summaryrefslogtreecommitdiff
path: root/drivers/net/cassini.c
blob: 563bf5f6fa2aa40c324129291ed9bacf6efde8a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
 *
 * Copyright (C) 2004 Sun Microsystems Inc.
 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 *
 * This driver uses the sungem driver (c) David Miller
 * (davem@redhat.com) as its basis.
 *
 * The cassini chip has a number of features that distinguish it from
 * the gem chip:
 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
 *      load balancing (non-VLAN mode)
 *  batching of multiple packets
 *  multiple CPU dispatching
 *  page-based RX descriptor engine with separate completion rings
 *  Gigabit support (GMII and PCS interface)
 *  MIF link up/down detection works
 *
 * RX is handled by page sized buffers that are attached as fragments to
 * the skb. here's what's done:
 *  -- driver allocates pages at a time and keeps reference counts
 *     on them.
 *  -- the upper protocol layers assume that the header is in the skb
 *     itself. as a result, cassini will copy a small amount (64 bytes)
 *     to make them happy.
 *  -- driver appends the rest of the data pages as frags to skbuffs
 *     and increments the reference count
 *  -- on page reclamation, the driver swaps the page with a spare page.
 *     if that page is still in use, it frees its reference to that page,
 *     and allocates a new page for use. otherwise, it just recycles the
 *     the page.
 *
 * NOTE: cassini can parse the header. however, it's not worth it
 *       as long as the network stack requires a header copy.
 *
 * TX has 4 queues. currently these queues are used in a round-robin
 * fashion for load balancing. They can also be used for QoS. for that
 * to work, however, QoS information needs to be exposed down to the driver
 * level so that subqueues get targetted to particular transmit rings.
 * alternatively, the queues can be configured via use of the all-purpose
 * ioctl.
 *
 * RX DATA: the rx completion ring has all the info, but the rx desc
 * ring has all of the data. RX can conceivably come in under multiple
 * interrupts, but the INT# assignment needs to be set up properly by
 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
 * that. also, the two descriptor rings are designed to distinguish between
 * encrypted and non-encrypted packets, but we use them for buffering
 * instead.
 *
 * by default, the selective clear mask is set up to process rx packets.
 */


#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/random.h>
#include <linux/mii.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/mutex.h>

#include <net/checksum.h>

#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>

#define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
#define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
#define CAS_NCPUS            num_online_cpus()

#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
#define USE_NAPI
#define cas_skb_release(x)  netif_receive_skb(x)
#else
#define cas_skb_release(x)  netif_rx(x)
#endif

/* select which firmware to use */
#define USE_HP_WORKAROUND
#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */

#include "cassini.h"

#define USE_TX_COMPWB      /* use completion writeback registers */
#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
#define USE_RX_BLANK       /* hw interrupt mitigation */
#undef USE_ENTROPY_DEV     /* don't test for entropy device */

/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 * also, we need to make cp->lock finer-grained.
 */
#undef  USE_PCI_INTB
#undef  USE_PCI_INTC
#undef  USE_PCI_INTD
#undef  USE_QOS

#undef  USE_VPD_DEBUG       /* debug vpd information if defined */

/* rx processing options */
#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
#define RX_COPY_ALWAYS 0    /* if 0, use frags */
#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */

#define DRV_MODULE_NAME		"cassini"
#define PFX DRV_MODULE_NAME	": "
#define DRV_MODULE_VERSION	"1.4"
#define DRV_MODULE_RELDATE	"1 July 2004"

#define CAS_DEF_MSG_ENABLE	  \
	(NETIF_MSG_DRV		| \
	 NETIF_MSG_PROBE	| \
	 NETIF_MSG_LINK		| \
	 NETIF_MSG_TIMER	| \
	 NETIF_MSG_IFDOWN	| \
	 NETIF_MSG_IFUP		| \
	 NETIF_MSG_RX_ERR	| \
	 NETIF_MSG_TX_ERR)

/* length of time before we decide the hardware is borked,
 * and dev->tx_timeout() should be called to fix the problem
 */
#define CAS_TX_TIMEOUT			(HZ)
#define CAS_LINK_TIMEOUT                (22*HZ/10)
#define CAS_LINK_FAST_TIMEOUT           (1)

/* timeout values for state changing. these specify the number
 * of 10us delays to be used before giving up.
 */
#define STOP_TRIES_PHY 1000
#define STOP_TRIES     5000

/* specify a minimum frame size to deal with some fifo issues
 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 *            2 * page_size - 0x50
 */
#define CAS_MIN_FRAME			97
#define CAS_1000MB_MIN_FRAME            255
#define CAS_MIN_MTU                     60
#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)

#if 1
/*
 * Eliminate these and use separate atomic counters for each, to
 * avoid a race condition.
 */
#else
#define CAS_RESET_MTU                   1
#define CAS_RESET_ALL                   2
#define CAS_RESET_SPARE                 3
#endif

static char version[] __devinitdata =
	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";

static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
static int link_mode;

MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
MODULE_LICENSE("GPL");
module_param(cassini_debug, int, 0);
MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
module_param(link_mode, int, 0);
MODULE_PARM_DESC(link_mode, "default link mode");

/*
 * Work around for a PCS bug in which the link goes down due to the chip
 * being confused and never showing a link status of "up."
 */
#define DEFAULT_LINKDOWN_TIMEOUT 5
/*
 * Value in seconds, for user input.
 */
static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
module_param(linkdown_timeout, int, 0);
MODULE_PARM_DESC(linkdown_timeout,
"min reset interval in sec. for PCS linkdown issue; disabled if not positive");

/*
 * value in 'ticks' (units used by jiffies). Set when we init the
 * module because 'HZ' in actually a function call on some flavors of
 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 */
static int link_transition_timeout;



static u16 link_modes[] __devinitdata = {
	BMCR_ANENABLE,			 /* 0 : autoneg */
	0,				 /* 1 : 10bt half duplex */
	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
};

static struct pci_device_id cas_pci_tbl[] __devinitdata = {
	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, cas_pci_tbl);

static void cas_set_link_modes(struct cas *cp);

static inline void cas_lock_tx(struct cas *cp)
{
	int i;

	for (i = 0; i < N_TX_RINGS; i++)
		spin_lock(&cp->tx_lock[i]);
}

static inline void cas_lock_all(struct cas *cp)
{
	spin_lock_irq(&cp->lock);
	cas_lock_tx(cp);
}

/* WTZ: QA was finding deadlock problems with the previous
 * versions after long test runs with multiple cards per machine.
 * See if replacing cas_lock_all with safer versions helps. The
 * symptoms QA is reporting match those we'd expect if interrupts
 * aren't being properly restored, and we fixed a previous deadlock
 * with similar symptoms by using save/restore versions in other
 * places.
 */
#define cas_lock_all_save(cp, flags) \
do { \
	struct cas *xxxcp = (cp); \
	spin_lock_irqsave(&xxxcp->lock, flags); \
	cas_lock_tx(xxxcp); \
} while (0)

static inline void cas_unlock_tx(struct cas *cp)
{
	int i;

	for (i = N_TX_RINGS; i > 0; i--)
		spin_unlock(&cp->tx_lock[i - 1]);
}

static inline void cas_unlock_all(struct cas *cp)
{
	cas_unlock_tx(cp);
	spin_unlock_irq(&cp->lock);
}

#define cas_unlock_all_restore(cp, flags) \
do { \
	struct cas *xxxcp = (cp); \
	cas_unlock_tx(xxxcp); \
	spin_unlock_irqrestore(&xxxcp->lock, flags); \
} while (0)

static void cas_disable_irq(struct cas *cp, const int ring)
{
	/* Make sure we won't get any more interrupts */
	if (ring == 0) {
		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
		return;
	}

	/* disable completion interrupts and selectively mask */
	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		switch (ring) {
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
#ifdef USE_PCI_INTB
		case 1:
#endif
#ifdef USE_PCI_INTC
		case 2:
#endif
#ifdef USE_PCI_INTD
		case 3:
#endif
			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
			       cp->regs + REG_PLUS_INTRN_MASK(ring));
			break;
#endif
		default:
			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
			       REG_PLUS_INTRN_MASK(ring));
			break;
		}
	}
}

static inline void cas_mask_intr(struct cas *cp)
{
	int i;

	for (i = 0; i < N_RX_COMP_RINGS; i++)
		cas_disable_irq(cp, i);
}

static inline void cas_buffer_init(cas_page_t *cp)
{
	struct page *page = cp->buffer;
	atomic_set((atomic_t *)&page->lru.next, 1);
}

static inline int cas_buffer_count(cas_page_t *cp)
{
	struct page *page = cp->buffer;
	return atomic_read((atomic_t *)&page->lru.next);
}

static inline void cas_buffer_inc(cas_page_t *cp)
{
	struct page *page = cp->buffer;
	atomic_inc((atomic_t *)&page->lru.next);
}

static inline void cas_buffer_dec(cas_page_t *cp)
{
	struct page *page = cp->buffer;
	atomic_dec((atomic_t *)&page->lru.next);
}

static void cas_enable_irq(struct cas *cp, const int ring)
{
	if (ring == 0) { /* all but TX_DONE */
		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
		return;
	}

	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		switch (ring) {
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
#ifdef USE_PCI_INTB
		case 1:
#endif
#ifdef USE_PCI_INTC
		case 2:
#endif
#ifdef USE_PCI_INTD
		case 3:
#endif
			writel(INTRN_MASK_RX_EN, cp->regs +
			       REG_PLUS_INTRN_MASK(ring));
			break;
#endif
		default:
			break;
		}
	}
}

static inline void cas_unmask_intr(struct cas *cp)
{
	int i;

	for (i = 0; i < N_RX_COMP_RINGS; i++)
		cas_enable_irq(cp, i);
}

static inline void cas_entropy_gather(struct cas *cp)
{
#ifdef USE_ENTROPY_DEV
	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
		return;

	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
			    readl(cp->regs + REG_ENTROPY_IV),
			    sizeof(uint64_t)*8);
#endif
}

static inline void cas_entropy_reset(struct cas *cp)
{
#ifdef USE_ENTROPY_DEV
	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
		return;

	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
	       cp->regs + REG_BIM_LOCAL_DEV_EN);
	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);

	/* if we read back 0x0, we don't have an entropy device */
	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
#endif
}

/* access to the phy. the following assumes that we've initialized the MIF to
 * be in frame rather than bit-bang mode
 */
static u16 cas_phy_read(struct cas *cp, int reg)
{
	u32 cmd;
	int limit = STOP_TRIES_PHY;

	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
	cmd |= MIF_FRAME_TURN_AROUND_MSB;
	writel(cmd, cp->regs + REG_MIF_FRAME);

	/* poll for completion */
	while (limit-- > 0) {
		udelay(10);
		cmd = readl(cp->regs + REG_MIF_FRAME);
		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
			return (cmd & MIF_FRAME_DATA_MASK);
	}
	return 0xFFFF; /* -1 */
}

static int cas_phy_write(struct cas *cp, int reg, u16 val)
{
	int limit = STOP_TRIES_PHY;
	u32 cmd;

	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
	cmd |= MIF_FRAME_TURN_AROUND_MSB;
	cmd |= val & MIF_FRAME_DATA_MASK;
	writel(cmd, cp->regs + REG_MIF_FRAME);

	/* poll for completion */
	while (limit-- > 0) {
		udelay(10);
		cmd = readl(cp->regs + REG_MIF_FRAME);
		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
			return 0;
	}
	return -1;
}

static void cas_phy_powerup(struct cas *cp)
{
	u16 ctl = cas_phy_read(cp, MII_BMCR);

	if ((ctl & BMCR_PDOWN) == 0)
		return;
	ctl &= ~BMCR_PDOWN;
	cas_phy_write(cp, MII_BMCR, ctl);
}

static void cas_phy_powerdown(struct cas *cp)
{
	u16 ctl = cas_phy_read(cp, MII_BMCR);

	if (ctl & BMCR_PDOWN)
		return;
	ctl |= BMCR_PDOWN;
	cas_phy_write(cp, MII_BMCR, ctl);
}

/* cp->lock held. note: the last put_page will free the buffer */
static int cas_page_free(struct cas *cp, cas_page_t *page)
{
	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
		       PCI_DMA_FROMDEVICE);
	cas_buffer_dec(page);
	__free_pages(page->buffer, cp->page_order);
	kfree(page);
	return 0;
}

#ifdef RX_COUNT_BUFFERS
#define RX_USED_ADD(x, y)       ((x)->used += (y))
#define RX_USED_SET(x, y)       ((x)->used  = (y))
#else
#define RX_USED_ADD(x, y)
#define RX_USED_SET(x, y)
#endif

/* local page allocation routines for the receive buffers. jumbo pages
 * require at least 8K contiguous and 8K aligned buffers.
 */
static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
{
	cas_page_t *page;

	page = kmalloc(sizeof(cas_page_t), flags);
	if (!page)
		return NULL;

	INIT_LIST_HEAD(&page->list);
	RX_USED_SET(page, 0);
	page->buffer = alloc_pages(flags, cp->page_order);
	if (!page->buffer)
		goto page_err;
	cas_buffer_init(page);
	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
				      cp->page_size, PCI_DMA_FROMDEVICE);
	return page;

page_err:
	kfree(page);
	return NULL;
}

/* initialize spare pool of rx buffers, but allocate during the open */
static void cas_spare_init(struct cas *cp)
{
  	spin_lock(&cp->rx_inuse_lock);
	INIT_LIST_HEAD(&cp->rx_inuse_list);
	spin_unlock(&cp->rx_inuse_lock);

	spin_lock(&cp->rx_spare_lock);
	INIT_LIST_HEAD(&cp->rx_spare_list);
	cp->rx_spares_needed = RX_SPARE_COUNT;
	spin_unlock(&cp->rx_spare_lock);
}

/* used on close. free all the spare buffers. */
static void cas_spare_free(struct cas *cp)
{
	struct list_head list, *elem, *tmp;

	/* free spare buffers */
	INIT_LIST_HEAD(&list);
	spin_lock(&cp->rx_spare_lock);
	list_splice(&cp->rx_spare_list, &list);
	INIT_LIST_HEAD(&cp->rx_spare_list);
	spin_unlock(&cp->rx_spare_lock);
	list_for_each_safe(elem, tmp, &list) {
		cas_page_free(cp, list_entry(elem, cas_page_t, list));
	}

	INIT_LIST_HEAD(&list);
#if 1
	/*
	 * Looks like Adrian had protected this with a different
	 * lock than used everywhere else to manipulate this list.
	 */
	spin_lock(&cp->rx_inuse_lock);
	list_splice(&cp->rx_inuse_list, &list);
	INIT_LIST_HEAD(&cp->rx_inuse_list);
	spin_unlock(&cp->rx_inuse_lock);
#else
	spin_lock(&cp->rx_spare_lock);
	list_splice(&cp->rx_inuse_list, &list);
	INIT_LIST_HEAD(&cp->rx_inuse_list);
	spin_unlock(&cp->rx_spare_lock);
#endif
	list_for_each_safe(elem, tmp, &list) {
		cas_page_free(cp, list_entry(elem, cas_page_t, list));
	}
}

/* replenish spares if needed */
static void cas_spare_recover(struct cas *cp, const gfp_t flags)
{
	struct list_head list, *elem, *tmp;
	int needed, i;

	/* check inuse list. if we don't need any more free buffers,
	 * just free it
	 */

	/* make a local copy of the list */
	INIT_LIST_HEAD(&list);
	spin_lock(&cp->rx_inuse_lock);
	list_splice(&cp->rx_inuse_list, &list);
	INIT_LIST_HEAD(&cp->rx_inuse_list);
	spin_unlock(&cp->rx_inuse_lock);

	list_for_each_safe(elem, tmp, &list) {
		cas_page_t *page = list_entry(elem, cas_page_t, list);

		if (cas_buffer_count(page) > 1)
			continue;

		list_del(elem);
		spin_lock(&cp->rx_spare_lock);
		if (cp->rx_spares_needed > 0) {
			list_add(elem, &cp->rx_spare_list);
			cp->rx_spares_needed--;
			spin_unlock(&cp->rx_spare_lock);
		} else {
			spin_unlock(&cp->rx_spare_lock);
			cas_page_free(cp, page);
		}
	}

	/* put any inuse buffers back on the list */
	if (!list_empty(&list)) {
		spin_lock(&cp->rx_inuse_lock);
		list_splice(&list, &cp->rx_inuse_list);
		spin_unlock(&cp->rx_inuse_lock);
	}

	spin_lock(&cp->rx_spare_lock);
	needed = cp->rx_spares_needed;
	spin_unlock(&cp->rx_spare_lock);
	if (!needed)
		return;

	/* we still need spares, so try to allocate some */
	INIT_LIST_HEAD(&list);
	i = 0;
	while (i < needed) {
		cas_page_t *spare = cas_page_alloc(cp, flags);
		if (!spare)
			break;
		list_add(&spare->list, &list);
		i++;
	}

	spin_lock(&cp->rx_spare_lock);
	list_splice(&list, &cp->rx_spare_list);
	cp->rx_spares_needed -= i;
	spin_unlock(&cp->rx_spare_lock);
}

