summaryrefslogtreecommitdiff
path: root/drivers/net/au1000_eth.c
blob: 78506911d6566d96efdadf6464b828ebd4d3d6cb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
/*
 *
 * Alchemy Au1x00 ethernet driver
 *
 * Copyright 2001,2002,2003 MontaVista Software Inc.
 * Copyright 2002 TimeSys Corp.
 * Added ethtool/mii-tool support,
 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 
 * or riemer@riemer-nt.de: fixed the link beat detection with 
 * ioctls (SIOCGMIIPHY)
 * Author: MontaVista Software, Inc.
 *         	ppopov@mvista.com or source@mvista.com
 *
 * ########################################################################
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 *
 * ########################################################################
 *
 * 
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/processor.h>

#include <asm/mach-au1x00/au1000.h>
#include <asm/cpu.h>
#include "au1000_eth.h"

#ifdef AU1000_ETH_DEBUG
static int au1000_debug = 5;
#else
static int au1000_debug = 3;
#endif

#define DRV_NAME	"au1000eth"
#define DRV_VERSION	"1.5"
#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
#define DRV_DESC	"Au1xxx on-chip Ethernet driver"

MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");

// prototypes
static void hard_stop(struct net_device *);
static void enable_rx_tx(struct net_device *dev);
static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num);
static int au1000_init(struct net_device *);
static int au1000_open(struct net_device *);
static int au1000_close(struct net_device *);
static int au1000_tx(struct sk_buff *, struct net_device *);
static int au1000_rx(struct net_device *);
static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
static void au1000_tx_timeout(struct net_device *);
static int au1000_set_config(struct net_device *dev, struct ifmap *map);
static void set_rx_mode(struct net_device *);
static struct net_device_stats *au1000_get_stats(struct net_device *);
static inline void update_tx_stats(struct net_device *, u32, u32);
static inline void update_rx_stats(struct net_device *, u32);
static void au1000_timer(unsigned long);
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, u16);
static void dump_mii(struct net_device *dev, int phy_id);

// externs
extern  void ack_rise_edge_irq(unsigned int);
extern int get_ethernet_addr(char *ethernet_addr);
extern void str2eaddr(unsigned char *ea, unsigned char *str);
extern char * __init prom_getcmdline(void);

/*
 * Theory of operation
 *
 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 
 * There are four receive and four transmit descriptors.  These 
 * descriptors are not in memory; rather, they are just a set of 
 * hardware registers.
 *
 * Since the Au1000 has a coherent data cache, the receive and
 * transmit buffers are allocated from the KSEG0 segment. The 
 * hardware registers, however, are still mapped at KSEG1 to
 * make sure there's no out-of-order writes, and that all writes
 * complete immediately.
 */

/* These addresses are only used if yamon doesn't tell us what
 * the mac address is, and the mac address is not passed on the
 * command line.
 */
static unsigned char au1000_mac_addr[6] __devinitdata = { 
	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
};

#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
#define RUN_AT(x) (jiffies + (x))

// For reading/writing 32-bit words from/to DMA memory
#define cpu_to_dma32 cpu_to_be32
#define dma32_to_cpu be32_to_cpu

struct au1000_private *au_macs[NUM_ETH_INTERFACES];

/* FIXME 
 * All of the PHY code really should be detached from the MAC 
 * code.
 */

/* Default advertise */
#define GENMII_DEFAULT_ADVERTISE \
	ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
	ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
	ADVERTISED_Autoneg

#define GENMII_DEFAULT_FEATURES \
	SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
	SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
	SUPPORTED_Autoneg

int bcm_5201_init(struct net_device *dev, int phy_addr)
{
	s16 data;
	
	/* Stop auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);

	/* Set advertisement to 10/100 and Half/Full duplex
	 * (full capabilities) */
	data = mdio_read(dev, phy_addr, MII_ANADV);
	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
	mdio_write(dev, phy_addr, MII_ANADV, data);
	
	/* Restart auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
	mdio_write(dev, phy_addr, MII_CONTROL, data);

	if (au1000_debug > 4) 
		dump_mii(dev, phy_addr);
	return 0;
}

int bcm_5201_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int 
bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
		return -1;
	}
	aup = (struct au1000_private *) dev->priv;

	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
		if (mii_data & MII_AUX_100) {
			if (mii_data & MII_AUX_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else  {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int lsi_80227_init(struct net_device *dev, int phy_addr)
{
	if (au1000_debug > 4)
		printk("lsi_80227_init\n");

	/* restart auto-negotiation */
	mdio_write(dev, phy_addr, MII_CONTROL,
		   MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX);
	mdelay(1);

	/* set up LEDs to correct display */
#ifdef CONFIG_MIPS_MTX1
	mdio_write(dev, phy_addr, 17, 0xff80);
#else
	mdio_write(dev, phy_addr, 17, 0xffc0);
#endif

	if (au1000_debug > 4)
		dump_mii(dev, phy_addr);
	return 0;
}

int lsi_80227_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	if (au1000_debug > 4) {
		printk("lsi_80227_reset\n");
		dump_mii(dev, phy_addr);
	}

	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int
lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
		return -1;
	}
	aup = (struct au1000_private *) dev->priv;

	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT);
		if (mii_data & MII_LSI_PHY_STAT_SPD) {
			if (mii_data & MII_LSI_PHY_STAT_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else  {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int am79c901_init(struct net_device *dev, int phy_addr)
{
	printk("am79c901_init\n");
	return 0;
}

int am79c901_reset(struct net_device *dev, int phy_addr)
{
	printk("am79c901_reset\n");
	return 0;
}

int 
am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	return 0;
}

int am79c874_init(struct net_device *dev, int phy_addr)
{
	s16 data;

	/* 79c874 has quit resembled bit assignments to BCM5201 */
	if (au1000_debug > 4)
		printk("am79c847_init\n");

	/* Stop auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);

	/* Set advertisement to 10/100 and Half/Full duplex
	 * (full capabilities) */
	data = mdio_read(dev, phy_addr, MII_ANADV);
	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
	mdio_write(dev, phy_addr, MII_ANADV, data);
	
	/* Restart auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;

	mdio_write(dev, phy_addr, MII_CONTROL, data);

	if (au1000_debug > 4) dump_mii(dev, phy_addr);
	return 0;
}

int am79c874_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	if (au1000_debug > 4)
		printk("am79c874_reset\n");

	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int 
am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	// printk("am79c874_status\n");
	if (!dev) {
		printk(KERN_ERR "am79c874_status error: NULL dev\n");
		return -1;
	}

	aup = (struct au1000_private *) dev->priv;
	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);

