summaryrefslogtreecommitdiff
path: root/drivers/mtd/ubi/vtbl.c
blob: bc5df50813d67cc2cbd8bd635dbd8e11657cbb8c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
 * Copyright (c) International Business Machines Corp., 2006
 * Copyright (c) Nokia Corporation, 2006, 2007
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
 * the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * Author: Artem Bityutskiy (Битюцкий Артём)
 */

/*
 * This file includes volume table manipulation code. The volume table is an
 * on-flash table containing volume meta-data like name, number of reserved
 * physical eraseblocks, type, etc. The volume table is stored in the so-called
 * "layout volume".
 *
 * The layout volume is an internal volume which is organized as follows. It
 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
 * other. This redundancy guarantees robustness to unclean reboots. The volume
 * table is basically an array of volume table records. Each record contains
 * full information about the volume and protected by a CRC checksum.
 *
 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
 * erased, and the updated volume table is written back to LEB 0. Then same for
 * LEB 1. This scheme guarantees recoverability from unclean reboots.
 *
 * In this UBI implementation the on-flash volume table does not contain any
 * information about how many data static volumes contain. This information may
 * be found from the scanning data.
 *
 * But it would still be beneficial to store this information in the volume
 * table. For example, suppose we have a static volume X, and all its physical
 * eraseblocks became bad for some reasons. Suppose we are attaching the
 * corresponding MTD device, the scanning has found no logical eraseblocks
 * corresponding to the volume X. According to the volume table volume X does
 * exist. So we don't know whether it is just empty or all its physical
 * eraseblocks went bad. So we cannot alarm the user about this corruption.
 *
 * The volume table also stores so-called "update marker", which is used for
 * volume updates. Before updating the volume, the update marker is set, and
 * after the update operation is finished, the update marker is cleared. So if
 * the update operation was interrupted (e.g. by an unclean reboot) - the
 * update marker is still there and we know that the volume's contents is
 * damaged.
 */

#include <linux/crc32.h>
#include <linux/err.h>
#include <asm/div64.h>
#include "ubi.h"

#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
static void paranoid_vtbl_check(const struct ubi_device *ubi);
#else
#define paranoid_vtbl_check(ubi)
#endif

/* Empty volume table record */
static struct ubi_vtbl_record empty_vtbl_record;

/**
 * ubi_change_vtbl_record - change volume table record.
 * @ubi: UBI device description object
 * @idx: table index to change
 * @vtbl_rec: new volume table record
 *
 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
 * volume table record is written. The caller does not have to calculate CRC of
 * the record as it is done by this function. Returns zero in case of success
 * and a negative error code in case of failure.
 */
int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
			   struct ubi_vtbl_record *vtbl_rec)
{
	int i, err;
	uint32_t crc;

	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);

	if (!vtbl_rec)
		vtbl_rec = &empty_vtbl_record;
	else {
		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
		vtbl_rec->crc = cpu_to_be32(crc);
	}

	mutex_lock(&ubi->vtbl_mutex);
	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
		err = ubi_eba_unmap_leb(ubi, UBI_LAYOUT_VOL_ID, i);
		if (err) {
			mutex_unlock(&ubi->vtbl_mutex);
			return err;
		}
		err = ubi_eba_write_leb(ubi, UBI_LAYOUT_VOL_ID, i, ubi->vtbl, 0,
					ubi->vtbl_size, UBI_LONGTERM);
		if (err) {
			mutex_unlock(&ubi->vtbl_mutex);
			return err;
		}
	}

	paranoid_vtbl_check(ubi);
	mutex_unlock(&ubi->vtbl_mutex);
	return ubi_wl_flush(ubi);
}

/**
 * vol_til_check - check if volume table is not corrupted and contains sensible
 * data.
 *
 * @ubi: UBI device description object
 * @vtbl: volume table
 *
 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
 * and %-EINVAL if it contains inconsistent data.
 */
static int vtbl_check(const struct ubi_device *ubi,
		      const struct ubi_vtbl_record *vtbl)
{
	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
	int upd_marker;
	uint32_t crc;
	const char *name;

	for (i = 0; i < ubi->vtbl_slots; i++) {
		cond_resched();