/* pull a page from the list. */
static cas_page_t *cas_page_dequeue(struct cas *cp)
{
	struct list_head *entry;
	int recover;

	spin_lock(&cp->rx_spare_lock);
	if (list_empty(&cp->rx_spare_list)) {
		/* try to do a quick recovery */
		spin_unlock(&cp->rx_spare_lock);
		cas_spare_recover(cp, GFP_ATOMIC);
		spin_lock(&cp->rx_spare_lock);
		if (list_empty(&cp->rx_spare_list)) {
			if (netif_msg_rx_err(cp))
				printk(KERN_ERR "%s: no spare buffers "
				       "available.\n", cp->dev->name);
			spin_unlock(&cp->rx_spare_lock);
			return NULL;
		}
	}

	entry = cp->rx_spare_list.next;
	list_del(entry);
	recover = ++cp->rx_spares_needed;
	spin_unlock(&cp->rx_spare_lock);

	/* trigger the timer to do the recovery */
	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
#if 1
		atomic_inc(&cp->reset_task_pending);
		atomic_inc(&cp->reset_task_pending_spare);
		schedule_work(&cp->reset_task);
#else
		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
		schedule_work(&cp->reset_task);
#endif
	}
	return list_entry(entry, cas_page_t, list);
}


static void cas_mif_poll(struct cas *cp, const int enable)
{
	u32 cfg;

	cfg  = readl(cp->regs + REG_MIF_CFG);
	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);

	if (cp->phy_type & CAS_PHY_MII_MDIO1)
		cfg |= MIF_CFG_PHY_SELECT;

	/* poll and interrupt on link status change. */
	if (enable) {
		cfg |= MIF_CFG_POLL_EN;
		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
	}
	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
	       cp->regs + REG_MIF_MASK);
	writel(cfg, cp->regs + REG_MIF_CFG);
}

/* Must be invoked under cp->lock */
static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
{
	u16 ctl;
#if 1
	int lcntl;
	int changed = 0;
	int oldstate = cp->lstate;
	int link_was_not_down = !(oldstate == link_down);
#endif
	/* Setup link parameters */
	if (!ep)
		goto start_aneg;
	lcntl = cp->link_cntl;
	if (ep->autoneg == AUTONEG_ENABLE)
		cp->link_cntl = BMCR_ANENABLE;
	else {
		cp->link_cntl = 0;
		if (ep->speed == SPEED_100)
			cp->link_cntl |= BMCR_SPEED100;
		else if (ep->speed == SPEED_1000)
			cp->link_cntl |= CAS_BMCR_SPEED1000;
		if (ep->duplex == DUPLEX_FULL)
			cp->link_cntl |= BMCR_FULLDPLX;
	}
#if 1
	changed = (lcntl != cp->link_cntl);
#endif
start_aneg:
	if (cp->lstate == link_up) {
		printk(KERN_INFO "%s: PCS link down.\n",
		       cp->dev->name);
	} else {
		if (changed) {
			printk(KERN_INFO "%s: link configuration changed\n",
			       cp->dev->name);
		}
	}
	cp->lstate = link_down;
	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
	if (!cp->hw_running)
		return;
#if 1
	/*
	 * WTZ: If the old state was link_up, we turn off the carrier
	 * to replicate everything we do elsewhere on a link-down
	 * event when we were already in a link-up state..
	 */
	if (oldstate == link_up)
		netif_carrier_off(cp->dev);
	if (changed  && link_was_not_down) {
		/*
		 * WTZ: This branch will simply schedule a full reset after
		 * we explicitly changed link modes in an ioctl. See if this
		 * fixes the link-problems we were having for forced mode.
		 */
		atomic_inc(&cp->reset_task_pending);
		atomic_inc(&cp->reset_task_pending_all);
		schedule_work(&cp->reset_task);
		cp->timer_ticks = 0;
		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
		return;
	}
#endif
	if (cp->phy_type & CAS_PHY_SERDES) {
		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);

		if (cp->link_cntl & BMCR_ANENABLE) {
			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
			cp->lstate = link_aneg;
		} else {
			if (cp->link_cntl & BMCR_FULLDPLX)
				val |= PCS_MII_CTRL_DUPLEX;
			val &= ~PCS_MII_AUTONEG_EN;
			cp->lstate = link_force_ok;
		}
		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
		writel(val, cp->regs + REG_PCS_MII_CTRL);

	} else {
		cas_mif_poll(cp, 0);
		ctl = cas_phy_read(cp, MII_BMCR);
		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
		ctl |= cp->link_cntl;
		if (ctl & BMCR_ANENABLE) {
			ctl |= BMCR_ANRESTART;
			cp->lstate = link_aneg;
		} else {
			cp->lstate = link_force_ok;
		}
		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
		cas_phy_write(cp, MII_BMCR, ctl);
		cas_mif_poll(cp, 1);
	}

	cp->timer_ticks = 0;
	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
}

/* Must be invoked under cp->lock. */
static int cas_reset_mii_phy(struct cas *cp)
{
	int limit = STOP_TRIES_PHY;
	u16 val;

	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
	udelay(100);
	while (limit--) {
		val = cas_phy_read(cp, MII_BMCR);
		if ((val & BMCR_RESET) == 0)
			break;
		udelay(10);
	}
	return (limit <= 0);
}

static void cas_saturn_firmware_load(struct cas *cp)
{
	cas_saturn_patch_t *patch = cas_saturn_patch;

	cas_phy_powerdown(cp);

	/* expanded memory access mode */
	cas_phy_write(cp, DP83065_MII_MEM, 0x0);

	/* pointer configuration for new firmware */
	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
	cas_phy_write(cp, DP83065_MII_REGD, 0x39);

	/* download new firmware */
	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
	cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
	while (patch->addr) {
		cas_phy_write(cp, DP83065_MII_REGD, patch->val);
		patch++;
	}

	/* enable firmware */
	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
}


/* phy initialization */
static void cas_phy_init(struct cas *cp)
{
	u16 val;

	/* if we're in MII/GMII mode, set up phy */
	if (CAS_PHY_MII(cp->phy_type)) {
		writel(PCS_DATAPATH_MODE_MII,
		       cp->regs + REG_PCS_DATAPATH_MODE);

		cas_mif_poll(cp, 0);
		cas_reset_mii_phy(cp); /* take out of isolate mode */

		if (PHY_LUCENT_B0 == cp->phy_id) {
			/* workaround link up/down issue with lucent */
			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
			cas_phy_write(cp, MII_BMCR, 0x00f1);
			cas_phy_write(cp, LUCENT_MII_REG, 0x0);

		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
			/* workarounds for broadcom phy */
			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);

		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
			val = cas_phy_read(cp, BROADCOM_MII_REG4);
			val = cas_phy_read(cp, BROADCOM_MII_REG4);
			if (val & 0x0080) {
				/* link workaround */
				cas_phy_write(cp, BROADCOM_MII_REG4,
					      val & ~0x0080);
			}

		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
			       SATURN_PCFG_FSI : 0x0,
			       cp->regs + REG_SATURN_PCFG);

			/* load firmware to address 10Mbps auto-negotiation
			 * issue. NOTE: this will need to be changed if the
			 * default firmware gets fixed.
			 */
			if (PHY_NS_DP83065 == cp->phy_id) {
				cas_saturn_firmware_load(cp);
			}
			cas_phy_powerup(cp);
		}

		/* advertise capabilities */
		val = cas_phy_read(cp, MII_BMCR);
		val &= ~BMCR_ANENABLE;
		cas_phy_write(cp, MII_BMCR, val);
		udelay(10);

		cas_phy_write(cp, MII_ADVERTISE,
			      cas_phy_read(cp, MII_ADVERTISE) |
			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
			       ADVERTISE_100HALF | ADVERTISE_100FULL |
			       CAS_ADVERTISE_PAUSE |
			       CAS_ADVERTISE_ASYM_PAUSE));

		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
			/* make sure that we don't advertise half
			 * duplex to avoid a chip issue
			 */
			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
			val &= ~CAS_ADVERTISE_1000HALF;
			val |= CAS_ADVERTISE_1000FULL;
			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
		}

	} else {
		/* reset pcs for serdes */
		u32 val;
		int limit;

		writel(PCS_DATAPATH_MODE_SERDES,
		       cp->regs + REG_PCS_DATAPATH_MODE);

		/* enable serdes pins on saturn */
		if (cp->cas_flags & CAS_FLAG_SATURN)
			writel(0, cp->regs + REG_SATURN_PCFG);

		/* Reset PCS unit. */
		val = readl(cp->regs + REG_PCS_MII_CTRL);
		val |= PCS_MII_RESET;
		writel(val, cp->regs + REG_PCS_MII_CTRL);

		limit = STOP_TRIES;
		while (limit-- > 0) {
			udelay(10);
			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
			     PCS_MII_RESET) == 0)
				break;
		}
		if (limit <= 0)
			printk(KERN_WARNING "%s: PCS reset bit would not "
			       "clear [%08x].\n", cp->dev->name,
			       readl(cp->regs + REG_PCS_STATE_MACHINE));

		/* Make sure PCS is disabled while changing advertisement
		 * configuration.
		 */
		writel(0x0, cp->regs + REG_PCS_CFG);

		/* Advertise all capabilities except half-duplex. */
		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
		val &= ~PCS_MII_ADVERT_HD;
		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
			PCS_MII_ADVERT_ASYM_PAUSE);
		writel(val, cp->regs + REG_PCS_MII_ADVERT);

		/* enable PCS */
		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);

		/* pcs workaround: enable sync detect */
		writel(PCS_SERDES_CTRL_SYNCD_EN,
		       cp->regs + REG_PCS_SERDES_CTRL);
	}
}


static int cas_pcs_link_check(struct cas *cp)
{
	u32 stat, state_machine;
	int retval = 0;

	/* The link status bit latches on zero, so you must
	 * read it twice in such a case to see a transition
	 * to the link being up.
	 */
	stat = readl(cp->regs + REG_PCS_MII_STATUS);
	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
		stat = readl(cp->regs + REG_PCS_MII_STATUS);

	/* The remote-fault indication is only valid
	 * when autoneg has completed.
	 */
	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
		     PCS_MII_STATUS_REMOTE_FAULT)) ==
	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
		if (netif_msg_link(cp))
			printk(KERN_INFO "%s: PCS RemoteFault\n",
			       cp->dev->name);
	}

	/* work around link detection issue by querying the PCS state
	 * machine directly.
	 */
	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
		stat &= ~PCS_MII_STATUS_LINK_STATUS;
	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
		stat |= PCS_MII_STATUS_LINK_STATUS;
	}

	if (stat & PCS_MII_STATUS_LINK_STATUS) {
		if (cp->lstate != link_up) {
			if (cp->opened) {
				cp->lstate = link_up;
				cp->link_transition = LINK_TRANSITION_LINK_UP;

				cas_set_link_modes(cp);
				netif_carrier_on(cp->dev);
			}
		}
	} else if (cp->lstate == link_up) {
		cp->lstate = link_down;
		if (link_transition_timeout != 0 &&
		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
		    !cp->link_transition_jiffies_valid) {
			/*
			 * force a reset, as a workaround for the
			 * link-failure problem. May want to move this to a
			 * point a bit earlier in the sequence. If we had
			 * generated a reset a short time ago, we'll wait for
			 * the link timer to check the status until a
			 * timer expires (link_transistion_jiffies_valid is
			 * true when the timer is running.)  Instead of using
			 * a system timer, we just do a check whenever the
			 * link timer is running - this clears the flag after
			 * a suitable delay.
			 */
			retval = 1;
			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
			cp->link_transition_jiffies = jiffies;
			cp->link_transition_jiffies_valid = 1;
		} else {
			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
		}
		netif_carrier_off(cp->dev);
		if (cp->opened && netif_msg_link(cp)) {
			printk(KERN_INFO "%s: PCS link down.\n",
			       cp->dev->name);
		}

		/* Cassini only: if you force a mode, there can be
		 * sync problems on link down. to fix that, the following
		 * things need to be checked:
		 * 1) read serialink state register
		 * 2) read pcs status register to verify link down.
		 * 3) if link down and serial link == 0x03, then you need
		 *    to global reset the chip.
		 */
		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
			/* should check to see if we're in a forced mode */
			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
			if (stat == 0x03)
				return 1;
		}
	} else if (cp->lstate == link_down) {
		if (link_transition_timeout != 0 &&
		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
		    !cp->link_transition_jiffies_valid) {
			/* force a reset, as a workaround for the
			 * link-failure problem.  May want to move
			 * this to a point a bit earlier in the
			 * sequence.
			 */
			retval = 1;
			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
			cp->link_transition_jiffies = jiffies;
			cp->link_transition_jiffies_valid = 1;
		} else {
			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
		}
	}

	return retval;
}

static int cas_pcs_interrupt(struct net_device *dev,
			     struct cas *cp, u32 status)
{
	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);

	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
		return 0;
	return cas_pcs_link_check(cp);
}

static int cas_txmac_interrupt(struct net_device *dev,
			       struct cas *cp, u32 status)
{
	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);

	if (!txmac_stat)
		return 0;

	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
			cp->dev->name, txmac_stat);

	/* Defer timer expiration is quite normal,
	 * don't even log the event.
	 */
	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
		return 0;

	spin_lock(&cp->stat_lock[0]);
	if (txmac_stat & MAC_TX_UNDERRUN) {
		printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
		       dev->name);
		cp->net_stats[0].tx_fifo_errors++;
	}

	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
		printk(KERN_ERR "%s: TX MAC max packet size error.\n",
		       dev->name);
		cp->net_stats[0].tx_errors++;
	}

	/* The rest are all cases of one of the 16-bit TX
	 * counters expiring.
	 */
	if (txmac_stat & MAC_TX_COLL_NORMAL)
		cp->net_stats[0].collisions += 0x10000;

	if (txmac_stat & MAC_TX_COLL_EXCESS) {
		cp->net_stats[0].tx_aborted_errors += 0x10000;
		cp->net_stats[0].collisions += 0x10000;
	}

	if (txmac_stat & MAC_TX_COLL_LATE) {
		cp->net_stats[0].tx_aborted_errors += 0x10000;
		cp->net_stats[0].collisions += 0x10000;
	}
	spin_unlock(&cp->stat_lock[0]);

	/* We do not keep track of MAC_TX_COLL_FIRST and
	 * MAC_TX_PEAK_ATTEMPTS events.
	 */
	return 0;
}

static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
{
	cas_hp_inst_t *inst;
	u32 val;
	int i;

	i = 0;
	while ((inst = firmware) && inst->note) {
		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);

		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);

		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);

		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
		++firmware;
		++i;
	}
}

static void cas_init_rx_dma(struct cas *cp)
{
	u64 desc_dma = cp->block_dvma;
	u32 val;
	int i, size;

	/* rx free descriptors */
	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
	if ((N_RX_DESC_RINGS > 1) &&
	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
	writel(val, cp->regs + REG_RX_CFG);

	val = (unsigned long) cp->init_rxds[0] -
		(unsigned long) cp->init_block;
	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);

	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		/* rx desc 2 is for IPSEC packets. however,
		 * we don't it that for that purpose.
		 */
		val = (unsigned long) cp->init_rxds[1] -
			(unsigned long) cp->init_block;
		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
		writel((desc_dma + val) & 0xffffffff, cp->regs +
		       REG_PLUS_RX_DB1_LOW);
		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
		       REG_PLUS_RX_KICK1);
	}

	/* rx completion registers */
	val = (unsigned long) cp->init_rxcs[0] -
		(unsigned long) cp->init_block;
	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);

	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		/* rx comp 2-4 */
		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
			val = (unsigned long) cp->init_rxcs[i] -
				(unsigned long) cp->init_block;
			writel((desc_dma + val) >> 32, cp->regs +
			       REG_PLUS_RX_CBN_HI(i));
			writel((desc_dma + val) & 0xffffffff, cp->regs +
			       REG_PLUS_RX_CBN_LOW(i));
		}
	}

	/* read selective clear regs to prevent spurious interrupts
	 * on reset because complete == kick.
	 * selective clear set up to prevent interrupts on resets
	 */
	readl(cp->regs + REG_INTR_STATUS_ALIAS);
	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		for (i = 1; i < N_RX_COMP_RINGS; i++)
			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));

		/* 2 is different from 3 and 4 */
		if (N_RX_COMP_RINGS > 1)
			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));

		for (i = 2; i < N_RX_COMP_RINGS; i++)
			writel(INTR_RX_DONE_ALT,
			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
	}

	/* set up pause thresholds */
	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
	writel(val, cp->regs + REG_RX_PAUSE_THRESH);

	/* zero out dma reassembly buffers */
	for (i = 0; i < 64; i++) {
		writel(i, cp->regs + REG_RX_TABLE_ADDR);
		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
	}

	/* make sure address register is 0 for normal operation */
	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);

	/* interrupt mitigation */
#ifdef USE_RX_BLANK
	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
	writel(val, cp->regs + REG_RX_BLANK);
#else
	writel(0x0, cp->regs + REG_RX_BLANK);
#endif

	/* interrupt generation as a function of low water marks for
	 * free desc and completion entries. these are used to trigger
	 * housekeeping for rx descs. we don't use the free interrupt
	 * as it's not very useful
	 */
	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
	writel(val, cp->regs + REG_RX_AE_THRESH);
	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
	}

	/* Random early detect registers. useful for congestion avoidance.
	 * this should be tunable.
	 */
	writel(0x0, cp->regs + REG_RX_RED);

	/* receive page sizes. default == 2K (0x800) */
	val = 0;
	if (cp->page_size == 0x1000)
		val = 0x1;
	else if (cp->page_size == 0x2000)
		val = 0x2;
	else if (cp->page_size == 0x4000)
		val = 0x3;