	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT);
		if (mii_data & MII_AMD_PHY_STAT_SPD) {
			if (mii_data & MII_AMD_PHY_STAT_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int lxt971a_init(struct net_device *dev, int phy_addr)
{
	if (au1000_debug > 4)
		printk("lxt971a_init\n");

	/* restart auto-negotiation */
	mdio_write(dev, phy_addr, MII_CONTROL,
		   MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX);

	/* set up LEDs to correct display */
	mdio_write(dev, phy_addr, 20, 0x0422);

	if (au1000_debug > 4)
		dump_mii(dev, phy_addr);
	return 0;
}

int lxt971a_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	if (au1000_debug > 4) {
		printk("lxt971a_reset\n");
		dump_mii(dev, phy_addr);
	}

	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int
lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "lxt971a_status error: NULL dev\n");
		return -1;
	}
	aup = (struct au1000_private *) dev->priv;

	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT);
		if (mii_data & MII_INTEL_PHY_STAT_SPD) {
			if (mii_data & MII_INTEL_PHY_STAT_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else  {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int ks8995m_init(struct net_device *dev, int phy_addr)
{
	s16 data;
	
//	printk("ks8995m_init\n");
	/* Stop auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);

	/* Set advertisement to 10/100 and Half/Full duplex
	 * (full capabilities) */
	data = mdio_read(dev, phy_addr, MII_ANADV);
	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
	mdio_write(dev, phy_addr, MII_ANADV, data);
	
	/* Restart auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
	mdio_write(dev, phy_addr, MII_CONTROL, data);

	if (au1000_debug > 4) dump_mii(dev, phy_addr);

	return 0;
}

int ks8995m_reset(struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
//	printk("ks8995m_reset\n");
	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "ks8995m_status error: NULL dev\n");
		return -1;
	}
	aup = (struct au1000_private *) dev->priv;

	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
		if (mii_data & MII_AUX_100) {
			if (mii_data & MII_AUX_FDX) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else  {											
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}

	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}

int
smsc_83C185_init (struct net_device *dev, int phy_addr)
{
	s16 data;

	if (au1000_debug > 4)
		printk("smsc_83C185_init\n");

	/* Stop auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);

	/* Set advertisement to 10/100 and Half/Full duplex
	 * (full capabilities) */
	data = mdio_read(dev, phy_addr, MII_ANADV);
	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
	mdio_write(dev, phy_addr, MII_ANADV, data);
	
	/* Restart auto-negotiation */
	data = mdio_read(dev, phy_addr, MII_CONTROL);
	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;

	mdio_write(dev, phy_addr, MII_CONTROL, data);

	if (au1000_debug > 4) dump_mii(dev, phy_addr);
	return 0;
}

int
smsc_83C185_reset (struct net_device *dev, int phy_addr)
{
	s16 mii_control, timeout;
	
	if (au1000_debug > 4)
		printk("smsc_83C185_reset\n");

	mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
	mdelay(1);
	for (timeout = 100; timeout > 0; --timeout) {
		mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
		if ((mii_control & MII_CNTL_RESET) == 0)
			break;
		mdelay(1);
	}
	if (mii_control & MII_CNTL_RESET) {
		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
		return -1;
	}
	return 0;
}

int 
smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	u16 mii_data;
	struct au1000_private *aup;

	if (!dev) {
		printk(KERN_ERR "smsc_83C185_status error: NULL dev\n");
		return -1;
	}

	aup = (struct au1000_private *) dev->priv;
	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);

	if (mii_data & MII_STAT_LINK) {
		*link = 1;
		mii_data = mdio_read(dev, aup->phy_addr, 0x1f);
		if (mii_data & (1<<3)) {
			if (mii_data & (1<<4)) {
				*speed = IF_PORT_100BASEFX;
				dev->if_port = IF_PORT_100BASEFX;
			}
			else {
				*speed = IF_PORT_100BASETX;
				dev->if_port = IF_PORT_100BASETX;
			}
		}
		else {
			*speed = IF_PORT_10BASET;
			dev->if_port = IF_PORT_10BASET;
		}
	}
	else {
		*link = 0;
		*speed = 0;
		dev->if_port = IF_PORT_UNKNOWN;
	}
	return 0;
}


#ifdef CONFIG_MIPS_BOSPORUS
int stub_init(struct net_device *dev, int phy_addr)
{
	//printk("PHY stub_init\n");
	return 0;
}

int stub_reset(struct net_device *dev, int phy_addr)
{
	//printk("PHY stub_reset\n");
	return 0;
}

int 
stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
	//printk("PHY stub_status\n");
	*link = 1;
	/* hmmm, revisit */
	*speed = IF_PORT_100BASEFX;
	dev->if_port = IF_PORT_100BASEFX;
	return 0;
}
#endif

struct phy_ops bcm_5201_ops = {
	bcm_5201_init,
	bcm_5201_reset,
	bcm_5201_status,
};

struct phy_ops am79c874_ops = {
	am79c874_init,
	am79c874_reset,
	am79c874_status,
};

struct phy_ops am79c901_ops = {
	am79c901_init,
	am79c901_reset,
	am79c901_status,
};

struct phy_ops lsi_80227_ops = { 
	lsi_80227_init,
	lsi_80227_reset,
	lsi_80227_status,
};

struct phy_ops lxt971a_ops = { 
	lxt971a_init,
	lxt971a_reset,
	lxt971a_status,
};

struct phy_ops ks8995m_ops = {
	ks8995m_init,
	ks8995m_reset,
	ks8995m_status,
};

struct phy_ops smsc_83C185_ops = {
	smsc_83C185_init,
	smsc_83C185_reset,
	smsc_83C185_status,
};

#ifdef CONFIG_MIPS_BOSPORUS
struct phy_ops stub_ops = {
	stub_init,
	stub_reset,
	stub_status,
};
#endif

static struct mii_chip_info {
	const char * name;
	u16 phy_id0;
	u16 phy_id1;
	struct phy_ops *phy_ops;	
	int dual_phy;
} mii_chip_table[] = {
	{"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0},
	{"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0},
	{"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1},
	{"NS DP83847 PHY", 0x2000, 0x5c30, &bcm_5201_ops ,0},
	{"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0},
	{"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0},
	{"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0},
	{"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0},
	{"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0},
	{"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0},
#ifdef CONFIG_MIPS_BOSPORUS
	{"Stub", 0x1234, 0x5678, &stub_ops },
#endif
	{0,},
};

static int mdio_read(struct net_device *dev, int phy_id, int reg)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile u32 *mii_control_reg;
	volatile u32 *mii_data_reg;
	u32 timedout = 20;
	u32 mii_control;