		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
		alignment = be32_to_cpu(vtbl[i].alignment);
		data_pad = be32_to_cpu(vtbl[i].data_pad);
		upd_marker = vtbl[i].upd_marker;
		vol_type = vtbl[i].vol_type;
		name_len = be16_to_cpu(vtbl[i].name_len);
		name = &vtbl[i].name[0];

		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
		if (be32_to_cpu(vtbl[i].crc) != crc) {
			ubi_err("bad CRC at record %u: %#08x, not %#08x",
				 i, crc, be32_to_cpu(vtbl[i].crc));
			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
			return 1;
		}

		if (reserved_pebs == 0) {
			if (memcmp(&vtbl[i], &empty_vtbl_record,
						UBI_VTBL_RECORD_SIZE)) {
				dbg_err("bad empty record");
				goto bad;
			}
			continue;
		}

		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
		    name_len < 0) {
			dbg_err("negative values");
			goto bad;
		}

		if (alignment > ubi->leb_size || alignment == 0) {
			dbg_err("bad alignment");
			goto bad;
		}

		n = alignment % ubi->min_io_size;
		if (alignment != 1 && n) {
			dbg_err("alignment is not multiple of min I/O unit");
			goto bad;
		}

		n = ubi->leb_size % alignment;
		if (data_pad != n) {
			dbg_err("bad data_pad, has to be %d", n);
			goto bad;
		}

		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
			dbg_err("bad vol_type");
			goto bad;
		}

		if (upd_marker != 0 && upd_marker != 1) {
			dbg_err("bad upd_marker");
			goto bad;
		}

		if (reserved_pebs > ubi->good_peb_count) {
			dbg_err("too large reserved_pebs, good PEBs %d",
				ubi->good_peb_count);
			goto bad;
		}

		if (name_len > UBI_VOL_NAME_MAX) {
			dbg_err("too long volume name, max %d",
				UBI_VOL_NAME_MAX);
			goto bad;
		}

		if (name[0] == '\0') {
			dbg_err("NULL volume name");
			goto bad;
		}

		if (name_len != strnlen(name, name_len + 1)) {
			dbg_err("bad name_len");
			goto bad;
		}
	}

	/* Checks that all names are unique */
	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
		for (n = i + 1; n < ubi->vtbl_slots; n++) {
			int len1 = be16_to_cpu(vtbl[i].name_len);
			int len2 = be16_to_cpu(vtbl[n].name_len);

			if (len1 > 0 && len1 == len2 &&
			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
				ubi_err("volumes %d and %d have the same name"
					" \"%s\"", i, n, vtbl[i].name);
				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
				return -EINVAL;
			}
		}
	}

	return 0;

bad:
	ubi_err("volume table check failed, record %d", i);
	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
	return -EINVAL;
}

/**
 * create_vtbl - create a copy of volume table.
 * @ubi: UBI device description object
 * @si: scanning information
 * @copy: number of the volume table copy
 * @vtbl: contents of the volume table
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
static int create_vtbl(const struct ubi_device *ubi, struct ubi_scan_info *si,
		       int copy, void *vtbl)
{
	int err, tries = 0;
	static struct ubi_vid_hdr *vid_hdr;
	struct ubi_scan_volume *sv;
	struct ubi_scan_leb *new_seb, *old_seb = NULL;

	ubi_msg("create volume table (copy #%d)", copy + 1);

	vid_hdr = ubi_zalloc_vid_hdr(ubi);
	if (!vid_hdr)
		return -ENOMEM;

	/*
	 * Check if there is a logical eraseblock which would have to contain
	 * this volume table copy was found during scanning. It has to be wiped
	 * out.
	 */
	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
	if (sv)
		old_seb = ubi_scan_find_seb(sv, copy);

retry:
	new_seb = ubi_scan_get_free_peb(ubi, si);
	if (IS_ERR(new_seb)) {
		err = PTR_ERR(new_seb);
		goto out_free;
	}

	vid_hdr->vol_type = UBI_VID_DYNAMIC;
	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOL_ID);
	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
	vid_hdr->data_size = vid_hdr->used_ebs =
			     vid_hdr->data_pad = cpu_to_be32(0);
	vid_hdr->lnum = cpu_to_be32(copy);
	vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
	vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);