	/* round mtu + offset. constrain to page size. */
	size = cp->dev->mtu + 64;
	if (size > cp->page_size)
		size = cp->page_size;

	if (size <= 0x400)
		i = 0x0;
	else if (size <= 0x800)
		i = 0x1;
	else if (size <= 0x1000)
		i = 0x2;
	else
		i = 0x3;

	cp->mtu_stride = 1 << (i + 10);
	val  = CAS_BASE(RX_PAGE_SIZE, val);
	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
	writel(val, cp->regs + REG_RX_PAGE_SIZE);

	/* enable the header parser if desired */
	if (CAS_HP_FIRMWARE == cas_prog_null)
		return;

	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
	writel(val, cp->regs + REG_HP_CFG);
}

static inline void cas_rxc_init(struct cas_rx_comp *rxc)
{
	memset(rxc, 0, sizeof(*rxc));
	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
}

/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
 * flipping is protected by the fact that the chip will not
 * hand back the same page index while it's being processed.
 */
static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
{
	cas_page_t *page = cp->rx_pages[1][index];
	cas_page_t *new;

	if (cas_buffer_count(page) == 1)
		return page;

	new = cas_page_dequeue(cp);
	if (new) {
		spin_lock(&cp->rx_inuse_lock);
		list_add(&page->list, &cp->rx_inuse_list);
		spin_unlock(&cp->rx_inuse_lock);
	}
	return new;
}

/* this needs to be changed if we actually use the ENC RX DESC ring */
static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
				 const int index)
{
	cas_page_t **page0 = cp->rx_pages[0];
	cas_page_t **page1 = cp->rx_pages[1];

	/* swap if buffer is in use */
	if (cas_buffer_count(page0[index]) > 1) {
		cas_page_t *new = cas_page_spare(cp, index);
		if (new) {
			page1[index] = page0[index];
			page0[index] = new;
		}
	}
	RX_USED_SET(page0[index], 0);
	return page0[index];
}

static void cas_clean_rxds(struct cas *cp)
{
	/* only clean ring 0 as ring 1 is used for spare buffers */
        struct cas_rx_desc *rxd = cp->init_rxds[0];
	int i, size;

	/* release all rx flows */
	for (i = 0; i < N_RX_FLOWS; i++) {
		struct sk_buff *skb;
		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
			cas_skb_release(skb);
		}
	}

	/* initialize descriptors */
	size = RX_DESC_RINGN_SIZE(0);
	for (i = 0; i < size; i++) {
		cas_page_t *page = cas_page_swap(cp, 0, i);
		rxd[i].buffer = cpu_to_le64(page->dma_addr);
		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
					    CAS_BASE(RX_INDEX_RING, 0));
	}

	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
	cp->rx_last[0] = 0;
	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
}

static void cas_clean_rxcs(struct cas *cp)
{
	int i, j;

	/* take ownership of rx comp descriptors */
	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
	for (i = 0; i < N_RX_COMP_RINGS; i++) {
		struct cas_rx_comp *rxc = cp->init_rxcs[i];
		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
			cas_rxc_init(rxc + j);
		}
	}
}

#if 0
/* When we get a RX fifo overflow, the RX unit is probably hung
 * so we do the following.
 *
 * If any part of the reset goes wrong, we return 1 and that causes the
 * whole chip to be reset.
 */
static int cas_rxmac_reset(struct cas *cp)
{
	struct net_device *dev = cp->dev;
	int limit;
	u32 val;

	/* First, reset MAC RX. */
	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
	for (limit = 0; limit < STOP_TRIES; limit++) {
		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
			break;
		udelay(10);
	}
	if (limit == STOP_TRIES) {
		printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
		       "chip.\n", dev->name);
		return 1;
	}

	/* Second, disable RX DMA. */
	writel(0, cp->regs + REG_RX_CFG);
	for (limit = 0; limit < STOP_TRIES; limit++) {
		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
			break;
		udelay(10);
	}
	if (limit == STOP_TRIES) {
		printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
		       "chip.\n", dev->name);
		return 1;
	}

	mdelay(5);

	/* Execute RX reset command. */
	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
	for (limit = 0; limit < STOP_TRIES; limit++) {
		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
			break;
		udelay(10);
	}
	if (limit == STOP_TRIES) {
		printk(KERN_ERR "%s: RX reset command will not execute, "
		       "resetting whole chip.\n", dev->name);
		return 1;
	}

	/* reset driver rx state */
	cas_clean_rxds(cp);
	cas_clean_rxcs(cp);

	/* Now, reprogram the rest of RX unit. */
	cas_init_rx_dma(cp);

	/* re-enable */
	val = readl(cp->regs + REG_RX_CFG);
	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
	val = readl(cp->regs + REG_MAC_RX_CFG);
	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
	return 0;
}
#endif

static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
			       u32 status)
{
	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);

	if (!stat)
		return 0;

	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
			cp->dev->name, stat);

	/* these are all rollovers */
	spin_lock(&cp->stat_lock[0]);
	if (stat & MAC_RX_ALIGN_ERR)
		cp->net_stats[0].rx_frame_errors += 0x10000;

	if (stat & MAC_RX_CRC_ERR)
		cp->net_stats[0].rx_crc_errors += 0x10000;

	if (stat & MAC_RX_LEN_ERR)
		cp->net_stats[0].rx_length_errors += 0x10000;

	if (stat & MAC_RX_OVERFLOW) {
		cp->net_stats[0].rx_over_errors++;
		cp->net_stats[0].rx_fifo_errors++;
	}

	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
	 * events.
	 */
	spin_unlock(&cp->stat_lock[0]);
	return 0;
}

static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
			     u32 status)
{
	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);

	if (!stat)
		return 0;

	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
			cp->dev->name, stat);

	/* This interrupt is just for pause frame and pause
	 * tracking.  It is useful for diagnostics and debug
	 * but probably by default we will mask these events.
	 */
	if (stat & MAC_CTRL_PAUSE_STATE)
		cp->pause_entered++;

	if (stat & MAC_CTRL_PAUSE_RECEIVED)
		cp->pause_last_time_recvd = (stat >> 16);

	return 0;
}


/* Must be invoked under cp->lock. */
static inline int cas_mdio_link_not_up(struct cas *cp)
{
	u16 val;

	switch (cp->lstate) {
	case link_force_ret:
		if (netif_msg_link(cp))
			printk(KERN_INFO "%s: Autoneg failed again, keeping"
				" forced mode\n", cp->dev->name);
		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
		cp->timer_ticks = 5;
		cp->lstate = link_force_ok;
		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
		break;

	case link_aneg:
		val = cas_phy_read(cp, MII_BMCR);

		/* Try forced modes. we try things in the following order:
		 * 1000 full -> 100 full/half -> 10 half
		 */
		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
		val |= BMCR_FULLDPLX;
		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
		cas_phy_write(cp, MII_BMCR, val);
		cp->timer_ticks = 5;
		cp->lstate = link_force_try;
		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
		break;

	case link_force_try:
		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
		val = cas_phy_read(cp, MII_BMCR);
		cp->timer_ticks = 5;
		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
			val &= ~CAS_BMCR_SPEED1000;
			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
			cas_phy_write(cp, MII_BMCR, val);
			break;
		}

		if (val & BMCR_SPEED100) {
			if (val & BMCR_FULLDPLX) /* fd failed */
				val &= ~BMCR_FULLDPLX;
			else { /* 100Mbps failed */
				val &= ~BMCR_SPEED100;
			}
			cas_phy_write(cp, MII_BMCR, val);
			break;
		}
	default:
		break;
	}
	return 0;
}


/* must be invoked with cp->lock held */
static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
{
	int restart;

	if (bmsr & BMSR_LSTATUS) {
		/* Ok, here we got a link. If we had it due to a forced
		 * fallback, and we were configured for autoneg, we
		 * retry a short autoneg pass. If you know your hub is
		 * broken, use ethtool ;)
		 */
		if ((cp->lstate == link_force_try) &&
		    (cp->link_cntl & BMCR_ANENABLE)) {
			cp->lstate = link_force_ret;
			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
			cas_mif_poll(cp, 0);
			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
			cp->timer_ticks = 5;
			if (cp->opened && netif_msg_link(cp))
				printk(KERN_INFO "%s: Got link after fallback, retrying"
				       " autoneg once...\n", cp->dev->name);
			cas_phy_write(cp, MII_BMCR,
				      cp->link_fcntl | BMCR_ANENABLE |
				      BMCR_ANRESTART);
			cas_mif_poll(cp, 1);

		} else if (cp->lstate != link_up) {
			cp->lstate = link_up;
			cp->link_transition = LINK_TRANSITION_LINK_UP;

			if (cp->opened) {
				cas_set_link_modes(cp);
				netif_carrier_on(cp->dev);
			}
		}
		return 0;
	}

	/* link not up. if the link was previously up, we restart the
	 * whole process
	 */
	restart = 0;
	if (cp->lstate == link_up) {
		cp->lstate = link_down;
		cp->link_transition = LINK_TRANSITION_LINK_DOWN;

		netif_carrier_off(cp->dev);
		if (cp->opened && netif_msg_link(cp))
			printk(KERN_INFO "%s: Link down\n",
			       cp->dev->name);
		restart = 1;

	} else if (++cp->timer_ticks > 10)
		cas_mdio_link_not_up(cp);

	return restart;
}

static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
			     u32 status)
{
	u32 stat = readl(cp->regs + REG_MIF_STATUS);
	u16 bmsr;

	/* check for a link change */
	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
		return 0;

	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
	return cas_mii_link_check(cp, bmsr);
}

static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
			     u32 status)
{
	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);

	if (!stat)
		return 0;

	printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
	       readl(cp->regs + REG_BIM_DIAG));

	/* cassini+ has this reserved */
	if ((stat & PCI_ERR_BADACK) &&
	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
		printk("<No ACK64# during ABS64 cycle> ");

	if (stat & PCI_ERR_DTRTO)
		printk("<Delayed transaction timeout> ");
	if (stat & PCI_ERR_OTHER)
		printk("<other> ");
	if (stat & PCI_ERR_BIM_DMA_WRITE)
		printk("<BIM DMA 0 write req> ");
	if (stat & PCI_ERR_BIM_DMA_READ)
		printk("<BIM DMA 0 read req> ");
	printk("\n");

	if (stat & PCI_ERR_OTHER) {
		u16 cfg;

		/* Interrogate PCI config space for the
		 * true cause.
		 */
		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
		printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
		       dev->name, cfg);
		if (cfg & PCI_STATUS_PARITY)
			printk(KERN_ERR "%s: PCI parity error detected.\n",
			       dev->name);
		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
			printk(KERN_ERR "%s: PCI target abort.\n",
			       dev->name);
		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
			printk(KERN_ERR "%s: PCI master acks target abort.\n",
			       dev->name);
		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
			printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
			printk(KERN_ERR "%s: PCI system error SERR#.\n",
			       dev->name);
		if (cfg & PCI_STATUS_DETECTED_PARITY)
			printk(KERN_ERR "%s: PCI parity error.\n",
			       dev->name);

		/* Write the error bits back to clear them. */
		cfg &= (PCI_STATUS_PARITY |
			PCI_STATUS_SIG_TARGET_ABORT |
			PCI_STATUS_REC_TARGET_ABORT |
			PCI_STATUS_REC_MASTER_ABORT |
			PCI_STATUS_SIG_SYSTEM_ERROR |
			PCI_STATUS_DETECTED_PARITY);
		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
	}

	/* For all PCI errors, we should reset the chip. */
	return 1;
}

/* All non-normal interrupt conditions get serviced here.
 * Returns non-zero if we should just exit the interrupt
 * handler right now (ie. if we reset the card which invalidates
 * all of the other original irq status bits).
 */
static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
			    u32 status)
{
	if (status & INTR_RX_TAG_ERROR) {
		/* corrupt RX tag framing */
		if (netif_msg_rx_err(cp))
			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
				cp->dev->name);
		spin_lock(&cp->stat_lock[0]);
		cp->net_stats[0].rx_errors++;
		spin_unlock(&cp->stat_lock[0]);
		goto do_reset;
	}

	if (status & INTR_RX_LEN_MISMATCH) {
		/* length mismatch. */
		if (netif_msg_rx_err(cp))
			printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
				cp->dev->name);
		spin_lock(&cp->stat_lock[0]);
		cp->net_stats[0].rx_errors++;
		spin_unlock(&cp->stat_lock[0]);
		goto do_reset;
	}

	if (status & INTR_PCS_STATUS) {
		if (cas_pcs_interrupt(dev, cp, status))
			goto do_reset;
	}

	if (status & INTR_TX_MAC_STATUS) {
		if (cas_txmac_interrupt(dev, cp, status))
			goto do_reset;
	}

	if (status & INTR_RX_MAC_STATUS) {
		if (cas_rxmac_interrupt(dev, cp, status))
			goto do_reset;
	}

	if (status & INTR_MAC_CTRL_STATUS) {
		if (cas_mac_interrupt(dev, cp, status))
			goto do_reset;
	}

	if (status & INTR_MIF_STATUS) {
		if (cas_mif_interrupt(dev, cp, status))
			goto do_reset;
	}

	if (status & INTR_PCI_ERROR_STATUS) {
		if (cas_pci_interrupt(dev, cp, status))
			goto do_reset;
	}
	return 0;

do_reset:
#if 1
	atomic_inc(&cp->reset_task_pending);
	atomic_inc(&cp->reset_task_pending_all);
	printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
	       dev->name, status);
	schedule_work(&cp->reset_task);
#else
	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
	printk(KERN_ERR "reset called in cas_abnormal_irq\n");
	schedule_work(&cp->reset_task);
#endif
	return 1;
}

/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
 *       determining whether to do a netif_stop/wakeup
 */
#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
				  const int len)
{
	unsigned long off = addr + len;

	if (CAS_TABORT(cp) == 1)
		return 0;
	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
		return 0;
	return TX_TARGET_ABORT_LEN;
}

static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
{
	struct cas_tx_desc *txds;
	struct sk_buff **skbs;
	struct net_device *dev = cp->dev;
	int entry, count;

	spin_lock(&cp->tx_lock[ring]);
	txds = cp->init_txds[ring];
	skbs = cp->tx_skbs[ring];
	entry = cp->tx_old[ring];

	count = TX_BUFF_COUNT(ring, entry, limit);
	while (entry != limit) {
		struct sk_buff *skb = skbs[entry];
		dma_addr_t daddr;
		u32 dlen;
		int frag;

		if (!skb) {
			/* this should never occur */
			entry = TX_DESC_NEXT(ring, entry);
			continue;
		}

		/* however, we might get only a partial skb release. */
		count -= skb_shinfo(skb)->nr_frags +
			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
		if (count < 0)
			break;

		if (netif_msg_tx_done(cp))
			printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
			       cp->dev->name, ring, entry);

		skbs[entry] = NULL;
		cp->tx_tiny_use[ring][entry].nbufs = 0;

		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
			struct cas_tx_desc *txd = txds + entry;

			daddr = le64_to_cpu(txd->buffer);
			dlen = CAS_VAL(TX_DESC_BUFLEN,
				       le64_to_cpu(txd->control));
			pci_unmap_page(cp->pdev, daddr, dlen,
				       PCI_DMA_TODEVICE);
			entry = TX_DESC_NEXT(ring, entry);

			/* tiny buffer may follow */
			if (cp->tx_tiny_use[ring][entry].used) {
				cp->tx_tiny_use[ring][entry].used = 0;
				entry = TX_DESC_NEXT(ring, entry);
			}
		}

		spin_lock(&cp->stat_lock[ring]);
		cp->net_stats[ring].tx_packets++;
		cp->net_stats[ring].tx_bytes += skb->len;
		spin_unlock(&cp->stat_lock[ring]);
		dev_kfree_skb_irq(skb);
	}
	cp->tx_old[ring] = entry;

	/* this is wrong for multiple tx rings. the net device needs
	 * multiple queues for this to do the right thing.  we wait
	 * for 2*packets to be available when using tiny buffers
	 */
	if (netif_queue_stopped(dev) &&
	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
		netif_wake_queue(dev);
	spin_unlock(&cp->tx_lock[ring]);
}

static void cas_tx(struct net_device *dev, struct cas *cp,
		   u32 status)
{
        int limit, ring;
#ifdef USE_TX_COMPWB
	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
#endif
	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
			cp->dev->name, status, (unsigned long long)compwb);
	/* process all the rings */
	for (ring = 0; ring < N_TX_RINGS; ring++) {
#ifdef USE_TX_COMPWB
		/* use the completion writeback registers */
		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
			CAS_VAL(TX_COMPWB_LSB, compwb);
		compwb = TX_COMPWB_NEXT(compwb);
#else
		limit = readl(cp->regs + REG_TX_COMPN(ring));
#endif
		if (cp->tx_old[ring] != limit)
			cas_tx_ringN(cp, ring, limit);
	}
}


static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
			      int entry, const u64 *words,
			      struct sk_buff **skbref)
{
	int dlen, hlen, len, i, alloclen;
	int off, swivel = RX_SWIVEL_OFF_VAL;
	struct cas_page *page;
	struct sk_buff *skb;
	void *addr, *crcaddr;
	char *p;

	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
	len  = hlen + dlen;

	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
		alloclen = len;
	else
		alloclen = max(hlen, RX_COPY_MIN);

	skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
	if (skb == NULL)
		return -1;