	#ifdef CONFIG_BCM5222_DUAL_PHY
	/* First time we probe, it's for the mac0 phy.
	 * Since we haven't determined yet that we have a dual phy,
	 * aup->mii->mii_control_reg won't be setup and we'll
	 * default to the else statement.
	 * By the time we probe for the mac1 phy, the mii_control_reg
	 * will be setup to be the address of the mac0 phy control since
	 * both phys are controlled through mac0.
	 */
	if (aup->mii && aup->mii->mii_control_reg) {
		mii_control_reg = aup->mii->mii_control_reg;
		mii_data_reg = aup->mii->mii_data_reg;
	}
	else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
		/* assume both phys are controlled through mac0 */
		mii_control_reg = au_macs[0]->mii->mii_control_reg;
		mii_data_reg = au_macs[0]->mii->mii_data_reg;
	}
	else 
	#endif
	{
		/* default control and data reg addresses */
		mii_control_reg = &aup->mac->mii_control;
		mii_data_reg = &aup->mac->mii_data;
	}

	while (*mii_control_reg & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: read_MII busy timeout!!\n", 
					dev->name);
			return -1;
		}
	}

	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ;

	*mii_control_reg = mii_control;

	timedout = 20;
	while (*mii_control_reg & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: mdio_read busy timeout!!\n", 
					dev->name);
			return -1;
		}
	}
	return (int)*mii_data_reg;
}

static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile u32 *mii_control_reg;
	volatile u32 *mii_data_reg;
	u32 timedout = 20;
	u32 mii_control;

	#ifdef CONFIG_BCM5222_DUAL_PHY
	if (aup->mii && aup->mii->mii_control_reg) {
		mii_control_reg = aup->mii->mii_control_reg;
		mii_data_reg = aup->mii->mii_data_reg;
	}
	else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
		/* assume both phys are controlled through mac0 */
		mii_control_reg = au_macs[0]->mii->mii_control_reg;
		mii_data_reg = au_macs[0]->mii->mii_data_reg;
	}
	else 
	#endif
	{
		/* default control and data reg addresses */
		mii_control_reg = &aup->mac->mii_control;
		mii_data_reg = &aup->mac->mii_data;
	}

	while (*mii_control_reg & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: mdio_write busy timeout!!\n", 
					dev->name);
			return;
		}
	}

	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE;

	*mii_data_reg = value;
	*mii_control_reg = mii_control;
}


static void dump_mii(struct net_device *dev, int phy_id)
{
	int i, val;

	for (i = 0; i < 7; i++) {
		if ((val = mdio_read(dev, phy_id, i)) >= 0)
			printk("%s: MII Reg %d=%x\n", dev->name, i, val);
	}
	for (i = 16; i < 25; i++) {
		if ((val = mdio_read(dev, phy_id, i)) >= 0)
			printk("%s: MII Reg %d=%x\n", dev->name, i, val);
	}
}

static int mii_probe (struct net_device * dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	int phy_addr;
#ifdef CONFIG_MIPS_BOSPORUS
	int phy_found=0;
#endif

	/* search for total of 32 possible mii phy addresses */
	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
		u16 mii_status;
		u16 phy_id0, phy_id1;
		int i;

		#ifdef CONFIG_BCM5222_DUAL_PHY
		/* Mask the already found phy, try next one */
		if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
			if (au_macs[0]->phy_addr == phy_addr)
				continue;
		}
		#endif

		mii_status = mdio_read(dev, phy_addr, MII_STATUS);
		if (mii_status == 0xffff || mii_status == 0x0000)
			/* the mii is not accessable, try next one */
			continue;

		phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0);
		phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);

		/* search our mii table for the current mii */ 
		for (i = 0; mii_chip_table[i].phy_id1; i++) {
			if (phy_id0 == mii_chip_table[i].phy_id0 &&
			    phy_id1 == mii_chip_table[i].phy_id1) {
				struct mii_phy * mii_phy = aup->mii;

				printk(KERN_INFO "%s: %s at phy address %d\n",
				       dev->name, mii_chip_table[i].name, 
				       phy_addr);
#ifdef CONFIG_MIPS_BOSPORUS
				phy_found = 1;
#endif
				mii_phy->chip_info = mii_chip_table+i;
				aup->phy_addr = phy_addr;
				aup->want_autoneg = 1;
				aup->phy_ops = mii_chip_table[i].phy_ops;
				aup->phy_ops->phy_init(dev,phy_addr);

				// Check for dual-phy and then store required 
				// values and set indicators. We need to do 
				// this now since mdio_{read,write} need the 
				// control and data register addresses.
				#ifdef CONFIG_BCM5222_DUAL_PHY
				if ( mii_chip_table[i].dual_phy) {

					/* assume both phys are controlled 
					 * through MAC0. Board specific? */
					
					/* sanity check */
					if (!au_macs[0] || !au_macs[0]->mii)
						return -1;
					aup->mii->mii_control_reg = (u32 *)
						&au_macs[0]->mac->mii_control;
					aup->mii->mii_data_reg = (u32 *)
						&au_macs[0]->mac->mii_data;
				}
				#endif
				goto found;
			}
		}
	}
found:

#ifdef CONFIG_MIPS_BOSPORUS
	/* This is a workaround for the Micrel/Kendin 5 port switch
	   The second MAC doesn't see a PHY connected... so we need to
	   trick it into thinking we have one.
		
	   If this kernel is run on another Au1500 development board
	   the stub will be found as well as the actual PHY. However,
	   the last found PHY will be used... usually at Addr 31 (Db1500).	
	*/
	if ( (!phy_found) )
	{
		u16 phy_id0, phy_id1;
		int i;

		phy_id0 = 0x1234;
		phy_id1 = 0x5678;

