESS;
		}
		break;
	case NVM_ID_LED_SETTINGS:
		ret_val = igb_read_invm_i211(hw, (u8)offset, data);
		if (ret_val != E1000_SUCCESS) {
			*data = ID_LED_RESERVED_FFFF;
			ret_val = E1000_SUCCESS;
		}
	case NVM_SUB_DEV_ID:
		*data = hw->subsystem_device_id;
		break;
	case NVM_SUB_VEN_ID:
		*data = hw->subsystem_vendor_id;
		break;
	case NVM_DEV_ID:
		*data = hw->device_id;
		break;
	case NVM_VEN_ID:
		*data = hw->vendor_id;
		break;
	default:
		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
		*data = NVM_RESERVED_WORD;
		break;
	}
	return ret_val;
}

/**
 *  igb_read_invm_i211 - Reads OTP
 *  @hw: pointer to the HW structure
 *  @address: the word address (aka eeprom offset) to read
 *  @data: pointer to the data read
 *
 *  Reads 16-bit words from the OTP. Return error when the word is not
 *  stored in OTP.
 **/
s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
{
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u32 invm_dword;
	u16 i;
	u8 record_type, word_address;

	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		/* Get record type */
		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
			break;
		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
			if (word_address == (u8)address) {
				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
				hw_dbg("Read INVM Word 0x%02x = %x",
					  address, *data);
				status = E1000_SUCCESS;
				break;
			}
		}
	}
	if (status != E1000_SUCCESS)
		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
	return status;
}

/**
 *  igb_read_invm_version - Reads iNVM version and image type
 *  @hw: pointer to the HW structure
 *  @invm_ver: version structure for the version read
 *
 *  Reads iNVM version and image type.
 **/
s32 igb_read_invm_version(struct e1000_hw *hw,
			  struct e1000_fw_version *invm_ver) {
	u32 *record = NULL;
	u32 *next_record = NULL;
	u32 i = 0;
	u32 invm_dword = 0;
	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
					     E1000_INVM_RECORD_SIZE_IN_BYTES);
	u32 buffer[E1000_INVM_SIZE];
	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	u16 version = 0;

	/* Read iNVM memory */
	for (i = 0; i < E1000_INVM_SIZE; i++) {
		invm_dword = rd32(E1000_INVM_DATA_REG(i));
		buffer[i] = invm_dword;
	}

	/* Read version number */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have first version location used */
		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
			version = 0;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have second version location used */
		else if ((i == 1) &&
			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have odd version location
		 * used and it is the last one used
		 */
		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
			 (i != 1))) {
			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
				  >> 13;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have even version location
		 * used and it is the last one used
		 */
		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
			 ((*record & 0x3) == 0)) {
			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
			status = E1000_SUCCESS;
			break;
		}
	}

	if (status == E1000_SUCCESS) {
		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
					>> E1000_INVM_MAJOR_SHIFT;
		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
	}
	/* Read Image Type */
	for (i = 1; i < invm_blocks; i++) {
		record = &buffer[invm_blocks - i];
		next_record = &buffer[invm_blocks - i + 1];

		/* Check if we have image type in first location used */
		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
			invm_ver->invm_img_type = 0;
			status = E1000_SUCCESS;
			break;
		}
		/* Check if we have image type in first location used */
		else if ((((*record & 0x3) == 0) &&
			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
			 ((((*record & 0x3) != 0) && (i != 1)))) {
			invm_ver->invm_img_type =
				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
			status = E1000_SUCCESS;
			break;
		}
	}
	return status;
}

/**
 *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
{
	s32 status = E1000_SUCCESS;
	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);

	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {

		/* Replace the read function with semaphore grabbing with
		 * the one that skips this for a while.
		 * We have semaphore taken already here.
		 */
		read_op_ptr = hw->nvm.ops.read;
		hw->nvm.ops.read = igb_read_nvm_eerd;

		status = igb_validate_nvm_checksum(hw);