	*skbref = skb;
	skb_reserve(skb, swivel);

	p = skb->data;
	addr = crcaddr = NULL;
	if (hlen) { /* always copy header pages */
		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
			swivel;

		i = hlen;
		if (!dlen) /* attach FCS */
			i += cp->crc_size;
		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
				    PCI_DMA_FROMDEVICE);
		addr = cas_page_map(page->buffer);
		memcpy(p, addr + off, i);
		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
				    PCI_DMA_FROMDEVICE);
		cas_page_unmap(addr);
		RX_USED_ADD(page, 0x100);
		p += hlen;
		swivel = 0;
	}


	if (alloclen < (hlen + dlen)) {
		skb_frag_t *frag = skb_shinfo(skb)->frags;

		/* normal or jumbo packets. we use frags */
		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;

		hlen = min(cp->page_size - off, dlen);
		if (hlen < 0) {
			if (netif_msg_rx_err(cp)) {
				printk(KERN_DEBUG "%s: rx page overflow: "
				       "%d\n", cp->dev->name, hlen);
			}
			dev_kfree_skb_irq(skb);
			return -1;
		}
		i = hlen;
		if (i == dlen)  /* attach FCS */
			i += cp->crc_size;
		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
				    PCI_DMA_FROMDEVICE);

		/* make sure we always copy a header */
		swivel = 0;
		if (p == (char *) skb->data) { /* not split */
			addr = cas_page_map(page->buffer);
			memcpy(p, addr + off, RX_COPY_MIN);
			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
					PCI_DMA_FROMDEVICE);
			cas_page_unmap(addr);
			off += RX_COPY_MIN;
			swivel = RX_COPY_MIN;
			RX_USED_ADD(page, cp->mtu_stride);
		} else {
			RX_USED_ADD(page, hlen);
		}
		skb_put(skb, alloclen);

		skb_shinfo(skb)->nr_frags++;
		skb->data_len += hlen - swivel;
		skb->len      += hlen - swivel;

		get_page(page->buffer);
		cas_buffer_inc(page);
		frag->page = page->buffer;
		frag->page_offset = off;
		frag->size = hlen - swivel;

		/* any more data? */
		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
			hlen = dlen;
			off = 0;

			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
					    hlen + cp->crc_size,
					    PCI_DMA_FROMDEVICE);
			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
					    hlen + cp->crc_size,
					    PCI_DMA_FROMDEVICE);

			skb_shinfo(skb)->nr_frags++;
			skb->data_len += hlen;
			skb->len      += hlen;
			frag++;

			get_page(page->buffer);
			cas_buffer_inc(page);
			frag->page = page->buffer;
			frag->page_offset = 0;
			frag->size = hlen;
			RX_USED_ADD(page, hlen + cp->crc_size);
		}

		if (cp->crc_size) {
			addr = cas_page_map(page->buffer);
			crcaddr  = addr + off + hlen;
		}

	} else {
		/* copying packet */
		if (!dlen)
			goto end_copy_pkt;

		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
		hlen = min(cp->page_size - off, dlen);
		if (hlen < 0) {
			if (netif_msg_rx_err(cp)) {
				printk(KERN_DEBUG "%s: rx page overflow: "
				       "%d\n", cp->dev->name, hlen);
			}
			dev_kfree_skb_irq(skb);
			return -1;
		}
		i = hlen;
		if (i == dlen) /* attach FCS */
			i += cp->crc_size;
		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
				    PCI_DMA_FROMDEVICE);
		addr = cas_page_map(page->buffer);
		memcpy(p, addr + off, i);
		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
				    PCI_DMA_FROMDEVICE);
		cas_page_unmap(addr);
		if (p == (char *) skb->data) /* not split */
			RX_USED_ADD(page, cp->mtu_stride);
		else
			RX_USED_ADD(page, i);

		/* any more data? */
		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
			p += hlen;
			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
					    dlen + cp->crc_size,
					    PCI_DMA_FROMDEVICE);
			addr = cas_page_map(page->buffer);
			memcpy(p, addr, dlen + cp->crc_size);
			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
					    dlen + cp->crc_size,
					    PCI_DMA_FROMDEVICE);
			cas_page_unmap(addr);
			RX_USED_ADD(page, dlen + cp->crc_size);
		}
end_copy_pkt:
		if (cp->crc_size) {
			addr    = NULL;
			crcaddr = skb->data + alloclen;
		}
		skb_put(skb, alloclen);
	}

	i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
	if (cp->crc_size) {
		/* checksum includes FCS. strip it out. */
		i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
		if (addr)
			cas_page_unmap(addr);
	}
	skb->csum = ntohs(i ^ 0xffff);
	skb->ip_summed = CHECKSUM_COMPLETE;
	skb->protocol = eth_type_trans(skb, cp->dev);
	return len;
}


/* we can handle up to 64 rx flows at a time. we do the same thing
 * as nonreassm except that we batch up the buffers.
 * NOTE: we currently just treat each flow as a bunch of packets that
 *       we pass up. a better way would be to coalesce the packets
 *       into a jumbo packet. to do that, we need to do the following:
 *       1) the first packet will have a clean split between header and
 *          data. save both.
 *       2) each time the next flow packet comes in, extend the
 *          data length and merge the checksums.
 *       3) on flow release, fix up the header.
 *       4) make sure the higher layer doesn't care.
 * because packets get coalesced, we shouldn't run into fragment count
 * issues.
 */
static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
				   struct sk_buff *skb)
{
	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
	struct sk_buff_head *flow = &cp->rx_flows[flowid];

	/* this is protected at a higher layer, so no need to
	 * do any additional locking here. stick the buffer
	 * at the end.
	 */
	__skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
	if (words[0] & RX_COMP1_RELEASE_FLOW) {
		while ((skb = __skb_dequeue(flow))) {
			cas_skb_release(skb);
		}
	}
}

/* put rx descriptor back on ring. if a buffer is in use by a higher
 * layer, this will need to put in a replacement.
 */
static void cas_post_page(struct cas *cp, const int ring, const int index)
{
	cas_page_t *new;
	int entry;

	entry = cp->rx_old[ring];

	new = cas_page_swap(cp, ring, index);
	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
	cp->init_rxds[ring][entry].index  =
		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
			    CAS_BASE(RX_INDEX_RING, ring));

	entry = RX_DESC_ENTRY(ring, entry + 1);
	cp->rx_old[ring] = entry;

	if (entry % 4)
		return;

	if (ring == 0)
		writel(entry, cp->regs + REG_RX_KICK);
	else if ((N_RX_DESC_RINGS > 1) &&
		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
}


/* only when things are bad */
static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
{
	unsigned int entry, last, count, released;
	int cluster;
	cas_page_t **page = cp->rx_pages[ring];

	entry = cp->rx_old[ring];

	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
		       cp->dev->name, ring, entry);

	cluster = -1;
	count = entry & 0x3;
	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
	released = 0;
	while (entry != last) {
		/* make a new buffer if it's still in use */
		if (cas_buffer_count(page[entry]) > 1) {
			cas_page_t *new = cas_page_dequeue(cp);
			if (!new) {
				/* let the timer know that we need to
				 * do this again
				 */
				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
				if (!timer_pending(&cp->link_timer))
					mod_timer(&cp->link_timer, jiffies +
						  CAS_LINK_FAST_TIMEOUT);
				cp->rx_old[ring]  = entry;
				cp->rx_last[ring] = num ? num - released : 0;
				return -ENOMEM;
			}
			spin_lock(&cp->rx_inuse_lock);
			list_add(&page[entry]->list, &cp->rx_inuse_list);
			spin_unlock(&cp->rx_inuse_lock);
			cp->init_rxds[ring][entry].buffer =
				cpu_to_le64(new->dma_addr);
			page[entry] = new;

		}

		if (++count == 4) {
			cluster = entry;
			count = 0;
		}
		released++;
		entry = RX_DESC_ENTRY(ring, entry + 1);
	}
	cp->rx_old[ring] = entry;

	if (cluster < 0)
		return 0;

	if (ring == 0)
		writel(cluster, cp->regs + REG_RX_KICK);
	else if ((N_RX_DESC_RINGS > 1) &&
		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
	return 0;
}


/* process a completion ring. packets are set up in three basic ways:
 * small packets: should be copied header + data in single buffer.
 * large packets: header and data in a single buffer.
 * split packets: header in a separate buffer from data.
 *                data may be in multiple pages. data may be > 256
 *                bytes but in a single page.
 *
 * NOTE: RX page posting is done in this routine as well. while there's
 *       the capability of using multiple RX completion rings, it isn't
 *       really worthwhile due to the fact that the page posting will
 *       force serialization on the single descriptor ring.
 */
static int cas_rx_ringN(struct cas *cp, int ring, int budget)
{
	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
	int entry, drops;
	int npackets = 0;

	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
		       cp->dev->name, ring,
		       readl(cp->regs + REG_RX_COMP_HEAD),
		       cp->rx_new[ring]);

	entry = cp->rx_new[ring];
	drops = 0;
	while (1) {
		struct cas_rx_comp *rxc = rxcs + entry;
		struct sk_buff *skb;
		int type, len;
		u64 words[4];
		int i, dring;

		words[0] = le64_to_cpu(rxc->word1);
		words[1] = le64_to_cpu(rxc->word2);
		words[2] = le64_to_cpu(rxc->word3);
		words[3] = le64_to_cpu(rxc->word4);

		/* don't touch if still owned by hw */
		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
		if (type == 0)
			break;

		/* hw hasn't cleared the zero bit yet */
		if (words[3] & RX_COMP4_ZERO) {
			break;
		}

		/* get info on the packet */
		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
			spin_lock(&cp->stat_lock[ring]);
			cp->net_stats[ring].rx_errors++;
			if (words[3] & RX_COMP4_LEN_MISMATCH)
				cp->net_stats[ring].rx_length_errors++;
			if (words[3] & RX_COMP4_BAD)
				cp->net_stats[ring].rx_crc_errors++;
			spin_unlock(&cp->stat_lock[ring]);

			/* We'll just return it to Cassini. */
		drop_it:
			spin_lock(&cp->stat_lock[ring]);
			++cp->net_stats[ring].rx_dropped;
			spin_unlock(&cp->stat_lock[ring]);
			goto next;
		}

		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
		if (len < 0) {
			++drops;
			goto drop_it;
		}

		/* see if it's a flow re-assembly or not. the driver
		 * itself handles release back up.
		 */
		if (RX_DONT_BATCH || (type == 0x2)) {
			/* non-reassm: these always get released */
			cas_skb_release(skb);
		} else {
			cas_rx_flow_pkt(cp, words, skb);
		}

		spin_lock(&cp->stat_lock[ring]);
		cp->net_stats[ring].rx_packets++;
		cp->net_stats[ring].rx_bytes += len;
		spin_unlock(&cp->stat_lock[ring]);
		cp->dev->last_rx = jiffies;

	next:
		npackets++;

		/* should it be released? */
		if (words[0] & RX_COMP1_RELEASE_HDR) {
			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
			dring = CAS_VAL(RX_INDEX_RING, i);
			i = CAS_VAL(RX_INDEX_NUM, i);
			cas_post_page(cp, dring, i);
		}

		if (words[0] & RX_COMP1_RELEASE_DATA) {
			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
			dring = CAS_VAL(RX_INDEX_RING, i);
			i = CAS_VAL(RX_INDEX_NUM, i);
			cas_post_page(cp, dring, i);
		}

		if (words[0] & RX_COMP1_RELEASE_NEXT) {
			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
			dring = CAS_VAL(RX_INDEX_RING, i);
			i = CAS_VAL(RX_INDEX_NUM, i);
			cas_post_page(cp, dring, i);
		}

		/* skip to the next entry */
		entry = RX_COMP_ENTRY(ring, entry + 1 +
				      CAS_VAL(RX_COMP1_SKIP, words[0]));
#ifdef USE_NAPI
		if (budget && (npackets >= budget))
			break;
#endif
	}
	cp->rx_new[ring] = entry;

	if (drops)
		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
		       cp->dev->name);
	return npackets;
}


/* put completion entries back on the ring */
static void cas_post_rxcs_ringN(struct net_device *dev,
				struct cas *cp, int ring)
{
	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
	int last, entry;

	last = cp->rx_cur[ring];
	entry = cp->rx_new[ring];
	if (netif_msg_intr(cp))
		printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
		       dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
		       entry);

	/* zero and re-mark descriptors */
	while (last != entry) {
		cas_rxc_init(rxc + last);
		last = RX_COMP_ENTRY(ring, last + 1);
	}
	cp->rx_cur[ring] = last;

	if (ring == 0)
		writel(last, cp->regs + REG_RX_COMP_TAIL);
	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
}



/* cassini can use all four PCI interrupts for the completion ring.
 * rings 3 and 4 are identical
 */
#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
static inline void cas_handle_irqN(struct net_device *dev,
				   struct cas *cp, const u32 status,
				   const int ring)
{
	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
		cas_post_rxcs_ringN(dev, cp, ring);
}

static irqreturn_t cas_interruptN(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct cas *cp = netdev_priv(dev);
	unsigned long flags;
	int ring;
	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));

	/* check for shared irq */
	if (status == 0)
		return IRQ_NONE;

	ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
	spin_lock_irqsave(&cp->lock, flags);
	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
#ifdef USE_NAPI
		cas_mask_intr(cp);
		netif_rx_schedule(dev, &cp->napi);
#else
		cas_rx_ringN(cp, ring, 0);
#endif
		status &= ~INTR_RX_DONE_ALT;
	}

	if (status)
		cas_handle_irqN(dev, cp, status, ring);
	spin_unlock_irqrestore(&cp->lock, flags);
	return IRQ_HANDLED;
}
#endif

#ifdef USE_PCI_INTB
/* everything but rx packets */
static inline void cas_handle_irq1(struct cas *cp, const u32 status)
{
	if (status & INTR_RX_BUF_UNAVAIL_1) {
		/* Frame arrived, no free RX buffers available.
		 * NOTE: we can get this on a link transition. */
		cas_post_rxds_ringN(cp, 1, 0);
		spin_lock(&cp->stat_lock[1]);
		cp->net_stats[1].rx_dropped++;
		spin_unlock(&cp->stat_lock[1]);
	}

	if (status & INTR_RX_BUF_AE_1)
		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
				    RX_AE_FREEN_VAL(1));

	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
		cas_post_rxcs_ringN(cp, 1);
}

/* ring 2 handles a few more events than 3 and 4 */
static irqreturn_t cas_interrupt1(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct cas *cp = netdev_priv(dev);
	unsigned long flags;
	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));

	/* check for shared interrupt */
	if (status == 0)
		return IRQ_NONE;

	spin_lock_irqsave(&cp->lock, flags);
	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
#ifdef USE_NAPI
		cas_mask_intr(cp);
		netif_rx_schedule(dev, &cp->napi);
#else
		cas_rx_ringN(cp, 1, 0);
#endif
		status &= ~INTR_RX_DONE_ALT;
	}
	if (status)
		cas_handle_irq1(cp, status);
	spin_unlock_irqrestore(&cp->lock, flags);
	return IRQ_HANDLED;
}
#endif

static inline void cas_handle_irq(struct net_device *dev,
				  struct cas *cp, const u32 status)
{
	/* housekeeping interrupts */
	if (status & INTR_ERROR_MASK)
		cas_abnormal_irq(dev, cp, status);

	if (status & INTR_RX_BUF_UNAVAIL) {
		/* Frame arrived, no free RX buffers available.
		 * NOTE: we can get this on a link transition.
		 */
		cas_post_rxds_ringN(cp, 0, 0);
		spin_lock(&cp->stat_lock[0]);
		cp->net_stats[0].rx_dropped++;
		spin_unlock(&cp->stat_lock[0]);
	} else if (status & INTR_RX_BUF_AE) {
		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
				    RX_AE_FREEN_VAL(0));
	}

	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
		cas_post_rxcs_ringN(dev, cp, 0);
}

static irqreturn_t cas_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct cas *cp = netdev_priv(dev);
	unsigned long flags;
	u32 status = readl(cp->regs + REG_INTR_STATUS);

	if (status == 0)
		return IRQ_NONE;

	spin_lock_irqsave(&cp->lock, flags);
	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
		cas_tx(dev, cp, status);
		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
	}

	if (status & INTR_RX_DONE) {
#ifdef USE_NAPI
		cas_mask_intr(cp);
		netif_rx_schedule(dev, &cp->napi);
#else
		cas_rx_ringN(cp, 0, 0);
#endif
		status &= ~INTR_RX_DONE;
	}

	if (status)
		cas_handle_irq(dev, cp, status);
	spin_unlock_irqrestore(&cp->lock, flags);
	return IRQ_HANDLED;
}


#ifdef USE_NAPI
static int cas_poll(struct napi_struct *napi, int budget)
{
	struct cas *cp = container_of(napi, struct cas, napi);
	struct net_device *dev = cp->dev;
	int i, enable_intr, todo, credits;
	u32 status = readl(cp->regs + REG_INTR_STATUS);
	unsigned long flags;

	spin_lock_irqsave(&cp->lock, flags);
	cas_tx(dev, cp, status);
	spin_unlock_irqrestore(&cp->lock, flags);