		/* search our mii table for the current mii */ 
		for (i = 0; mii_chip_table[i].phy_id1; i++) {
			if (phy_id0 == mii_chip_table[i].phy_id0 &&
			    phy_id1 == mii_chip_table[i].phy_id1) {
				struct mii_phy * mii_phy;

				printk(KERN_INFO "%s: %s at phy address %d\n",
				       dev->name, mii_chip_table[i].name, 
				       phy_addr);
				mii_phy = kmalloc(sizeof(struct mii_phy), 
						GFP_KERNEL);
				if (mii_phy) {
					mii_phy->chip_info = mii_chip_table+i;
					aup->phy_addr = phy_addr;
					mii_phy->next = aup->mii;
					aup->phy_ops = 
						mii_chip_table[i].phy_ops;
					aup->mii = mii_phy;
					aup->phy_ops->phy_init(dev,phy_addr);
				} else {
					printk(KERN_ERR "%s: out of memory\n", 
							dev->name);
					return -1;
				}
				mii_phy->chip_info = mii_chip_table+i;
				aup->phy_addr = phy_addr;
				aup->phy_ops = mii_chip_table[i].phy_ops;
				aup->phy_ops->phy_init(dev,phy_addr);
				break;
			}
		}
	}
	if (aup->mac_id == 0) {
		/* the Bosporus phy responds to addresses 0-5 but 
		 * 5 is the correct one.
		 */
		aup->phy_addr = 5;
	}
#endif

	if (aup->mii->chip_info == NULL) {
		printk(KERN_ERR "%s: Au1x No known MII transceivers found!\n",
				dev->name);
		return -1;
	}

	printk(KERN_INFO "%s: Using %s as default\n", 
			dev->name, aup->mii->chip_info->name);

	return 0;
}


/*
 * Buffer allocation/deallocation routines. The buffer descriptor returned
 * has the virtual and dma address of a buffer suitable for 
 * both, receive and transmit operations.
 */
static db_dest_t *GetFreeDB(struct au1000_private *aup)
{
	db_dest_t *pDB;
	pDB = aup->pDBfree;

	if (pDB) {
		aup->pDBfree = pDB->pnext;
	}
	return pDB;
}

void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
{
	db_dest_t *pDBfree = aup->pDBfree;
	if (pDBfree)
		pDBfree->pnext = pDB;
	aup->pDBfree = pDB;
}

static void enable_rx_tx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);

	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
	au_sync_delay(10);
}

static void hard_stop(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: hard stop\n", dev->name);

	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
	au_sync_delay(10);
}


static void reset_mac(struct net_device *dev)
{
	int i;
	u32 flags;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4) 
		printk(KERN_INFO "%s: reset mac, aup %x\n", 
				dev->name, (unsigned)aup);

	spin_lock_irqsave(&aup->lock, flags);
	if (aup->timer.function == &au1000_timer) {/* check if timer initted */
		del_timer(&aup->timer);
	}

	hard_stop(dev);
	#ifdef CONFIG_BCM5222_DUAL_PHY
	if (aup->mac_id != 0) {
	#endif
		/* If BCM5222, we can't leave MAC0 in reset because then 
		 * we can't access the dual phy for ETH1 */
		*aup->enable = MAC_EN_CLOCK_ENABLE;
		au_sync_delay(2);
		*aup->enable = 0;
		au_sync_delay(2);
	#ifdef CONFIG_BCM5222_DUAL_PHY
	}
	#endif
	aup->tx_full = 0;
	for (i = 0; i < NUM_RX_DMA; i++) {
		/* reset control bits */
		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		/* reset control bits */
		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
	}
	spin_unlock_irqrestore(&aup->lock, flags);
}


/* 
 * Setup the receive and transmit "rings".  These pointers are the addresses
 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 * these are not descriptors sitting in memory.
 */
static void 
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
{
	int i;

	for (i = 0; i < NUM_RX_DMA; i++) {
		aup->rx_dma_ring[i] = 
			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		aup->tx_dma_ring[i] = 
			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
	}
}

static struct {
	int port;
	u32 base_addr;
	u32 macen_addr;
	int irq;
	struct net_device *dev;
} iflist[2];

static int num_ifs;

/*
 * Setup the base address and interupt of the Au1xxx ethernet macs
 * based on cpu type and whether the interface is enabled in sys_pinfunc
 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
 */
static int __init au1000_init_module(void)
{
	struct cpuinfo_mips *c = &current_cpu_data;
	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
	struct net_device *dev;
	int i, found_one = 0;

	switch (c->cputype) {
#ifdef CONFIG_SOC_AU1000
	case CPU_AU1000:
		num_ifs = 2 - ni;
		iflist[0].base_addr = AU1000_ETH0_BASE;
		iflist[1].base_addr = AU1000_ETH1_BASE;
		iflist[0].macen_addr = AU1000_MAC0_ENABLE;
		iflist[1].macen_addr = AU1000_MAC1_ENABLE;
		iflist[0].irq = AU1000_MAC0_DMA_INT;
		iflist[1].irq = AU1000_MAC1_DMA_INT;
		break;
#endif
#ifdef CONFIG_SOC_AU1100
	case CPU_AU1100:
		num_ifs = 1 - ni;
		iflist[0].base_addr = AU1100_ETH0_BASE;
		iflist[0].macen_addr = AU1100_MAC0_ENABLE;
		iflist[0].irq = AU1100_MAC0_DMA_INT;
		break;
#endif
#ifdef CONFIG_SOC_AU1500
	case CPU_AU1500:
		num_ifs = 2 - ni;
		iflist[0].base_addr = AU1500_ETH0_BASE;
		iflist[1].base_addr = AU1500_ETH1_BASE;
		iflist[0].macen_addr = AU1500_MAC0_ENABLE;
		iflist[1].macen_addr = AU1500_MAC1_ENABLE;
		iflist[0].irq = AU1500_MAC0_DMA_INT;
		iflist[1].irq = AU1500_MAC1_DMA_INT;
		break;
#endif
#ifdef CONFIG_SOC_AU1550
	case CPU_AU1550:
		num_ifs = 2 - ni;
		iflist[0].base_addr = AU1550_ETH0_BASE;
		iflist[1].base_addr = AU1550_ETH1_BASE;
		iflist[0].macen_addr = AU1550_MAC0_ENABLE;
		iflist[1].macen_addr = AU1550_MAC1_ENABLE;
		iflist[0].irq = AU1550_MAC0_DMA_INT;
		iflist[1].irq = AU1550_MAC1_DMA_INT;
		break;
#endif
	default:
		num_ifs = 0;
	}
	for(i = 0; i < num_ifs; i++) {
		dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i);
		iflist[i].dev = dev;
		if (dev)
			found_one++;
	}
	if (!found_one)
		return -ENODEV;
	return 0;
}

static int au1000_setup_aneg(struct net_device *dev, u32 advertise)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;
	u16 ctl, adv;

	/* Setup standard advertise */
	adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE);
	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
	if (advertise & ADVERTISED_10baseT_Half)
		adv |= ADVERTISE_10HALF;
	if (advertise & ADVERTISED_10baseT_Full)
		adv |= ADVERTISE_10FULL;
	if (advertise & ADVERTISED_100baseT_Half)
		adv |= ADVERTISE_100HALF;
	if (advertise & ADVERTISED_100baseT_Full)
		adv |= ADVERTISE_100FULL;
	mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv);