		/* Revert original read operation. */
		hw->nvm.ops.read = read_op_ptr;

		hw->nvm.ops.release(hw);
	} else {
		status = E1000_ERR_SWFW_SYNC;
	}

	return status;
}

/**
 *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
 **/
s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u16 checksum = 0;
	u16 i, nvm_data;

	/* Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
	if (ret_val != E1000_SUCCESS) {
		hw_dbg("EEPROM read failed\n");
		goto out;
	}

	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
		 * because we do not want to take the synchronization
		 * semaphores twice here.
		 */

		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
			if (ret_val) {
				hw->nvm.ops.release(hw);
				hw_dbg("NVM Read Error while updating checksum.\n");
				goto out;
			}
			checksum += nvm_data;
		}
		checksum = (u16) NVM_SUM - checksum;
		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
						&checksum);
		if (ret_val != E1000_SUCCESS) {
			hw->nvm.ops.release(hw);
			hw_dbg("NVM Write Error while updating checksum.\n");
			goto out;
		}

		hw->nvm.ops.release(hw);

		ret_val = igb_update_flash_i210(hw);
	} else {
		ret_val = -E1000_ERR_SWFW_SYNC;
	}
out:
	return ret_val;
}

/**
 *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
 *  @hw: pointer to the HW structure
 *
 **/
static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
{
	s32 ret_val = -E1000_ERR_NVM;
	u32 i, reg;

	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
		reg = rd32(E1000_EECD);
		if (reg & E1000_EECD_FLUDONE_I210) {
			ret_val = E1000_SUCCESS;
			break;
		}
		udelay(5);
	}

	return ret_val;
}

/**
 *  igb_update_flash_i210 - Commit EEPROM to the flash
 *  @hw: pointer to the HW structure
 *
 **/
s32 igb_update_flash_i210(struct e1000_hw *hw)
{
	s32 ret_val = E1000_SUCCESS;
	u32 flup;

	ret_val = igb_pool_flash_update_done_i210(hw);
	if (ret_val == -E1000_ERR_NVM) {
		hw_dbg("Flash update time out\n");
		goto out;
	}

	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
	wr32(E1000_EECD, flup);

	ret_val = igb_pool_flash_update_done_i210(hw);
	if (ret_val == E1000_SUCCESS)
		hw_dbg("Flash update complete\n");
	else
		hw_dbg("Flash update time out\n");

out:
	return ret_val;
}

/**
 *  igb_valid_led_default_i210 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
		switch (hw->phy.media_type) {
		case e1000_media_type_internal_serdes:
			*data = ID_LED_DEFAULT_I210_SERDES;
			break;
		case e1000_media_type_copper:
		default:
			*data = ID_LED_DEFAULT_I210;
			break;
		}
	}
out:
	return ret_val;
}

/**
 *  __igb_access_xmdio_reg - Read/write XMDIO register
 *  @hw: pointer to the HW structure
 *  @address: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: pointer to value to read/write from/to the XMDIO address
 *  @read: boolean flag to indicate read or write
 **/
static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
				  u8 dev_addr, u16 *data, bool read)
{
	s32 ret_val = E1000_SUCCESS;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
	if (ret_val)
		return ret_val;

	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
							 dev_addr);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
	if (ret_val)
		return ret_val;

	/* Recalibrate the device back to 0 */
	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
	if (ret_val)
		return ret_val;

	return ret_val;
}

/**
 *  igb_read_xmdio_reg - Read XMDIO register
 *  @hw: pointer to the HW structure
 *  @addr: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: value to be read from the EMI address
 **/
s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
{
	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
}

/**
 *  igb_write_xmdio_reg - Write XMDIO register
 *  @hw: pointer to the HW structure
 *  @addr: XMDIO address to program
 *  @dev_addr: device address to program
 *  @data: value to be written to the XMDIO address
 **/
s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
{
	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
}