	/* NAPI rx packets. we spread the credits across all of the
	 * rxc rings
	 *
	 * to make sure we're fair with the work we loop through each
	 * ring N_RX_COMP_RING times with a request of
	 * budget / N_RX_COMP_RINGS
	 */
	enable_intr = 1;
	credits = 0;
	for (i = 0; i < N_RX_COMP_RINGS; i++) {
		int j;
		for (j = 0; j < N_RX_COMP_RINGS; j++) {
			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
			if (credits >= budget) {
				enable_intr = 0;
				goto rx_comp;
			}
		}
	}

rx_comp:
	/* final rx completion */
	spin_lock_irqsave(&cp->lock, flags);
	if (status)
		cas_handle_irq(dev, cp, status);

#ifdef USE_PCI_INTB
	if (N_RX_COMP_RINGS > 1) {
		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
		if (status)
			cas_handle_irq1(dev, cp, status);
	}
#endif

#ifdef USE_PCI_INTC
	if (N_RX_COMP_RINGS > 2) {
		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
		if (status)
			cas_handle_irqN(dev, cp, status, 2);
	}
#endif

#ifdef USE_PCI_INTD
	if (N_RX_COMP_RINGS > 3) {
		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
		if (status)
			cas_handle_irqN(dev, cp, status, 3);
	}
#endif
	spin_unlock_irqrestore(&cp->lock, flags);
	if (enable_intr) {
		netif_rx_complete(dev, napi);
		cas_unmask_intr(cp);
	}
	return credits;
}
#endif

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cas_netpoll(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);

	cas_disable_irq(cp, 0);
	cas_interrupt(cp->pdev->irq, dev);
	cas_enable_irq(cp, 0);

#ifdef USE_PCI_INTB
	if (N_RX_COMP_RINGS > 1) {
		/* cas_interrupt1(); */
	}
#endif
#ifdef USE_PCI_INTC
	if (N_RX_COMP_RINGS > 2) {
		/* cas_interruptN(); */
	}
#endif
#ifdef USE_PCI_INTD
	if (N_RX_COMP_RINGS > 3) {
		/* cas_interruptN(); */
	}
#endif
}
#endif

static void cas_tx_timeout(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);

	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
	if (!cp->hw_running) {
		printk("%s: hrm.. hw not running!\n", dev->name);
		return;
	}

	printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
	       dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));

	printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
	       dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));

	printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
	       "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
	       dev->name,
	       readl(cp->regs + REG_TX_CFG),
	       readl(cp->regs + REG_MAC_TX_STATUS),
	       readl(cp->regs + REG_MAC_TX_CFG),
	       readl(cp->regs + REG_TX_FIFO_PKT_CNT),
	       readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
	       readl(cp->regs + REG_TX_FIFO_READ_PTR),
	       readl(cp->regs + REG_TX_SM_1),
	       readl(cp->regs + REG_TX_SM_2));

	printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
	       dev->name,
	       readl(cp->regs + REG_RX_CFG),
	       readl(cp->regs + REG_MAC_RX_STATUS),
	       readl(cp->regs + REG_MAC_RX_CFG));

	printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
	       dev->name,
	       readl(cp->regs + REG_HP_STATE_MACHINE),
	       readl(cp->regs + REG_HP_STATUS0),
	       readl(cp->regs + REG_HP_STATUS1),
	       readl(cp->regs + REG_HP_STATUS2));

#if 1
	atomic_inc(&cp->reset_task_pending);
	atomic_inc(&cp->reset_task_pending_all);
	schedule_work(&cp->reset_task);
#else
	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
	schedule_work(&cp->reset_task);
#endif
}

static inline int cas_intme(int ring, int entry)
{
	/* Algorithm: IRQ every 1/2 of descriptors. */
	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
		return 1;
	return 0;
}


static void cas_write_txd(struct cas *cp, int ring, int entry,
			  dma_addr_t mapping, int len, u64 ctrl, int last)
{
	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;

	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
	if (cas_intme(ring, entry))
		ctrl |= TX_DESC_INTME;
	if (last)
		ctrl |= TX_DESC_EOF;
	txd->control = cpu_to_le64(ctrl);
	txd->buffer = cpu_to_le64(mapping);
}

static inline void *tx_tiny_buf(struct cas *cp, const int ring,
				const int entry)
{
	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
}

static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
				     const int entry, const int tentry)
{
	cp->tx_tiny_use[ring][tentry].nbufs++;
	cp->tx_tiny_use[ring][entry].used = 1;
	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
}

static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
				    struct sk_buff *skb)
{
	struct net_device *dev = cp->dev;
	int entry, nr_frags, frag, tabort, tentry;
	dma_addr_t mapping;
	unsigned long flags;
	u64 ctrl;
	u32 len;

	spin_lock_irqsave(&cp->tx_lock[ring], flags);

	/* This is a hard error, log it. */
	if (TX_BUFFS_AVAIL(cp, ring) <=
	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
		netif_stop_queue(dev);
		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
		printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
		       "queue awake!\n", dev->name);
		return 1;
	}

	ctrl = 0;
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		const u64 csum_start_off = skb_transport_offset(skb);
		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;

		ctrl =  TX_DESC_CSUM_EN |
			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
	}

	entry = cp->tx_new[ring];
	cp->tx_skbs[ring][entry] = skb;

	nr_frags = skb_shinfo(skb)->nr_frags;
	len = skb_headlen(skb);
	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
			       offset_in_page(skb->data), len,
			       PCI_DMA_TODEVICE);

	tentry = entry;
	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
	if (unlikely(tabort)) {
		/* NOTE: len is always >  tabort */
		cas_write_txd(cp, ring, entry, mapping, len - tabort,
			      ctrl | TX_DESC_SOF, 0);
		entry = TX_DESC_NEXT(ring, entry);

		skb_copy_from_linear_data_offset(skb, len - tabort,
			      tx_tiny_buf(cp, ring, entry), tabort);
		mapping = tx_tiny_map(cp, ring, entry, tentry);
		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
			      (nr_frags == 0));
	} else {
		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
			      TX_DESC_SOF, (nr_frags == 0));
	}
	entry = TX_DESC_NEXT(ring, entry);

	for (frag = 0; frag < nr_frags; frag++) {
		skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];

		len = fragp->size;
		mapping = pci_map_page(cp->pdev, fragp->page,
				       fragp->page_offset, len,
				       PCI_DMA_TODEVICE);

		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
		if (unlikely(tabort)) {
			void *addr;

			/* NOTE: len is always > tabort */
			cas_write_txd(cp, ring, entry, mapping, len - tabort,
				      ctrl, 0);
			entry = TX_DESC_NEXT(ring, entry);

			addr = cas_page_map(fragp->page);
			memcpy(tx_tiny_buf(cp, ring, entry),
			       addr + fragp->page_offset + len - tabort,
			       tabort);
			cas_page_unmap(addr);
			mapping = tx_tiny_map(cp, ring, entry, tentry);
			len     = tabort;
		}

		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
			      (frag + 1 == nr_frags));
		entry = TX_DESC_NEXT(ring, entry);
	}

	cp->tx_new[ring] = entry;
	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
		netif_stop_queue(dev);

	if (netif_msg_tx_queued(cp))
		printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
		       "avail %d\n",
		       dev->name, ring, entry, skb->len,
		       TX_BUFFS_AVAIL(cp, ring));
	writel(entry, cp->regs + REG_TX_KICKN(ring));
	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
	return 0;
}

static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);

	/* this is only used as a load-balancing hint, so it doesn't
	 * need to be SMP safe
	 */
	static int ring;

	if (skb_padto(skb, cp->min_frame_size))
		return 0;

	/* XXX: we need some higher-level QoS hooks to steer packets to
	 *      individual queues.
	 */
	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
		return 1;
	dev->trans_start = jiffies;
	return 0;
}

static void cas_init_tx_dma(struct cas *cp)
{
	u64 desc_dma = cp->block_dvma;
	unsigned long off;
	u32 val;
	int i;

	/* set up tx completion writeback registers. must be 8-byte aligned */
#ifdef USE_TX_COMPWB
	off = offsetof(struct cas_init_block, tx_compwb);
	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
#endif

	/* enable completion writebacks, enable paced mode,
	 * disable read pipe, and disable pre-interrupt compwbs
	 */
	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
		TX_CFG_INTR_COMPWB_DIS;

	/* write out tx ring info and tx desc bases */
	for (i = 0; i < MAX_TX_RINGS; i++) {
		off = (unsigned long) cp->init_txds[i] -
			(unsigned long) cp->init_block;

		val |= CAS_TX_RINGN_BASE(i);
		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
		writel((desc_dma + off) & 0xffffffff, cp->regs +
		       REG_TX_DBN_LOW(i));
		/* don't zero out the kick register here as the system
		 * will wedge
		 */
	}
	writel(val, cp->regs + REG_TX_CFG);

	/* program max burst sizes. these numbers should be different
	 * if doing QoS.
	 */
#ifdef USE_QOS
	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
#else
	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
#endif
}

/* Must be invoked under cp->lock. */
static inline void cas_init_dma(struct cas *cp)
{
	cas_init_tx_dma(cp);
	cas_init_rx_dma(cp);
}

/* Must be invoked under cp->lock. */
static u32 cas_setup_multicast(struct cas *cp)
{
	u32 rxcfg = 0;
	int i;

	if (cp->dev->flags & IFF_PROMISC) {
		rxcfg |= MAC_RX_CFG_PROMISC_EN;

	} else if (cp->dev->flags & IFF_ALLMULTI) {
	    	for (i=0; i < 16; i++)
			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;

	} else {
		u16 hash_table[16];
		u32 crc;
		struct dev_mc_list *dmi = cp->dev->mc_list;
		int i;

		/* use the alternate mac address registers for the
		 * first 15 multicast addresses
		 */
		for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
			if (!dmi) {
				writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
				writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
				writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
				continue;
			}
			writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
			writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
			writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
			dmi = dmi->next;
		}

		/* use hw hash table for the next series of
		 * multicast addresses
		 */
		memset(hash_table, 0, sizeof(hash_table));
		while (dmi) {
 			crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
			crc >>= 24;
			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
			dmi = dmi->next;
		}
	    	for (i=0; i < 16; i++)
			writel(hash_table[i], cp->regs +
			       REG_MAC_HASH_TABLEN(i));
		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
	}

	return rxcfg;
}

/* must be invoked under cp->stat_lock[N_TX_RINGS] */
static void cas_clear_mac_err(struct cas *cp)
{
	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
	writel(0, cp->regs + REG_MAC_COLL_FIRST);
	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
	writel(0, cp->regs + REG_MAC_COLL_LATE);
	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
	writel(0, cp->regs + REG_MAC_RECV_FRAME);
	writel(0, cp->regs + REG_MAC_LEN_ERR);
	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
	writel(0, cp->regs + REG_MAC_FCS_ERR);
	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
}


static void cas_mac_reset(struct cas *cp)
{
	int i;

	/* do both TX and RX reset */
	writel(0x1, cp->regs + REG_MAC_TX_RESET);
	writel(0x1, cp->regs + REG_MAC_RX_RESET);

	/* wait for TX */
	i = STOP_TRIES;
	while (i-- > 0) {
		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
			break;
		udelay(10);
	}

	/* wait for RX */
	i = STOP_TRIES;
	while (i-- > 0) {
		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
			break;
		udelay(10);
	}

	if (readl(cp->regs + REG_MAC_TX_RESET) |
	    readl(cp->regs + REG_MAC_RX_RESET))
		printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
		       cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
		       readl(cp->regs + REG_MAC_RX_RESET),
		       readl(cp->regs + REG_MAC_STATE_MACHINE));
}


/* Must be invoked under cp->lock. */
static void cas_init_mac(struct cas *cp)
{
	unsigned char *e = &cp->dev->dev_addr[0];
	int i;
#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
	u32 rxcfg;
#endif
	cas_mac_reset(cp);

	/* setup core arbitration weight register */
	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);

	/* XXX Use pci_dma_burst_advice() */
#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
	/* set the infinite burst register for chips that don't have
	 * pci issues.
	 */
	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
#endif

	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);

	writel(0x00, cp->regs + REG_MAC_IPG0);
	writel(0x08, cp->regs + REG_MAC_IPG1);
	writel(0x04, cp->regs + REG_MAC_IPG2);

	/* change later for 802.3z */
	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);

	/* min frame + FCS */
	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);

	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
	 * specify the maximum frame size to prevent RX tag errors on
	 * oversized frames.
	 */
	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
	       cp->regs + REG_MAC_FRAMESIZE_MAX);

	/* NOTE: crc_size is used as a surrogate for half-duplex.
	 * workaround saturn half-duplex issue by increasing preamble
	 * size to 65 bytes.
	 */
	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
	else
		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);

	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);

	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);

	/* setup mac address in perfect filter array */
	for (i = 0; i < 45; i++)
		writel(0x0, cp->regs + REG_MAC_ADDRN(i));

	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));

	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));

#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
	cp->mac_rx_cfg = cas_setup_multicast(cp);
#else
	/* WTZ: Do what Adrian did in cas_set_multicast. Doing
	 * a writel does not seem to be necessary because Cassini
	 * seems to preserve the configuration when we do the reset.
	 * If the chip is in trouble, though, it is not clear if we
	 * can really count on this behavior. cas_set_multicast uses
	 * spin_lock_irqsave, but we are called only in cas_init_hw and
	 * cas_init_hw is protected by cas_lock_all, which calls
	 * spin_lock_irq (so it doesn't need to save the flags, and
	 * we should be OK for the writel, as that is the only
	 * difference).
	 */
	cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
#endif
	spin_lock(&cp->stat_lock[N_TX_RINGS]);
	cas_clear_mac_err(cp);
	spin_unlock(&cp->stat_lock[N_TX_RINGS]);

	/* Setup MAC interrupts.  We want to get all of the interesting
	 * counter expiration events, but we do not want to hear about
	 * normal rx/tx as the DMA engine tells us that.
	 */
	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);

	/* Don't enable even the PAUSE interrupts for now, we
	 * make no use of those events other than to record them.
	 */
	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
}

/* Must be invoked under cp->lock. */
static void cas_init_pause_thresholds(struct cas *cp)
{
	/* Calculate pause thresholds.  Setting the OFF threshold to the
	 * full RX fifo size effectively disables PAUSE generation
	 */
	if (cp->rx_fifo_size <= (2 * 1024)) {
		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
	} else {
		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
		if (max_frame * 3 > cp->rx_fifo_size) {
			cp->rx_pause_off = 7104;
			cp->rx_pause_on  = 960;
		} else {
			int off = (cp->rx_fifo_size - (max_frame * 2));
			int on = off - max_frame;
			cp->rx_pause_off = off;
			cp->rx_pause_on = on;
		}
	}
}

static int cas_vpd_match(const void __iomem *p, const char *str)
{
	int len = strlen(str) + 1;
	int i;

	for (i = 0; i < len; i++) {
		if (readb(p + i) != str[i])
			return 0;
	}
	return 1;
}


/* get the mac address by reading the vpd information in the rom.
 * also get the phy type and determine if there's an entropy generator.
 * NOTE: this is a bit convoluted for the following reasons:
 *  1) vpd info has order-dependent mac addresses for multinic cards
 *  2) the only way to determine the nic order is to use the slot
 *     number.
 *  3) fiber cards don't have bridges, so their slot numbers don't
 *     mean anything.
 *  4) we don't actually know we have a fiber card until after
 *     the mac addresses are parsed.
 */
static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
			    const int offset)
{
	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
	void __iomem *base, *kstart;
	int i, len;
	int found = 0;
#define VPD_FOUND_MAC        0x01
#define VPD_FOUND_PHY        0x02

	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
	int mac_off  = 0;

	/* give us access to the PROM */
	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
	       cp->regs + REG_BIM_LOCAL_DEV_EN);

	/* check for an expansion rom */
	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
		goto use_random_mac_addr;

	/* search for beginning of vpd */
	base = NULL;
	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
		/* check for PCIR */
		if ((readb(p + i + 0) == 0x50) &&
		    (readb(p + i + 1) == 0x43) &&
		    (readb(p + i + 2) == 0x49) &&
		    (readb(p + i + 3) == 0x52)) {
			base = p + (readb(p + i + 8) |
				    (readb(p + i + 9) << 8));
			break;
		}
	}

	if (!base || (readb(base) != 0x82))
		goto use_random_mac_addr;

	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
	while (i < EXPANSION_ROM_SIZE) {
		if (readb(base + i) != 0x90) /* no vpd found */
			goto use_random_mac_addr;

		/* found a vpd field */
		len = readb(base + i + 1) | (readb(base + i + 2) << 8);

		/* extract keywords */
		kstart = base + i + 3;
		p = kstart;
		while ((p - kstart) < len) {
			int klen = readb(p + 2);
			int j;
			char type;

			p += 3;

			/* look for the following things:
			 * -- correct length == 29
			 * 3 (type) + 2 (size) +
			 * 18 (strlen("local-mac-address") + 1) +
			 * 6 (mac addr)
			 * -- VPD Instance 'I'
			 * -- VPD Type Bytes 'B'
			 * -- VPD data length == 6
			 * -- property string == local-mac-address
			 *
			 * -- correct length == 24
			 * 3 (type) + 2 (size) +
			 * 12 (strlen("entropy-dev") + 1) +
			 * 7 (strlen("vms110") + 1)
			 * -- VPD Instance 'I'
			 * -- VPD Type String 'B'
			 * -- VPD data length == 7
			 * -- property string == entropy-dev
			 *
			 * -- correct length == 18
			 * 3 (type) + 2 (size) +
			 * 9 (strlen("phy-type") + 1) +
			 * 4 (strlen("pcs") + 1)
			 * -- VPD Instance 'I'
			 * -- VPD Type String 'S'
			 * -- VPD data length == 4
			 * -- property string == phy-type
			 *
			 * -- correct length == 23
			 * 3 (type) + 2 (size) +
			 * 14 (strlen("phy-interface") + 1) +
			 * 4 (strlen("pcs") + 1)
			 * -- VPD Instance 'I'
			 * -- VPD Type String 'S'
			 * -- VPD data length == 4
			 * -- property string == phy-interface
			 */
			if (readb(p) != 'I')
				goto next;