	/* Start/Restart aneg */
	ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);

	return 0;
}

static int au1000_setup_forced(struct net_device *dev, int speed, int fd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;
	u16 ctl;

	ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
	ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE);

	/* First reset the PHY */
	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET);

	/* Select speed & duplex */
	switch (speed) {
		case SPEED_10:
			break;
		case SPEED_100:
			ctl |= BMCR_SPEED100;
			break;
		case SPEED_1000:
		default:
			return -EINVAL;
	}
	if (fd == DUPLEX_FULL)
		ctl |= BMCR_FULLDPLX;
	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);

	return 0;
}


static void
au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;
	u32 advertise;
	int autoneg;
	int forced_speed;
	int forced_duplex;

	/* Default advertise */
	advertise = GENMII_DEFAULT_ADVERTISE;
	autoneg = aup->want_autoneg;
	forced_speed = SPEED_100;
	forced_duplex = DUPLEX_FULL;

	/* Setup link parameters */
	if (cmd) {
		if (cmd->autoneg == AUTONEG_ENABLE) {
			advertise = cmd->advertising;
			autoneg = 1;
		} else {
			autoneg = 0;

			forced_speed = cmd->speed;
			forced_duplex = cmd->duplex;
		}
	}

	/* Configure PHY & start aneg */
	aup->want_autoneg = autoneg;
	if (autoneg)
		au1000_setup_aneg(dev, advertise);
	else
		au1000_setup_forced(dev, forced_speed, forced_duplex);
	mod_timer(&aup->timer, jiffies + HZ);
}

static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;
	u16 link, speed;

	cmd->supported = GENMII_DEFAULT_FEATURES;
	cmd->advertising = GENMII_DEFAULT_ADVERTISE;
	cmd->port = PORT_MII;
	cmd->transceiver = XCVR_EXTERNAL;
	cmd->phy_address = aup->phy_addr;
	spin_lock_irq(&aup->lock);
	cmd->autoneg = aup->want_autoneg;
	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
	if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX))
		cmd->speed = SPEED_100;
	else if (speed == IF_PORT_10BASET)
		cmd->speed = SPEED_10;
	if (link && (dev->if_port == IF_PORT_100BASEFX))
		cmd->duplex = DUPLEX_FULL;
	else
		cmd->duplex = DUPLEX_HALF;
	spin_unlock_irq(&aup->lock);
	return 0;
}

static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	 struct au1000_private *aup = (struct au1000_private *)dev->priv;
	  unsigned long features = GENMII_DEFAULT_FEATURES;

	 if (!capable(CAP_NET_ADMIN))
		 return -EPERM;

	 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
		 return -EINVAL;
	 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
		 return -EINVAL;
	 if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
		 return -EINVAL;
	 if (cmd->autoneg == AUTONEG_DISABLE)
		 switch (cmd->speed) {
		 case SPEED_10:
			 if (cmd->duplex == DUPLEX_HALF &&
				 (features & SUPPORTED_10baseT_Half) == 0)
				 return -EINVAL;
			 if (cmd->duplex == DUPLEX_FULL &&
				 (features & SUPPORTED_10baseT_Full) == 0)
				 return -EINVAL;
			 break;
		 case SPEED_100:
			 if (cmd->duplex == DUPLEX_HALF &&
				 (features & SUPPORTED_100baseT_Half) == 0)
				 return -EINVAL;
			 if (cmd->duplex == DUPLEX_FULL &&
				 (features & SUPPORTED_100baseT_Full) == 0)
				 return -EINVAL;
			 break;
		 default:
			 return -EINVAL;
		 }
	 else if ((features & SUPPORTED_Autoneg) == 0)
		 return -EINVAL;

	 spin_lock_irq(&aup->lock);
	 au1000_start_link(dev, cmd);
	 spin_unlock_irq(&aup->lock);
	 return 0;
}

static int au1000_nway_reset(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;

	if (!aup->want_autoneg)
		return -EINVAL;
	spin_lock_irq(&aup->lock);
	au1000_start_link(dev, NULL);
	spin_unlock_irq(&aup->lock);
	return 0;
}

static void
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	info->fw_version[0] = '\0';
	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
	info->regdump_len = 0;
}

static u32 au1000_get_link(struct net_device *dev)
{
	return netif_carrier_ok(dev);
}

static struct ethtool_ops au1000_ethtool_ops = {
	.get_settings = au1000_get_settings,
	.set_settings = au1000_set_settings,
	.get_drvinfo = au1000_get_drvinfo,
	.nway_reset = au1000_nway_reset,
	.get_link = au1000_get_link
};

static struct net_device *
au1000_probe(u32 ioaddr, int irq, int port_num)
{
	static unsigned version_printed = 0;
	struct au1000_private *aup = NULL;
	struct net_device *dev = NULL;
	db_dest_t *pDB, *pDBfree;
	char *pmac, *argptr;
	char ethaddr[6];
	int i, err;

	if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET"))
		return NULL;

	if (version_printed++ == 0) 
		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);

	dev = alloc_etherdev(sizeof(struct au1000_private));
	if (!dev) {
		printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n");  
		return NULL;
	}

	if ((err = register_netdev(dev))) {
		printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n",
				err);
		free_netdev(dev);
		return NULL;
	}

	printk("%s: Au1x Ethernet found at 0x%x, irq %d\n", 
			dev->name, ioaddr, irq);

	aup = dev->priv;

	/* Allocate the data buffers */
	/* Snooping works fine with eth on all au1xxx */
	aup->vaddr = (u32)dma_alloc_noncoherent(NULL,
			MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
			&aup->dma_addr,
			0);
	if (!aup->vaddr) {
		free_netdev(dev);
		release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE);
		return NULL;
	}

	/* aup->mac is the base address of the MAC's registers */
	aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr);
	/* Setup some variables for quick register address access */
	if (ioaddr == iflist[0].base_addr)
	{
		/* check env variables first */
		if (!get_ethernet_addr(ethaddr)) { 
			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
		} else {
			/* Check command line */
			argptr = prom_getcmdline();
			if ((pmac = strstr(argptr, "ethaddr=")) == NULL) {
				printk(KERN_INFO "%s: No mac address found\n", 
						dev->name);
				/* use the hard coded mac addresses */
			} else {
				str2eaddr(ethaddr, pmac + strlen("ethaddr="));
				memcpy(au1000_mac_addr, ethaddr, 
						sizeof(au1000_mac_addr));
			}
		}
			aup->enable = (volatile u32 *) 
				((unsigned long)iflist[0].macen_addr);
		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
		aup->mac_id = 0;
		au_macs[0] = aup;
	}
		else
	if (ioaddr == iflist[1].base_addr)
	{
			aup->enable = (volatile u32 *) 
				((unsigned long)iflist[1].macen_addr);
		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
		dev->dev_addr[4] += 0x10;
		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
		aup->mac_id = 1;
		au_macs[1] = aup;
	}
	else
	{
		printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
	}