			/* finally, check string and length */
			type = readb(p + 3);
			if (type == 'B') {
				if ((klen == 29) && readb(p + 4) == 6 &&
				    cas_vpd_match(p + 5,
						  "local-mac-address")) {
					if (mac_off++ > offset)
						goto next;

					/* set mac address */
					for (j = 0; j < 6; j++)
						dev_addr[j] =
							readb(p + 23 + j);
					goto found_mac;
				}
			}

			if (type != 'S')
				goto next;

#ifdef USE_ENTROPY_DEV
			if ((klen == 24) &&
			    cas_vpd_match(p + 5, "entropy-dev") &&
			    cas_vpd_match(p + 17, "vms110")) {
				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
				goto next;
			}
#endif

			if (found & VPD_FOUND_PHY)
				goto next;

			if ((klen == 18) && readb(p + 4) == 4 &&
			    cas_vpd_match(p + 5, "phy-type")) {
				if (cas_vpd_match(p + 14, "pcs")) {
					phy_type = CAS_PHY_SERDES;
					goto found_phy;
				}
			}

			if ((klen == 23) && readb(p + 4) == 4 &&
			    cas_vpd_match(p + 5, "phy-interface")) {
				if (cas_vpd_match(p + 19, "pcs")) {
					phy_type = CAS_PHY_SERDES;
					goto found_phy;
				}
			}
found_mac:
			found |= VPD_FOUND_MAC;
			goto next;

found_phy:
			found |= VPD_FOUND_PHY;

next:
			p += klen;
		}
		i += len + 3;
	}

use_random_mac_addr:
	if (found & VPD_FOUND_MAC)
		goto done;

	/* Sun MAC prefix then 3 random bytes. */
	printk(PFX "MAC address not found in ROM VPD\n");
	dev_addr[0] = 0x08;
	dev_addr[1] = 0x00;
	dev_addr[2] = 0x20;
	get_random_bytes(dev_addr + 3, 3);

done:
	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
	return phy_type;
}

/* check pci invariants */
static void cas_check_pci_invariants(struct cas *cp)
{
	struct pci_dev *pdev = cp->pdev;

	cp->cas_flags = 0;
	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
		if (pdev->revision >= CAS_ID_REVPLUS)
			cp->cas_flags |= CAS_FLAG_REG_PLUS;
		if (pdev->revision < CAS_ID_REVPLUS02u)
			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;

		/* Original Cassini supports HW CSUM, but it's not
		 * enabled by default as it can trigger TX hangs.
		 */
		if (pdev->revision < CAS_ID_REV2)
			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
	} else {
		/* Only sun has original cassini chips.  */
		cp->cas_flags |= CAS_FLAG_REG_PLUS;

		/* We use a flag because the same phy might be externally
		 * connected.
		 */
		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
			cp->cas_flags |= CAS_FLAG_SATURN;
	}
}


static int cas_check_invariants(struct cas *cp)
{
	struct pci_dev *pdev = cp->pdev;
	u32 cfg;
	int i;

	/* get page size for rx buffers. */
	cp->page_order = 0;
#ifdef USE_PAGE_ORDER
	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
		/* see if we can allocate larger pages */
		struct page *page = alloc_pages(GFP_ATOMIC,
						CAS_JUMBO_PAGE_SHIFT -
						PAGE_SHIFT);
		if (page) {
			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
		} else {
			printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
		}
	}
#endif
	cp->page_size = (PAGE_SIZE << cp->page_order);

	/* Fetch the FIFO configurations. */
	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
	cp->rx_fifo_size = RX_FIFO_SIZE;

	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
	 * they're both connected.
	 */
	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
					PCI_SLOT(pdev->devfn));
	if (cp->phy_type & CAS_PHY_SERDES) {
		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
		return 0; /* no more checking needed */
	}

	/* MII */
	cfg = readl(cp->regs + REG_MIF_CFG);
	if (cfg & MIF_CFG_MDIO_1) {
		cp->phy_type = CAS_PHY_MII_MDIO1;
	} else if (cfg & MIF_CFG_MDIO_0) {
		cp->phy_type = CAS_PHY_MII_MDIO0;
	}

	cas_mif_poll(cp, 0);
	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);

	for (i = 0; i < 32; i++) {
		u32 phy_id;
		int j;

		for (j = 0; j < 3; j++) {
			cp->phy_addr = i;
			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
			phy_id |= cas_phy_read(cp, MII_PHYSID2);
			if (phy_id && (phy_id != 0xFFFFFFFF)) {
				cp->phy_id = phy_id;
				goto done;
			}
		}
	}
	printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
	       readl(cp->regs + REG_MIF_STATE_MACHINE));
	return -1;

done:
	/* see if we can do gigabit */
	cfg = cas_phy_read(cp, MII_BMSR);
	if ((cfg & CAS_BMSR_1000_EXTEND) &&
	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
	return 0;
}

/* Must be invoked under cp->lock. */
static inline void cas_start_dma(struct cas *cp)
{
	int i;
	u32 val;
	int txfailed = 0;

	/* enable dma */
	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
	writel(val, cp->regs + REG_TX_CFG);
	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
	writel(val, cp->regs + REG_RX_CFG);

	/* enable the mac */
	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
	writel(val, cp->regs + REG_MAC_TX_CFG);
	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
	writel(val, cp->regs + REG_MAC_RX_CFG);

	i = STOP_TRIES;
	while (i-- > 0) {
		val = readl(cp->regs + REG_MAC_TX_CFG);
		if ((val & MAC_TX_CFG_EN))
			break;
		udelay(10);
	}
	if (i < 0) txfailed = 1;
	i = STOP_TRIES;
	while (i-- > 0) {
		val = readl(cp->regs + REG_MAC_RX_CFG);
		if ((val & MAC_RX_CFG_EN)) {
			if (txfailed) {
			  printk(KERN_ERR
				 "%s: enabling mac failed [tx:%08x:%08x].\n",
				 cp->dev->name,
				 readl(cp->regs + REG_MIF_STATE_MACHINE),
				 readl(cp->regs + REG_MAC_STATE_MACHINE));
			}
			goto enable_rx_done;
		}
		udelay(10);
	}
	printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
	       cp->dev->name,
	       (txfailed? "tx,rx":"rx"),
	       readl(cp->regs + REG_MIF_STATE_MACHINE),
	       readl(cp->regs + REG_MAC_STATE_MACHINE));

enable_rx_done:
	cas_unmask_intr(cp); /* enable interrupts */
	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
	writel(0, cp->regs + REG_RX_COMP_TAIL);

	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
		if (N_RX_DESC_RINGS > 1)
			writel(RX_DESC_RINGN_SIZE(1) - 4,
			       cp->regs + REG_PLUS_RX_KICK1);

		for (i = 1; i < N_RX_COMP_RINGS; i++)
			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
	}
}

/* Must be invoked under cp->lock. */
static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
				   int *pause)
{
	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
	if (val & PCS_MII_LPA_ASYM_PAUSE)
		*pause |= 0x10;
	*spd = 1000;
}

/* Must be invoked under cp->lock. */
static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
				   int *pause)
{
	u32 val;

	*fd = 0;
	*spd = 10;
	*pause = 0;

	/* use GMII registers */
	val = cas_phy_read(cp, MII_LPA);
	if (val & CAS_LPA_PAUSE)
		*pause = 0x01;

	if (val & CAS_LPA_ASYM_PAUSE)
		*pause |= 0x10;

	if (val & LPA_DUPLEX)
		*fd = 1;
	if (val & LPA_100)
		*spd = 100;

	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
			*spd = 1000;
		if (val & CAS_LPA_1000FULL)
			*fd = 1;
	}
}

/* A link-up condition has occurred, initialize and enable the
 * rest of the chip.
 *
 * Must be invoked under cp->lock.
 */
static void cas_set_link_modes(struct cas *cp)
{
	u32 val;
	int full_duplex, speed, pause;

	full_duplex = 0;
	speed = 10;
	pause = 0;

	if (CAS_PHY_MII(cp->phy_type)) {
		cas_mif_poll(cp, 0);
		val = cas_phy_read(cp, MII_BMCR);
		if (val & BMCR_ANENABLE) {
			cas_read_mii_link_mode(cp, &full_duplex, &speed,
					       &pause);
		} else {
			if (val & BMCR_FULLDPLX)
				full_duplex = 1;

			if (val & BMCR_SPEED100)
				speed = 100;
			else if (val & CAS_BMCR_SPEED1000)
				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
					1000 : 100;
		}
		cas_mif_poll(cp, 1);

	} else {
		val = readl(cp->regs + REG_PCS_MII_CTRL);
		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
		if ((val & PCS_MII_AUTONEG_EN) == 0) {
			if (val & PCS_MII_CTRL_DUPLEX)
				full_duplex = 1;
		}
	}

	if (netif_msg_link(cp))
		printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
		       cp->dev->name, speed, (full_duplex ? "full" : "half"));

	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
	if (CAS_PHY_MII(cp->phy_type)) {
		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
		if (!full_duplex)
			val |= MAC_XIF_DISABLE_ECHO;
	}
	if (full_duplex)
		val |= MAC_XIF_FDPLX_LED;
	if (speed == 1000)
		val |= MAC_XIF_GMII_MODE;
	writel(val, cp->regs + REG_MAC_XIF_CFG);

	/* deal with carrier and collision detect. */
	val = MAC_TX_CFG_IPG_EN;
	if (full_duplex) {
		val |= MAC_TX_CFG_IGNORE_CARRIER;
		val |= MAC_TX_CFG_IGNORE_COLL;
	} else {
#ifndef USE_CSMA_CD_PROTO
		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
#endif
	}
	/* val now set up for REG_MAC_TX_CFG */

	/* If gigabit and half-duplex, enable carrier extension
	 * mode.  increase slot time to 512 bytes as well.
	 * else, disable it and make sure slot time is 64 bytes.
	 * also activate checksum bug workaround
	 */
	if ((speed == 1000) && !full_duplex) {
		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
		       cp->regs + REG_MAC_TX_CFG);

		val = readl(cp->regs + REG_MAC_RX_CFG);
		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
		       cp->regs + REG_MAC_RX_CFG);

		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);

		cp->crc_size = 4;
		/* minimum size gigabit frame at half duplex */
		cp->min_frame_size = CAS_1000MB_MIN_FRAME;

	} else {
		writel(val, cp->regs + REG_MAC_TX_CFG);

		/* checksum bug workaround. don't strip FCS when in
		 * half-duplex mode
		 */
		val = readl(cp->regs + REG_MAC_RX_CFG);
		if (full_duplex) {
			val |= MAC_RX_CFG_STRIP_FCS;
			cp->crc_size = 0;
			cp->min_frame_size = CAS_MIN_MTU;
		} else {
			val &= ~MAC_RX_CFG_STRIP_FCS;
			cp->crc_size = 4;
			cp->min_frame_size = CAS_MIN_FRAME;
		}
		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
		       cp->regs + REG_MAC_RX_CFG);
		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
	}

	if (netif_msg_link(cp)) {
		if (pause & 0x01) {
			printk(KERN_INFO "%s: Pause is enabled "
			       "(rxfifo: %d off: %d on: %d)\n",
			       cp->dev->name,
			       cp->rx_fifo_size,
			       cp->rx_pause_off,
			       cp->rx_pause_on);
		} else if (pause & 0x10) {
			printk(KERN_INFO "%s: TX pause enabled\n",
			       cp->dev->name);
		} else {
			printk(KERN_INFO "%s: Pause is disabled\n",
			       cp->dev->name);
		}
	}

	val = readl(cp->regs + REG_MAC_CTRL_CFG);
	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
	if (pause) { /* symmetric or asymmetric pause */
		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
		if (pause & 0x01) { /* symmetric pause */
			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
		}
	}
	writel(val, cp->regs + REG_MAC_CTRL_CFG);
	cas_start_dma(cp);
}

/* Must be invoked under cp->lock. */
static void cas_init_hw(struct cas *cp, int restart_link)
{
	if (restart_link)
		cas_phy_init(cp);

	cas_init_pause_thresholds(cp);
	cas_init_mac(cp);
	cas_init_dma(cp);

	if (restart_link) {
		/* Default aneg parameters */
		cp->timer_ticks = 0;
		cas_begin_auto_negotiation(cp, NULL);
	} else if (cp->lstate == link_up) {
		cas_set_link_modes(cp);
		netif_carrier_on(cp->dev);
	}
}

/* Must be invoked under cp->lock. on earlier cassini boards,
 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
 * let it settle out, and then restore pci state.
 */
static void cas_hard_reset(struct cas *cp)
{
	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
	udelay(20);
	pci_restore_state(cp->pdev);
}


static void cas_global_reset(struct cas *cp, int blkflag)
{
	int limit;

	/* issue a global reset. don't use RSTOUT. */
	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
		/* For PCS, when the blkflag is set, we should set the
		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
		 * the last autonegotiation from being cleared.  We'll
		 * need some special handling if the chip is set into a
		 * loopback mode.
		 */
		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
		       cp->regs + REG_SW_RESET);
	} else {
		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
	}

	/* need to wait at least 3ms before polling register */
	mdelay(3);

	limit = STOP_TRIES;
	while (limit-- > 0) {
		u32 val = readl(cp->regs + REG_SW_RESET);
		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
			goto done;
		udelay(10);
	}
	printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);

done:
	/* enable various BIM interrupts */
	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);

	/* clear out pci error status mask for handled errors.
	 * we don't deal with DMA counter overflows as they happen
	 * all the time.
	 */
	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
			       PCI_ERR_BIM_DMA_READ), cp->regs +
	       REG_PCI_ERR_STATUS_MASK);

	/* set up for MII by default to address mac rx reset timeout
	 * issue
	 */
	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
}

static void cas_reset(struct cas *cp, int blkflag)
{
	u32 val;

	cas_mask_intr(cp);
	cas_global_reset(cp, blkflag);
	cas_mac_reset(cp);
	cas_entropy_reset(cp);

	/* disable dma engines. */
	val = readl(cp->regs + REG_TX_CFG);
	val &= ~TX_CFG_DMA_EN;
	writel(val, cp->regs + REG_TX_CFG);

	val = readl(cp->regs + REG_RX_CFG);
	val &= ~RX_CFG_DMA_EN;
	writel(val, cp->regs + REG_RX_CFG);

	/* program header parser */
	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
		cas_load_firmware(cp, CAS_HP_FIRMWARE);
	} else {
		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
	}

	/* clear out error registers */
	spin_lock(&cp->stat_lock[N_TX_RINGS]);
	cas_clear_mac_err(cp);
	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
}

/* Shut down the chip, must be called with pm_mutex held.  */
static void cas_shutdown(struct cas *cp)
{
	unsigned long flags;

	/* Make us not-running to avoid timers respawning */
	cp->hw_running = 0;

	del_timer_sync(&cp->link_timer);

	/* Stop the reset task */
#if 0
	while (atomic_read(&cp->reset_task_pending_mtu) ||
	       atomic_read(&cp->reset_task_pending_spare) ||
	       atomic_read(&cp->reset_task_pending_all))
		schedule();

#else
	while (atomic_read(&cp->reset_task_pending))
		schedule();
#endif
	/* Actually stop the chip */
	cas_lock_all_save(cp, flags);
	cas_reset(cp, 0);
	if (cp->cas_flags & CAS_FLAG_SATURN)
		cas_phy_powerdown(cp);
	cas_unlock_all_restore(cp, flags);
}

static int cas_change_mtu(struct net_device *dev, int new_mtu)
{
	struct cas *cp = netdev_priv(dev);

	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
		return -EINVAL;

	dev->mtu = new_mtu;
	if (!netif_running(dev) || !netif_device_present(dev))
		return 0;

	/* let the reset task handle it */
#if 1
	atomic_inc(&cp->reset_task_pending);
	if ((cp->phy_type & CAS_PHY_SERDES)) {
		atomic_inc(&cp->reset_task_pending_all);
	} else {
		atomic_inc(&cp->reset_task_pending_mtu);
	}
	schedule_work(&cp->reset_task);
#else
	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
		   CAS_RESET_ALL : CAS_RESET_MTU);
	printk(KERN_ERR "reset called in cas_change_mtu\n");
	schedule_work(&cp->reset_task);
#endif

	flush_scheduled_work();
	return 0;
}

static void cas_clean_txd(struct cas *cp, int ring)
{
	struct cas_tx_desc *txd = cp->init_txds[ring];
	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
	u64 daddr, dlen;
	int i, size;

	size = TX_DESC_RINGN_SIZE(ring);
	for (i = 0; i < size; i++) {
		int frag;

		if (skbs[i] == NULL)
			continue;

		skb = skbs[i];
		skbs[i] = NULL;

		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
			int ent = i & (size - 1);

			/* first buffer is never a tiny buffer and so
			 * needs to be unmapped.
			 */
			daddr = le64_to_cpu(txd[ent].buffer);
			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
					 le64_to_cpu(txd[ent].control));
			pci_unmap_page(cp->pdev, daddr, dlen,
				       PCI_DMA_TODEVICE);

			if (frag != skb_shinfo(skb)->nr_frags) {
				i++;