	/* bring the device out of reset, otherwise probing the mii
	 * will hang */
	*aup->enable = MAC_EN_CLOCK_ENABLE;
	au_sync_delay(2);
	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | 
		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
	au_sync_delay(2);

	aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL);
	if (!aup->mii) {
		printk(KERN_ERR "%s: out of memory\n", dev->name);
		goto err_out;
	}
	aup->mii->next = NULL;
	aup->mii->chip_info = NULL;
	aup->mii->status = 0;
	aup->mii->mii_control_reg = 0;
	aup->mii->mii_data_reg = 0;

	if (mii_probe(dev) != 0) {
		goto err_out;
	}

	pDBfree = NULL;
	/* setup the data buffer descriptors and attach a buffer to each one */
	pDB = aup->db;
	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
		pDB->pnext = pDBfree;
		pDBfree = pDB;
		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
		pDB++;
	}
	aup->pDBfree = pDBfree;

	for (i = 0; i < NUM_RX_DMA; i++) {
		pDB = GetFreeDB(aup);
		if (!pDB) {
			goto err_out;
		}
		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
		aup->rx_db_inuse[i] = pDB;
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		pDB = GetFreeDB(aup);
		if (!pDB) {
			goto err_out;
		}
		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
		aup->tx_dma_ring[i]->len = 0;
		aup->tx_db_inuse[i] = pDB;
	}

	spin_lock_init(&aup->lock);
	dev->base_addr = ioaddr;
	dev->irq = irq;
	dev->open = au1000_open;
	dev->hard_start_xmit = au1000_tx;
	dev->stop = au1000_close;
	dev->get_stats = au1000_get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &au1000_ioctl;
	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
	dev->set_config = &au1000_set_config;
	dev->tx_timeout = au1000_tx_timeout;
	dev->watchdog_timeo = ETH_TX_TIMEOUT;

	/* 
	 * The boot code uses the ethernet controller, so reset it to start 
	 * fresh.  au1000_init() expects that the device is in reset state.
	 */
	reset_mac(dev);

	return dev;

err_out:
	/* here we should have a valid dev plus aup-> register addresses
	 * so we can reset the mac properly.*/
	reset_mac(dev);
	if (aup->mii)
		kfree(aup->mii);
	for (i = 0; i < NUM_RX_DMA; i++) {
		if (aup->rx_db_inuse[i])
			ReleaseDB(aup, aup->rx_db_inuse[i]);
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		if (aup->tx_db_inuse[i])
			ReleaseDB(aup, aup->tx_db_inuse[i]);
	}
	dma_free_noncoherent(NULL,
			MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
			(void *)aup->vaddr,
			aup->dma_addr);
	unregister_netdev(dev);
	free_netdev(dev);
	release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE);
	return NULL;
}

/* 
 * Initialize the interface.
 *
 * When the device powers up, the clocks are disabled and the
 * mac is in reset state.  When the interface is closed, we
 * do the same -- reset the device and disable the clocks to
 * conserve power. Thus, whenever au1000_init() is called,
 * the device should already be in reset state.
 */
static int au1000_init(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u32 flags;
	int i;
	u32 control;
	u16 link, speed;

	if (au1000_debug > 4) 
		printk("%s: au1000_init\n", dev->name);

	spin_lock_irqsave(&aup->lock, flags);

	/* bring the device out of reset */
	*aup->enable = MAC_EN_CLOCK_ENABLE;
        au_sync_delay(2);
	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | 
		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
	au_sync_delay(20);

	aup->mac->control = 0;
	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
	aup->tx_tail = aup->tx_head;
	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;

	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
		dev->dev_addr[1]<<8 | dev->dev_addr[0];

	for (i = 0; i < NUM_RX_DMA; i++) {
		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
	}
	au_sync();

	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
	control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
	control |= MAC_BIG_ENDIAN;
#endif
	if (link && (dev->if_port == IF_PORT_100BASEFX)) {
		control |= MAC_FULL_DUPLEX;
	}

	aup->mac->control = control;
	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
	au_sync();

	spin_unlock_irqrestore(&aup->lock, flags);
	return 0;
}

static void au1000_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	unsigned char if_port;
	u16 link, speed;

	if (!dev) {
		/* fatal error, don't restart the timer */
		printk(KERN_ERR "au1000_timer error: NULL dev\n");
		return;
	}

	if_port = dev->if_port;
	if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
		if (link) {
			if (!netif_carrier_ok(dev)) {
				netif_carrier_on(dev);
				printk(KERN_INFO "%s: link up\n", dev->name);
			}
		}
		else {
			if (netif_carrier_ok(dev)) {
				netif_carrier_off(dev);
				dev->if_port = 0;
				printk(KERN_INFO "%s: link down\n", dev->name);
			}
		}
	}

	if (link && (dev->if_port != if_port) && 
			(dev->if_port != IF_PORT_UNKNOWN)) {
		hard_stop(dev);
		if (dev->if_port == IF_PORT_100BASEFX) {
			printk(KERN_INFO "%s: going to full duplex\n", 
					dev->name);
			aup->mac->control |= MAC_FULL_DUPLEX;
			au_sync_delay(1);
		}
		else {
			aup->mac->control &= ~MAC_FULL_DUPLEX;
			au_sync_delay(1);
		}
		enable_rx_tx(dev);
	}

	aup->timer.expires = RUN_AT((1*HZ)); 
	aup->timer.data = (unsigned long)dev;
	aup->timer.function = &au1000_timer; /* timer handler */
	add_timer(&aup->timer);

}

static int au1000_open(struct net_device *dev)
{
	int retval;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: open: dev=%p\n", dev->name, dev);

	if ((retval = au1000_init(dev))) {
		printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
		free_irq(dev->irq, dev);
		return retval;
	}
	netif_start_queue(dev);