				/* next buffer might by a tiny buffer.
				 * skip past it.
				 */
				ent = i & (size - 1);
				if (cp->tx_tiny_use[ring][ent].used)
					i++;
			}
		}
		dev_kfree_skb_any(skb);
	}

	/* zero out tiny buf usage */
	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
}

/* freed on close */
static inline void cas_free_rx_desc(struct cas *cp, int ring)
{
	cas_page_t **page = cp->rx_pages[ring];
	int i, size;

	size = RX_DESC_RINGN_SIZE(ring);
	for (i = 0; i < size; i++) {
		if (page[i]) {
			cas_page_free(cp, page[i]);
			page[i] = NULL;
		}
	}
}

static void cas_free_rxds(struct cas *cp)
{
	int i;

	for (i = 0; i < N_RX_DESC_RINGS; i++)
		cas_free_rx_desc(cp, i);
}

/* Must be invoked under cp->lock. */
static void cas_clean_rings(struct cas *cp)
{
	int i;

	/* need to clean all tx rings */
	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
	for (i = 0; i < N_TX_RINGS; i++)
		cas_clean_txd(cp, i);

	/* zero out init block */
	memset(cp->init_block, 0, sizeof(struct cas_init_block));
	cas_clean_rxds(cp);
	cas_clean_rxcs(cp);
}

/* allocated on open */
static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
{
	cas_page_t **page = cp->rx_pages[ring];
	int size, i = 0;

	size = RX_DESC_RINGN_SIZE(ring);
	for (i = 0; i < size; i++) {
		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
			return -1;
	}
	return 0;
}

static int cas_alloc_rxds(struct cas *cp)
{
	int i;

	for (i = 0; i < N_RX_DESC_RINGS; i++) {
		if (cas_alloc_rx_desc(cp, i) < 0) {
			cas_free_rxds(cp);
			return -1;
		}
	}
	return 0;
}

static void cas_reset_task(struct work_struct *work)
{
	struct cas *cp = container_of(work, struct cas, reset_task);
#if 0
	int pending = atomic_read(&cp->reset_task_pending);
#else
	int pending_all = atomic_read(&cp->reset_task_pending_all);
	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);

	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
		/* We can have more tasks scheduled than actually
		 * needed.
		 */
		atomic_dec(&cp->reset_task_pending);
		return;
	}
#endif
	/* The link went down, we reset the ring, but keep
	 * DMA stopped. Use this function for reset
	 * on error as well.
	 */
	if (cp->hw_running) {
		unsigned long flags;

		/* Make sure we don't get interrupts or tx packets */
		netif_device_detach(cp->dev);
		cas_lock_all_save(cp, flags);

		if (cp->opened) {
			/* We call cas_spare_recover when we call cas_open.
			 * but we do not initialize the lists cas_spare_recover
			 * uses until cas_open is called.
			 */
			cas_spare_recover(cp, GFP_ATOMIC);
		}
#if 1
		/* test => only pending_spare set */
		if (!pending_all && !pending_mtu)
			goto done;
#else
		if (pending == CAS_RESET_SPARE)
			goto done;
#endif
		/* when pending == CAS_RESET_ALL, the following
		 * call to cas_init_hw will restart auto negotiation.
		 * Setting the second argument of cas_reset to
		 * !(pending == CAS_RESET_ALL) will set this argument
		 * to 1 (avoiding reinitializing the PHY for the normal
		 * PCS case) when auto negotiation is not restarted.
		 */
#if 1
		cas_reset(cp, !(pending_all > 0));
		if (cp->opened)
			cas_clean_rings(cp);
		cas_init_hw(cp, (pending_all > 0));
#else
		cas_reset(cp, !(pending == CAS_RESET_ALL));
		if (cp->opened)
			cas_clean_rings(cp);
		cas_init_hw(cp, pending == CAS_RESET_ALL);
#endif

done:
		cas_unlock_all_restore(cp, flags);
		netif_device_attach(cp->dev);
	}
#if 1
	atomic_sub(pending_all, &cp->reset_task_pending_all);
	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
	atomic_dec(&cp->reset_task_pending);
#else
	atomic_set(&cp->reset_task_pending, 0);
#endif
}

static void cas_link_timer(unsigned long data)
{
	struct cas *cp = (struct cas *) data;
	int mask, pending = 0, reset = 0;
	unsigned long flags;

	if (link_transition_timeout != 0 &&
	    cp->link_transition_jiffies_valid &&
	    ((jiffies - cp->link_transition_jiffies) >
	      (link_transition_timeout))) {
		/* One-second counter so link-down workaround doesn't
		 * cause resets to occur so fast as to fool the switch
		 * into thinking the link is down.
		 */
		cp->link_transition_jiffies_valid = 0;
	}

	if (!cp->hw_running)
		return;

	spin_lock_irqsave(&cp->lock, flags);
	cas_lock_tx(cp);
	cas_entropy_gather(cp);

	/* If the link task is still pending, we just
	 * reschedule the link timer
	 */
#if 1
	if (atomic_read(&cp->reset_task_pending_all) ||
	    atomic_read(&cp->reset_task_pending_spare) ||
	    atomic_read(&cp->reset_task_pending_mtu))
		goto done;
#else
	if (atomic_read(&cp->reset_task_pending))
		goto done;
#endif

	/* check for rx cleaning */
	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
		int i, rmask;

		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
			rmask = CAS_FLAG_RXD_POST(i);
			if ((mask & rmask) == 0)
				continue;

			/* post_rxds will do a mod_timer */
			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
				pending = 1;
				continue;
			}
			cp->cas_flags &= ~rmask;
		}
	}

	if (CAS_PHY_MII(cp->phy_type)) {
		u16 bmsr;
		cas_mif_poll(cp, 0);
		bmsr = cas_phy_read(cp, MII_BMSR);
		/* WTZ: Solaris driver reads this twice, but that
		 * may be due to the PCS case and the use of a
		 * common implementation. Read it twice here to be
		 * safe.
		 */
		bmsr = cas_phy_read(cp, MII_BMSR);
		cas_mif_poll(cp, 1);
		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
		reset = cas_mii_link_check(cp, bmsr);
	} else {
		reset = cas_pcs_link_check(cp);
	}

	if (reset)
		goto done;

	/* check for tx state machine confusion */
	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
		u32 wptr, rptr;
		int tlm  = CAS_VAL(MAC_SM_TLM, val);

		if (((tlm == 0x5) || (tlm == 0x3)) &&
		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
			if (netif_msg_tx_err(cp))
				printk(KERN_DEBUG "%s: tx err: "
				       "MAC_STATE[%08x]\n",
				       cp->dev->name, val);
			reset = 1;
			goto done;
		}

		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
		if ((val == 0) && (wptr != rptr)) {
			if (netif_msg_tx_err(cp))
				printk(KERN_DEBUG "%s: tx err: "
				       "TX_FIFO[%08x:%08x:%08x]\n",
				       cp->dev->name, val, wptr, rptr);
			reset = 1;
		}

		if (reset)
			cas_hard_reset(cp);
	}

done:
	if (reset) {
#if 1
		atomic_inc(&cp->reset_task_pending);
		atomic_inc(&cp->reset_task_pending_all);
		schedule_work(&cp->reset_task);
#else
		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
		printk(KERN_ERR "reset called in cas_link_timer\n");
		schedule_work(&cp->reset_task);
#endif
	}

	if (!pending)
		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
	cas_unlock_tx(cp);
	spin_unlock_irqrestore(&cp->lock, flags);
}

/* tiny buffers are used to avoid target abort issues with
 * older cassini's
 */
static void cas_tx_tiny_free(struct cas *cp)
{
	struct pci_dev *pdev = cp->pdev;
	int i;

	for (i = 0; i < N_TX_RINGS; i++) {
		if (!cp->tx_tiny_bufs[i])
			continue;

		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
				    cp->tx_tiny_bufs[i],
				    cp->tx_tiny_dvma[i]);
		cp->tx_tiny_bufs[i] = NULL;
	}
}

static int cas_tx_tiny_alloc(struct cas *cp)
{
	struct pci_dev *pdev = cp->pdev;
	int i;

	for (i = 0; i < N_TX_RINGS; i++) {
		cp->tx_tiny_bufs[i] =
			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
					     &cp->tx_tiny_dvma[i]);
		if (!cp->tx_tiny_bufs[i]) {
			cas_tx_tiny_free(cp);
			return -1;
		}
	}
	return 0;
}


static int cas_open(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	int hw_was_up, err;
	unsigned long flags;

	mutex_lock(&cp->pm_mutex);

	hw_was_up = cp->hw_running;

	/* The power-management mutex protects the hw_running
	 * etc. state so it is safe to do this bit without cp->lock
	 */
	if (!cp->hw_running) {
		/* Reset the chip */
		cas_lock_all_save(cp, flags);
		/* We set the second arg to cas_reset to zero
		 * because cas_init_hw below will have its second
		 * argument set to non-zero, which will force
		 * autonegotiation to start.
		 */
		cas_reset(cp, 0);
		cp->hw_running = 1;
		cas_unlock_all_restore(cp, flags);
	}

	if (cas_tx_tiny_alloc(cp) < 0)
		return -ENOMEM;

	/* alloc rx descriptors */
	err = -ENOMEM;
	if (cas_alloc_rxds(cp) < 0)
		goto err_tx_tiny;

	/* allocate spares */
	cas_spare_init(cp);
	cas_spare_recover(cp, GFP_KERNEL);

	/* We can now request the interrupt as we know it's masked
	 * on the controller. cassini+ has up to 4 interrupts
	 * that can be used, but you need to do explicit pci interrupt
	 * mapping to expose them
	 */
	if (request_irq(cp->pdev->irq, cas_interrupt,
			IRQF_SHARED, dev->name, (void *) dev)) {
		printk(KERN_ERR "%s: failed to request irq !\n",
		       cp->dev->name);
		err = -EAGAIN;
		goto err_spare;
	}

#ifdef USE_NAPI
	napi_enable(&cp->napi);
#endif
	/* init hw */
	cas_lock_all_save(cp, flags);
	cas_clean_rings(cp);
	cas_init_hw(cp, !hw_was_up);
	cp->opened = 1;
	cas_unlock_all_restore(cp, flags);

	netif_start_queue(dev);
	mutex_unlock(&cp->pm_mutex);
	return 0;

err_spare:
	cas_spare_free(cp);
	cas_free_rxds(cp);
err_tx_tiny:
	cas_tx_tiny_free(cp);
	mutex_unlock(&cp->pm_mutex);
	return err;
}

static int cas_close(struct net_device *dev)
{
	unsigned long flags;
	struct cas *cp = netdev_priv(dev);

#ifdef USE_NAPI
	napi_enable(&cp->napi);
#endif
	/* Make sure we don't get distracted by suspend/resume */
	mutex_lock(&cp->pm_mutex);

	netif_stop_queue(dev);

	/* Stop traffic, mark us closed */
	cas_lock_all_save(cp, flags);
	cp->opened = 0;
	cas_reset(cp, 0);
	cas_phy_init(cp);
	cas_begin_auto_negotiation(cp, NULL);
	cas_clean_rings(cp);
	cas_unlock_all_restore(cp, flags);

	free_irq(cp->pdev->irq, (void *) dev);
	cas_spare_free(cp);
	cas_free_rxds(cp);
	cas_tx_tiny_free(cp);
	mutex_unlock(&cp->pm_mutex);
	return 0;
}

static struct {
	const char name[ETH_GSTRING_LEN];
} ethtool_cassini_statnames[] = {
	{"collisions"},
	{"rx_bytes"},
	{"rx_crc_errors"},
	{"rx_dropped"},
	{"rx_errors"},
	{"rx_fifo_errors"},
	{"rx_frame_errors"},
	{"rx_length_errors"},
	{"rx_over_errors"},
	{"rx_packets"},
	{"tx_aborted_errors"},
	{"tx_bytes"},
	{"tx_dropped"},
	{"tx_errors"},
	{"tx_fifo_errors"},
	{"tx_packets"}
};
#define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)

static struct {
	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
} ethtool_register_table[] = {
	{-MII_BMSR},
	{-MII_BMCR},
	{REG_CAWR},
	{REG_INF_BURST},
	{REG_BIM_CFG},
	{REG_RX_CFG},
	{REG_HP_CFG},
	{REG_MAC_TX_CFG},
	{REG_MAC_RX_CFG},
	{REG_MAC_CTRL_CFG},
	{REG_MAC_XIF_CFG},
	{REG_MIF_CFG},
	{REG_PCS_CFG},
	{REG_SATURN_PCFG},
	{REG_PCS_MII_STATUS},
	{REG_PCS_STATE_MACHINE},
	{REG_MAC_COLL_EXCESS},
	{REG_MAC_COLL_LATE}
};
#define CAS_REG_LEN 	(sizeof(ethtool_register_table)/sizeof(int))
#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)

static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
{
	u8 *p;
	int i;
	unsigned long flags;

	spin_lock_irqsave(&cp->lock, flags);
	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
		u16 hval;
		u32 val;
		if (ethtool_register_table[i].offsets < 0) {
			hval = cas_phy_read(cp,
				    -ethtool_register_table[i].offsets);
			val = hval;
		} else {
			val= readl(cp->regs+ethtool_register_table[i].offsets);
		}
		memcpy(p, (u8 *)&val, sizeof(u32));
	}
	spin_unlock_irqrestore(&cp->lock, flags);
}

static struct net_device_stats *cas_get_stats(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	struct net_device_stats *stats = cp->net_stats;
	unsigned long flags;
	int i;
	unsigned long tmp;

	/* we collate all of the stats into net_stats[N_TX_RING] */
	if (!cp->hw_running)
		return stats + N_TX_RINGS;

	/* collect outstanding stats */
	/* WTZ: the Cassini spec gives these as 16 bit counters but
	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
	 * in case the chip somehow puts any garbage in the other bits.
	 * Also, counter usage didn't seem to mach what Adrian did
	 * in the parts of the code that set these quantities. Made
	 * that consistent.
	 */
	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
	stats[N_TX_RINGS].rx_crc_errors +=
	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
	stats[N_TX_RINGS].rx_frame_errors +=
		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
	stats[N_TX_RINGS].rx_length_errors +=
		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
#if 1
	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
	stats[N_TX_RINGS].tx_aborted_errors += tmp;
	stats[N_TX_RINGS].collisions +=
	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
#else
	stats[N_TX_RINGS].tx_aborted_errors +=
		readl(cp->regs + REG_MAC_COLL_EXCESS);
	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
		readl(cp->regs + REG_MAC_COLL_LATE);
#endif
	cas_clear_mac_err(cp);

	/* saved bits that are unique to ring 0 */
	spin_lock(&cp->stat_lock[0]);
	stats[N_TX_RINGS].collisions        += stats[0].collisions;
	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
	spin_unlock(&cp->stat_lock[0]);

	for (i = 0; i < N_TX_RINGS; i++) {
		spin_lock(&cp->stat_lock[i]);
		stats[N_TX_RINGS].rx_length_errors +=
			stats[i].rx_length_errors;
		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
		memset(stats + i, 0, sizeof(struct net_device_stats));
		spin_unlock(&cp->stat_lock[i]);
	}
	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
	return stats + N_TX_RINGS;
}


static void cas_set_multicast(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	u32 rxcfg, rxcfg_new;
	unsigned long flags;
	int limit = STOP_TRIES;

	if (!cp->hw_running)
		return;

	spin_lock_irqsave(&cp->lock, flags);
	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);

	/* disable RX MAC and wait for completion */
	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
		if (!limit--)
			break;
		udelay(10);
	}

	/* disable hash filter and wait for completion */
	limit = STOP_TRIES;
	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
		if (!limit--)
			break;
		udelay(10);
	}

	/* program hash filters */
	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
	rxcfg |= rxcfg_new;
	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
	spin_unlock_irqrestore(&cp->lock, flags);
}

static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct cas *cp = netdev_priv(dev);
	strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
	strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
	info->fw_version[0] = '\0';
	strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
		cp->casreg_len : CAS_MAX_REGS;
	info->n_stats = CAS_NUM_STAT_KEYS;
}

static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct cas *cp = netdev_priv(dev);
	u16 bmcr;
	int full_duplex, speed, pause;
	unsigned long flags;
	enum link_state linkstate = link_up;

	cmd->advertising = 0;
	cmd->supported = SUPPORTED_Autoneg;
	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
		cmd->supported |= SUPPORTED_1000baseT_Full;
		cmd->advertising |= ADVERTISED_1000baseT_Full;
	}

	/* Record PHY settings if HW is on. */
	spin_lock_irqsave(&cp->lock, flags);
	bmcr = 0;
	linkstate = cp->lstate;
	if (CAS_PHY_MII(cp->phy_type)) {
		cmd->port = PORT_MII;
		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
			XCVR_INTERNAL : XCVR_EXTERNAL;
		cmd->phy_address = cp->phy_addr;
		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
			ADVERTISED_10baseT_Half |
			ADVERTISED_10baseT_Full |
			ADVERTISED_100baseT_Half |
			ADVERTISED_100baseT_Full;

		cmd->supported |=
			(SUPPORTED_10baseT_Half |
			 SUPPORTED_10baseT_Full |
			 SUPPORTED_100baseT_Half |
			 SUPPORTED_100baseT_Full |
			 SUPPORTED_TP | SUPPORTED_MII);

		if (cp->hw_running) {
			cas_mif_poll(cp, 0);
			bmcr = cas_phy_read(cp, MII_BMCR);
			cas_read_mii_link_mode(cp, &full_duplex,
					       &speed, &pause);
			cas_mif_poll(cp, 1);
		}