	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, 
					dev->name, dev))) {
		printk(KERN_ERR "%s: unable to get IRQ %d\n", 
				dev->name, dev->irq);
		return retval;
	}

	init_timer(&aup->timer); /* used in ioctl() */
	aup->timer.expires = RUN_AT((3*HZ)); 
	aup->timer.data = (unsigned long)dev;
	aup->timer.function = &au1000_timer; /* timer handler */
	add_timer(&aup->timer);

	if (au1000_debug > 4)
		printk("%s: open: Initialization done.\n", dev->name);

	return 0;
}

static int au1000_close(struct net_device *dev)
{
	u32 flags;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: close: dev=%p\n", dev->name, dev);

	reset_mac(dev);

	spin_lock_irqsave(&aup->lock, flags);
	
	/* stop the device */
	netif_stop_queue(dev);

	/* disable the interrupt */
	free_irq(dev->irq, dev);
	spin_unlock_irqrestore(&aup->lock, flags);

	return 0;
}

static void __exit au1000_cleanup_module(void)
{
	int i, j;
	struct net_device *dev;
	struct au1000_private *aup;

	for (i = 0; i < num_ifs; i++) {
		dev = iflist[i].dev;
		if (dev) {
			aup = (struct au1000_private *) dev->priv;
			unregister_netdev(dev);
			if (aup->mii)
				kfree(aup->mii);
			for (j = 0; j < NUM_RX_DMA; j++) {
				if (aup->rx_db_inuse[j])
					ReleaseDB(aup, aup->rx_db_inuse[j]);
			}
			for (j = 0; j < NUM_TX_DMA; j++) {
				if (aup->tx_db_inuse[j])
					ReleaseDB(aup, aup->tx_db_inuse[j]);
			}
			dma_free_noncoherent(NULL,
					MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
					(void *)aup->vaddr,
					aup->dma_addr);
			free_netdev(dev);
			release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE);
		}
	}
}


static inline void 
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;

	ps->tx_packets++;
	ps->tx_bytes += pkt_len;

	if (status & TX_FRAME_ABORTED) {
		if (dev->if_port == IF_PORT_100BASEFX) {
			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
				/* any other tx errors are only valid
				 * in half duplex mode */
				ps->tx_errors++;
				ps->tx_aborted_errors++;
			}
		}
		else {
			ps->tx_errors++;
			ps->tx_aborted_errors++;
			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
				ps->tx_carrier_errors++;
		}
	}
}


/*
 * Called from the interrupt service routine to acknowledge
 * the TX DONE bits.  This is a must if the irq is setup as
 * edge triggered.
 */
static void au1000_tx_ack(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile tx_dma_t *ptxd;

	ptxd = aup->tx_dma_ring[aup->tx_tail];

	while (ptxd->buff_stat & TX_T_DONE) {
		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
		ptxd->buff_stat &= ~TX_T_DONE;
		ptxd->len = 0;
		au_sync();

		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
		ptxd = aup->tx_dma_ring[aup->tx_tail];

		if (aup->tx_full) {
			aup->tx_full = 0;
			netif_wake_queue(dev);
		}
	}
}


/*
 * Au1000 transmit routine.
 */
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile tx_dma_t *ptxd;
	u32 buff_stat;
	db_dest_t *pDB;
	int i;

	if (au1000_debug > 5)
		printk("%s: tx: aup %x len=%d, data=%p, head %d\n", 
				dev->name, (unsigned)aup, skb->len, 
				skb->data, aup->tx_head);

	ptxd = aup->tx_dma_ring[aup->tx_head];
	buff_stat = ptxd->buff_stat;
	if (buff_stat & TX_DMA_ENABLE) {
		/* We've wrapped around and the transmitter is still busy */
		netif_stop_queue(dev);
		aup->tx_full = 1;
		return 1;
	}
	else if (buff_stat & TX_T_DONE) {
		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
		ptxd->len = 0;
	}

	if (aup->tx_full) {
		aup->tx_full = 0;
		netif_wake_queue(dev);
	}

	pDB = aup->tx_db_inuse[aup->tx_head];
	memcpy((void *)pDB->vaddr, skb->data, skb->len);
	if (skb->len < ETH_ZLEN) {
		for (i=skb->len; i<ETH_ZLEN; i++) { 
			((char *)pDB->vaddr)[i] = 0;
		}
		ptxd->len = ETH_ZLEN;
	}
	else
		ptxd->len = skb->len;

	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
	au_sync();
	dev_kfree_skb(skb);
	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
	dev->trans_start = jiffies;
	return 0;
}


static inline void update_rx_stats(struct net_device *dev, u32 status)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;

	ps->rx_packets++;
	if (status & RX_MCAST_FRAME)
		ps->multicast++;

	if (status & RX_ERROR) {
		ps->rx_errors++;
		if (status & RX_MISSED_FRAME)
			ps->rx_missed_errors++;
		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
			ps->rx_length_errors++;
		if (status & RX_CRC_ERROR)
			ps->rx_crc_errors++;
		if (status & RX_COLL)
			ps->collisions++;
	}
	else 
		ps->rx_bytes += status & RX_FRAME_LEN_MASK;

}

/*
 * Au1000 receive routine.
 */
static int au1000_rx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct sk_buff *skb;
	volatile rx_dma_t *prxd;
	u32 buff_stat, status;
	db_dest_t *pDB;
	u32	frmlen;

	if (au1000_debug > 5)
		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);

	prxd = aup->rx_dma_ring[aup->rx_head];
	buff_stat = prxd->buff_stat;
	while (buff_stat & RX_T_DONE)  {
		status = prxd->status;
		pDB = aup->rx_db_inuse[aup->rx_head];
		update_rx_stats(dev, status);
		if (!(status & RX_ERROR))  {

			/* good frame */
			frmlen = (status & RX_FRAME_LEN_MASK);
			frmlen -= 4; /* Remove FCS */
			skb = dev_alloc_skb(frmlen + 2);
			if (skb == NULL) {
				printk(KERN_ERR
				       "%s: Memory squeeze, dropping packet.\n",
				       dev->name);
				aup->stats.rx_dropped++;
				continue;
			}
			skb->dev = dev;
			skb_reserve(skb, 2);	/* 16 byte IP header align */
			eth_copy_and_sum(skb,
				(unsigned char *)pDB->vaddr, frmlen, 0);
			skb_put(skb, frmlen);
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);	/* pass the packet to upper layers */
		}
		else {
			if (au1000_debug > 4) {
				if (status & RX_MISSED_FRAME) 
					printk("rx miss\n");
				if (status & RX_WDOG_TIMER) 
					printk("rx wdog\n");
				if (status & RX_RUNT) 
					printk("rx runt\n");
				if (status & RX_OVERLEN) 
					printk("rx overlen\n");
				if (status & RX_COLL)
					printk("rx coll\n");
				if (status & RX_MII_ERROR)
					printk("rx mii error\n");
				if (status & RX_CRC_ERROR)
					printk("rx crc error\n");
				if (status & RX_LEN_ERROR)
					printk("rx len error\n");
				if (status & RX_U_CNTRL_FRAME)
					printk("rx u control frame\n");
				if (status & RX_MISSED_FRAME)
					printk("rx miss\n");
			}
		}
		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
		au_sync();

		/* next descriptor */
		prxd = aup->rx_dma_ring[aup->rx_head];
		buff_stat = prxd->buff_stat;
		dev->last_rx = jiffies;
	}
	return 0;
}


/*
 * Au1000 interrupt service routine.
 */
static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *) dev_id;

	if (dev == NULL) {
		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
		return IRQ_RETVAL(1);
	}

	/* Handle RX interrupts first to minimize chance of overrun */

	au1000_rx(dev);
	au1000_tx_ack(dev);
	return IRQ_RETVAL(1);
}


/*
 * The Tx ring has been full longer than the watchdog timeout
 * value. The transmitter must be hung?
 */
static void au1000_tx_timeout(struct net_device *dev)
{
	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
	reset_mac(dev);
	au1000_init(dev);
	dev->trans_start = jiffies;
	netif_wake_queue(dev);
}


static unsigned const ethernet_polynomial = 0x04c11db7U;
static inline u32 ether_crc(int length, unsigned char *data)
{
    int crc = -1;

    while(--length >= 0) {
		unsigned char current_octet = *data++;
		int bit;
		for (bit = 0; bit < 8; bit++, current_octet >>= 1)
			crc = (crc << 1) ^
				((crc < 0) ^ (current_octet & 1) ? 
				 ethernet_polynomial : 0);
    }
    return crc;
}

static void set_rx_mode(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4) 
		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		aup->mac->control |= MAC_PROMISCUOUS;
		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
	} else if ((dev->flags & IFF_ALLMULTI)  ||
			   dev->mc_count > MULTICAST_FILTER_LIMIT) {
		aup->mac->control |= MAC_PASS_ALL_MULTI;
		aup->mac->control &= ~MAC_PROMISCUOUS;
		printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
	} else {
		int i;
		struct dev_mc_list *mclist;
		u32 mc_filter[2];	/* Multicast hash filter */

		mc_filter[1] = mc_filter[0] = 0;
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			 i++, mclist = mclist->next) {
			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, 
					(long *)mc_filter);
		}
		aup->mac->multi_hash_high = mc_filter[1];
		aup->mac->multi_hash_low = mc_filter[0];
		aup->mac->control &= ~MAC_PROMISCUOUS;
		aup->mac->control |= MAC_HASH_MODE;
	}
}


static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;
	u16 *data = (u16 *)&rq->ifr_ifru;

	switch(cmd) { 
		case SIOCDEVPRIVATE:	/* Get the address of the PHY in use. */
		case SIOCGMIIPHY:
		        if (!netif_running(dev)) return -EINVAL;
			data[0] = aup->phy_addr;
		case SIOCDEVPRIVATE+1:	/* Read the specified MII register. */
		case SIOCGMIIREG:
			data[3] =  mdio_read(dev, data[0], data[1]); 
			return 0;
		case SIOCDEVPRIVATE+2:	/* Write the specified MII register */
		case SIOCSMIIREG: 
			if (!capable(CAP_NET_ADMIN))
				return -EPERM;
			mdio_write(dev, data[0], data[1],data[2]);
			return 0;
		default:
			return -EOPNOTSUPP;
	}

}


static int au1000_set_config(struct net_device *dev, struct ifmap *map)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u16 control;

	if (au1000_debug > 4)  {
		printk("%s: set_config called: dev->if_port %d map->port %x\n", 
				dev->name, dev->if_port, map->port);
	}

	switch(map->port){
		case IF_PORT_UNKNOWN: /* use auto here */   
			printk(KERN_INFO "%s: config phy for aneg\n", 
					dev->name);
			dev->if_port = map->port;
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);
	
			/* read current control */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~(MII_CNTL_FDX | MII_CNTL_F100);

			/* enable auto negotiation and reset the negotiation */
			mdio_write(dev, aup->phy_addr, MII_CONTROL, 
					control | MII_CNTL_AUTO | 
					MII_CNTL_RST_AUTO);

			break;
    
		case IF_PORT_10BASET: /* 10BaseT */         
			printk(KERN_INFO "%s: config phy for 10BaseT\n", 
					dev->name);
			dev->if_port = map->port;
	
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);

			/* set Speed to 10Mbps, Half Duplex */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | 
					MII_CNTL_FDX);
	
			/* disable auto negotiation and force 10M/HD mode*/
			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
			break;
    
		case IF_PORT_100BASET: /* 100BaseT */
		case IF_PORT_100BASETX: /* 100BaseTx */ 
			printk(KERN_INFO "%s: config phy for 100BaseTX\n", 
					dev->name);
			dev->if_port = map->port;
	
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);
	
			/* set Speed to 100Mbps, Half Duplex */
			/* disable auto negotiation and enable 100MBit Mode */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
			control |= MII_CNTL_F100;
			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
			break;
    
		case IF_PORT_100BASEFX: /* 100BaseFx */
			printk(KERN_INFO "%s: config phy for 100BaseFX\n", 
					dev->name);
			dev->if_port = map->port;
	
			/* Link Down: the timer will bring it up */
			netif_carrier_off(dev);
	
			/* set Speed to 100Mbps, Full Duplex */
			/* disable auto negotiation and enable 100MBit Mode */
			control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
			control &= ~MII_CNTL_AUTO;
			control |=  MII_CNTL_F100 | MII_CNTL_FDX;
			mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
			break;
		case IF_PORT_10BASE2: /* 10Base2 */
		case IF_PORT_AUI: /* AUI */
		/* These Modes are not supported (are they?)*/
			printk(KERN_ERR "%s: 10Base2/AUI not supported", 
					dev->name);
			return -EOPNOTSUPP;
			break;
    
		default:
			printk(KERN_ERR "%s: Invalid media selected", 
					dev->name);
			return -EINVAL;
	}
	return 0;
}

static struct net_device_stats *au1000_get_stats(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);

	if (netif_device_present(dev)) {
		return &aup->stats;
	}
	return 0;
}

module_init(au1000_init_module);
module_exit(au1000_cleanup_module);