	} else {
		cmd->port = PORT_FIBRE;
		cmd->transceiver = XCVR_INTERNAL;
		cmd->phy_address = 0;
		cmd->supported   |= SUPPORTED_FIBRE;
		cmd->advertising |= ADVERTISED_FIBRE;

		if (cp->hw_running) {
			/* pcs uses the same bits as mii */
			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
			cas_read_pcs_link_mode(cp, &full_duplex,
					       &speed, &pause);
		}
	}
	spin_unlock_irqrestore(&cp->lock, flags);

	if (bmcr & BMCR_ANENABLE) {
		cmd->advertising |= ADVERTISED_Autoneg;
		cmd->autoneg = AUTONEG_ENABLE;
		cmd->speed = ((speed == 10) ?
			      SPEED_10 :
			      ((speed == 1000) ?
			       SPEED_1000 : SPEED_100));
		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
	} else {
		cmd->autoneg = AUTONEG_DISABLE;
		cmd->speed =
			(bmcr & CAS_BMCR_SPEED1000) ?
			SPEED_1000 :
			((bmcr & BMCR_SPEED100) ? SPEED_100:
			 SPEED_10);
		cmd->duplex =
			(bmcr & BMCR_FULLDPLX) ?
			DUPLEX_FULL : DUPLEX_HALF;
	}
	if (linkstate != link_up) {
		/* Force these to "unknown" if the link is not up and
		 * autonogotiation in enabled. We can set the link
		 * speed to 0, but not cmd->duplex,
		 * because its legal values are 0 and 1.  Ethtool will
		 * print the value reported in parentheses after the
		 * word "Unknown" for unrecognized values.
		 *
		 * If in forced mode, we report the speed and duplex
		 * settings that we configured.
		 */
		if (cp->link_cntl & BMCR_ANENABLE) {
			cmd->speed = 0;
			cmd->duplex = 0xff;
		} else {
			cmd->speed = SPEED_10;
			if (cp->link_cntl & BMCR_SPEED100) {
				cmd->speed = SPEED_100;
			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
				cmd->speed = SPEED_1000;
			}
			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
				DUPLEX_FULL : DUPLEX_HALF;
		}
	}
	return 0;
}

static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct cas *cp = netdev_priv(dev);
	unsigned long flags;

	/* Verify the settings we care about. */
	if (cmd->autoneg != AUTONEG_ENABLE &&
	    cmd->autoneg != AUTONEG_DISABLE)
		return -EINVAL;

	if (cmd->autoneg == AUTONEG_DISABLE &&
	    ((cmd->speed != SPEED_1000 &&
	      cmd->speed != SPEED_100 &&
	      cmd->speed != SPEED_10) ||
	     (cmd->duplex != DUPLEX_HALF &&
	      cmd->duplex != DUPLEX_FULL)))
		return -EINVAL;

	/* Apply settings and restart link process. */
	spin_lock_irqsave(&cp->lock, flags);
	cas_begin_auto_negotiation(cp, cmd);
	spin_unlock_irqrestore(&cp->lock, flags);
	return 0;
}

static int cas_nway_reset(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	unsigned long flags;

	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
		return -EINVAL;

	/* Restart link process. */
	spin_lock_irqsave(&cp->lock, flags);
	cas_begin_auto_negotiation(cp, NULL);
	spin_unlock_irqrestore(&cp->lock, flags);

	return 0;
}

static u32 cas_get_link(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	return cp->lstate == link_up;
}

static u32 cas_get_msglevel(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	return cp->msg_enable;
}

static void cas_set_msglevel(struct net_device *dev, u32 value)
{
	struct cas *cp = netdev_priv(dev);
	cp->msg_enable = value;
}

static int cas_get_regs_len(struct net_device *dev)
{
	struct cas *cp = netdev_priv(dev);
	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
}

static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			     void *p)
{
	struct cas *cp = netdev_priv(dev);
	regs->version = 0;
	/* cas_read_regs handles locks (cp->lock).  */
	cas_read_regs(cp, p, regs->len / sizeof(u32));
}

static int cas_get_sset_count(struct net_device *dev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return CAS_NUM_STAT_KEYS;
	default:
		return -EOPNOTSUPP;
	}
}

static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	 memcpy(data, &ethtool_cassini_statnames,
					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
}

static void cas_get_ethtool_stats(struct net_device *dev,
				      struct ethtool_stats *estats, u64 *data)
{
	struct cas *cp = netdev_priv(dev);
	struct net_device_stats *stats = cas_get_stats(cp->dev);
	int i = 0;
	data[i++] = stats->collisions;
	data[i++] = stats->rx_bytes;
	data[i++] = stats->rx_crc_errors;
	data[i++] = stats->rx_dropped;
	data[i++] = stats->rx_errors;
	data[i++] = stats->rx_fifo_errors;
	data[i++] = stats->rx_frame_errors;
	data[i++] = stats->rx_length_errors;
	data[i++] = stats->rx_over_errors;
	data[i++] = stats->rx_packets;
	data[i++] = stats->tx_aborted_errors;
	data[i++] = stats->tx_bytes;
	data[i++] = stats->tx_dropped;
	data[i++] = stats->tx_errors;
	data[i++] = stats->tx_fifo_errors;
	data[i++] = stats->tx_packets;
	BUG_ON(i != CAS_NUM_STAT_KEYS);
}

static const struct ethtool_ops cas_ethtool_ops = {
	.get_drvinfo		= cas_get_drvinfo,
	.get_settings		= cas_get_settings,
	.set_settings		= cas_set_settings,
	.nway_reset		= cas_nway_reset,
	.get_link		= cas_get_link,
	.get_msglevel		= cas_get_msglevel,
	.set_msglevel		= cas_set_msglevel,
	.get_regs_len		= cas_get_regs_len,
	.get_regs		= cas_get_regs,
	.get_sset_count		= cas_get_sset_count,
	.get_strings		= cas_get_strings,
	.get_ethtool_stats	= cas_get_ethtool_stats,
};

static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct cas *cp = netdev_priv(dev);
	struct mii_ioctl_data *data = if_mii(ifr);
	unsigned long flags;
	int rc = -EOPNOTSUPP;

	/* Hold the PM mutex while doing ioctl's or we may collide
	 * with open/close and power management and oops.
	 */
	mutex_lock(&cp->pm_mutex);
	switch (cmd) {
	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
		data->phy_id = cp->phy_addr;
		/* Fallthrough... */

	case SIOCGMIIREG:		/* Read MII PHY register. */
		spin_lock_irqsave(&cp->lock, flags);
		cas_mif_poll(cp, 0);
		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
		cas_mif_poll(cp, 1);
		spin_unlock_irqrestore(&cp->lock, flags);
		rc = 0;
		break;

	case SIOCSMIIREG:		/* Write MII PHY register. */
		if (!capable(CAP_NET_ADMIN)) {
			rc = -EPERM;
			break;
		}
		spin_lock_irqsave(&cp->lock, flags);
		cas_mif_poll(cp, 0);
		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
		cas_mif_poll(cp, 1);
		spin_unlock_irqrestore(&cp->lock, flags);
		break;
	default:
		break;
	};

	mutex_unlock(&cp->pm_mutex);
	return rc;
}

static int __devinit cas_init_one(struct pci_dev *pdev,
				  const struct pci_device_id *ent)
{
	static int cas_version_printed = 0;
	unsigned long casreg_len;
	struct net_device *dev;
	struct cas *cp;
	int i, err, pci_using_dac;
	u16 pci_cmd;
	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
	DECLARE_MAC_BUF(mac);

	if (cas_version_printed++ == 0)
		printk(KERN_INFO "%s", version);

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
		return err;
	}

	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
		dev_err(&pdev->dev, "Cannot find proper PCI device "
		       "base address, aborting.\n");
		err = -ENODEV;
		goto err_out_disable_pdev;
	}

	dev = alloc_etherdev(sizeof(*cp));
	if (!dev) {
		dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
		err = -ENOMEM;
		goto err_out_disable_pdev;
	}
	SET_NETDEV_DEV(dev, &pdev->dev);

	err = pci_request_regions(pdev, dev->name);
	if (err) {
		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
		goto err_out_free_netdev;
	}
	pci_set_master(pdev);

	/* we must always turn on parity response or else parity
	 * doesn't get generated properly. disable SERR/PERR as well.
	 * in addition, we want to turn MWI on.
	 */
	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
	pci_cmd &= ~PCI_COMMAND_SERR;
	pci_cmd |= PCI_COMMAND_PARITY;
	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
	if (pci_try_set_mwi(pdev))
		printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
		       pci_name(pdev));

	/*
	 * On some architectures, the default cache line size set
	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
	 * it for this case.  To start, we'll print some configuration
	 * data.
	 */
#if 1
	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
			     &orig_cacheline_size);
	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
		cas_cacheline_size =
			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
		if (pci_write_config_byte(pdev,
					  PCI_CACHE_LINE_SIZE,
					  cas_cacheline_size)) {
			dev_err(&pdev->dev, "Could not set PCI cache "
			       "line size\n");
			goto err_write_cacheline;
		}
	}
#endif


	/* Configure DMA attributes. */
	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
		pci_using_dac = 1;
		err = pci_set_consistent_dma_mask(pdev,
						  DMA_64BIT_MASK);
		if (err < 0) {
			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
			       "for consistent allocations\n");
			goto err_out_free_res;
		}

	} else {
		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
		if (err) {
			dev_err(&pdev->dev, "No usable DMA configuration, "
			       "aborting.\n");
			goto err_out_free_res;
		}
		pci_using_dac = 0;
	}

	casreg_len = pci_resource_len(pdev, 0);

	cp = netdev_priv(dev);
	cp->pdev = pdev;
#if 1
	/* A value of 0 indicates we never explicitly set it */
	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
#endif
	cp->dev = dev;
	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
	  cassini_debug;

	cp->link_transition = LINK_TRANSITION_UNKNOWN;
	cp->link_transition_jiffies_valid = 0;

	spin_lock_init(&cp->lock);
	spin_lock_init(&cp->rx_inuse_lock);
	spin_lock_init(&cp->rx_spare_lock);
	for (i = 0; i < N_TX_RINGS; i++) {
		spin_lock_init(&cp->stat_lock[i]);
		spin_lock_init(&cp->tx_lock[i]);
	}
	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
	mutex_init(&cp->pm_mutex);

	init_timer(&cp->link_timer);
	cp->link_timer.function = cas_link_timer;
	cp->link_timer.data = (unsigned long) cp;

#if 1
	/* Just in case the implementation of atomic operations
	 * change so that an explicit initialization is necessary.
	 */
	atomic_set(&cp->reset_task_pending, 0);
	atomic_set(&cp->reset_task_pending_all, 0);
	atomic_set(&cp->reset_task_pending_spare, 0);
	atomic_set(&cp->reset_task_pending_mtu, 0);
#endif
	INIT_WORK(&cp->reset_task, cas_reset_task);

	/* Default link parameters */
	if (link_mode >= 0 && link_mode <= 6)
		cp->link_cntl = link_modes[link_mode];
	else
		cp->link_cntl = BMCR_ANENABLE;
	cp->lstate = link_down;
	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
	netif_carrier_off(cp->dev);
	cp->timer_ticks = 0;

	/* give us access to cassini registers */
	cp->regs = pci_iomap(pdev, 0, casreg_len);
	if (cp->regs == 0UL) {
		dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
		goto err_out_free_res;
	}
	cp->casreg_len = casreg_len;

	pci_save_state(pdev);
	cas_check_pci_invariants(cp);
	cas_hard_reset(cp);
	cas_reset(cp, 0);
	if (cas_check_invariants(cp))
		goto err_out_iounmap;

	cp->init_block = (struct cas_init_block *)
		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
				     &cp->block_dvma);
	if (!cp->init_block) {
		dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
		goto err_out_iounmap;
	}

	for (i = 0; i < N_TX_RINGS; i++)
		cp->init_txds[i] = cp->init_block->txds[i];

	for (i = 0; i < N_RX_DESC_RINGS; i++)
		cp->init_rxds[i] = cp->init_block->rxds[i];

	for (i = 0; i < N_RX_COMP_RINGS; i++)
		cp->init_rxcs[i] = cp->init_block->rxcs[i];

	for (i = 0; i < N_RX_FLOWS; i++)
		skb_queue_head_init(&cp->rx_flows[i]);

	dev->open = cas_open;
	dev->stop = cas_close;
	dev->hard_start_xmit = cas_start_xmit;
	dev->get_stats = cas_get_stats;
	dev->set_multicast_list = cas_set_multicast;
	dev->do_ioctl = cas_ioctl;
	dev->ethtool_ops = &cas_ethtool_ops;
	dev->tx_timeout = cas_tx_timeout;
	dev->watchdog_timeo = CAS_TX_TIMEOUT;
	dev->change_mtu = cas_change_mtu;
#ifdef USE_NAPI
	netif_napi_add(dev, &cp->napi, cas_poll, 64);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = cas_netpoll;
#endif
	dev->irq = pdev->irq;
	dev->dma = 0;

	/* Cassini features. */
	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;

	if (pci_using_dac)
		dev->features |= NETIF_F_HIGHDMA;

	if (register_netdev(dev)) {
		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
		goto err_out_free_consistent;
	}

	i = readl(cp->regs + REG_BIM_CFG);
	printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
	       "Ethernet[%d] %s\n",  dev->name,
	       (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
	       (i & BIM_CFG_32BIT) ? "32" : "64",
	       (i & BIM_CFG_66MHZ) ? "66" : "33",
	       (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
	       print_mac(mac, dev->dev_addr));

	pci_set_drvdata(pdev, dev);
	cp->hw_running = 1;
	cas_entropy_reset(cp);
	cas_phy_init(cp);
	cas_begin_auto_negotiation(cp, NULL);
	return 0;

err_out_free_consistent:
	pci_free_consistent(pdev, sizeof(struct cas_init_block),
			    cp->init_block, cp->block_dvma);

err_out_iounmap:
	mutex_lock(&cp->pm_mutex);
	if (cp->hw_running)
		cas_shutdown(cp);
	mutex_unlock(&cp->pm_mutex);

	pci_iounmap(pdev, cp->regs);


err_out_free_res:
	pci_release_regions(pdev);

err_write_cacheline:
	/* Try to restore it in case the error occured after we
	 * set it.
	 */
	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);

err_out_free_netdev:
	free_netdev(dev);

err_out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
	return -ENODEV;
}

static void __devexit cas_remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct cas *cp;
	if (!dev)
		return;

	cp = netdev_priv(dev);
	unregister_netdev(dev);

	mutex_lock(&cp->pm_mutex);
	flush_scheduled_work();
	if (cp->hw_running)
		cas_shutdown(cp);
	mutex_unlock(&cp->pm_mutex);

#if 1
	if (cp->orig_cacheline_size) {
		/* Restore the cache line size if we had modified
		 * it.
		 */
		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
				      cp->orig_cacheline_size);
	}
#endif
	pci_free_consistent(pdev, sizeof(struct cas_init_block),
			    cp->init_block, cp->block_dvma);
	pci_iounmap(pdev, cp->regs);
	free_netdev(dev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM
static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct cas *cp = netdev_priv(dev);
	unsigned long flags;

	mutex_lock(&cp->pm_mutex);

	/* If the driver is opened, we stop the DMA */
	if (cp->opened) {
		netif_device_detach(dev);

		cas_lock_all_save(cp, flags);

		/* We can set the second arg of cas_reset to 0
		 * because on resume, we'll call cas_init_hw with
		 * its second arg set so that autonegotiation is
		 * restarted.
		 */
		cas_reset(cp, 0);
		cas_clean_rings(cp);
		cas_unlock_all_restore(cp, flags);
	}

	if (cp->hw_running)
		cas_shutdown(cp);
	mutex_unlock(&cp->pm_mutex);

	return 0;
}

static int cas_resume(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct cas *cp = netdev_priv(dev);

	printk(KERN_INFO "%s: resuming\n", dev->name);

	mutex_lock(&cp->pm_mutex);
	cas_hard_reset(cp);
	if (cp->opened) {
		unsigned long flags;
		cas_lock_all_save(cp, flags);
		cas_reset(cp, 0);
		cp->hw_running = 1;
		cas_clean_rings(cp);
		cas_init_hw(cp, 1);
		cas_unlock_all_restore(cp, flags);

		netif_device_attach(dev);
	}
	mutex_unlock(&cp->pm_mutex);
	return 0;
}
#endif /* CONFIG_PM */

static struct pci_driver cas_driver = {
	.name		= DRV_MODULE_NAME,
	.id_table	= cas_pci_tbl,
	.probe		= cas_init_one,
	.remove		= __devexit_p(cas_remove_one),
#ifdef CONFIG_PM
	.suspend	= cas_suspend,
	.resume		= cas_resume
#endif
};

static int __init cas_init(void)
{
	if (linkdown_timeout > 0)
		link_transition_timeout = linkdown_timeout * HZ;
	else
		link_transition_timeout = 0;

	return pci_register_driver(&cas_driver);
}

static void __exit cas_cleanup(void)
{
	pci_unregister_driver(&cas_driver);
}

module_init(cas_init);
module_exit(cas_cleanup);