	/* The EC header is already there, write the VID header */
	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
	if (err)
		goto write_error;

	/* Write the layout volume contents */
	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
	if (err)
		goto write_error;

	/*
	 * And add it to the scanning information. Don't delete the old
	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
	 */
	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
				vid_hdr, 0);
	kfree(new_seb);
	ubi_free_vid_hdr(ubi, vid_hdr);
	return err;

write_error:
	if (err == -EIO && ++tries <= 5) {
		/*
		 * Probably this physical eraseblock went bad, try to pick
		 * another one.
		 */
		list_add_tail(&new_seb->u.list, &si->corr);
		goto retry;
	}
	kfree(new_seb);
out_free:
	ubi_free_vid_hdr(ubi, vid_hdr);
	return err;

}

/**
 * process_lvol - process the layout volume.
 * @ubi: UBI device description object
 * @si: scanning information
 * @sv: layout volume scanning information
 *
 * This function is responsible for reading the layout volume, ensuring it is
 * not corrupted, and recovering from corruptions if needed. Returns volume
 * table in case of success and a negative error code in case of failure.
 */
static struct ubi_vtbl_record *process_lvol(const struct ubi_device *ubi,
					    struct ubi_scan_info *si,
					    struct ubi_scan_volume *sv)
{
	int err;
	struct rb_node *rb;
	struct ubi_scan_leb *seb;
	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};

	/*
	 * UBI goes through the following steps when it changes the layout
	 * volume:
	 * a. erase LEB 0;
	 * b. write new data to LEB 0;
	 * c. erase LEB 1;
	 * d. write new data to LEB 1.
	 *
	 * Before the change, both LEBs contain the same data.
	 *
	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
	 * finally, unclean reboots may result in a situation when neither LEB
	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
	 * 0 contains more recent information.
	 *
	 * So the plan is to first check LEB 0. Then
	 * a. if LEB 0 is OK, it must be containing the most resent data; then
	 *    we compare it with LEB 1, and if they are different, we copy LEB
	 *    0 to LEB 1;
	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
	 *    to LEB 0.
	 */

	dbg_msg("check layout volume");

	/* Read both LEB 0 and LEB 1 into memory */
	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
		leb[seb->lnum] = vmalloc(ubi->vtbl_size);
		if (!leb[seb->lnum]) {
			err = -ENOMEM;
			goto out_free;
		}
		memset(leb[seb->lnum], 0, ubi->vtbl_size);

		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
				       ubi->vtbl_size);
		if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
			/* Scrub the PEB later */
			seb->scrub = 1;
		else if (err)
			goto out_free;
	}

	err = -EINVAL;
	if (leb[0]) {
		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
		if (leb_corrupted[0] < 0)
			goto out_free;
	}

	if (!leb_corrupted[0]) {
		/* LEB 0 is OK */
		if (leb[1])
			leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
		if (leb_corrupted[1]) {
			ubi_warn("volume table copy #2 is corrupted");
			err = create_vtbl(ubi, si, 1, leb[0]);
			if (err)
				goto out_free;
			ubi_msg("volume table was restored");
		}

		/* Both LEB 1 and LEB 2 are OK and consistent */
		vfree(leb[1]);
		return leb[0];
	} else {
		/* LEB 0 is corrupted or does not exist */
		if (leb[1]) {
			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
			if (leb_corrupted[1] < 0)
				goto out_free;
		}
		if (leb_corrupted[1]) {
			/* Both LEB 0 and LEB 1 are corrupted */
			ubi_err("both volume tables are corrupted");
			goto out_free;
		}

		ubi_warn("volume table copy #1 is corrupted");
		err = create_vtbl(ubi, si, 0, leb[1]);
		if (err)
			goto out_free;
		ubi_msg("volume table was restored");

		vfree(leb[0]);
		return leb[1];
	}

out_free:
	vfree(leb[0]);
	vfree(leb[1]);
	return ERR_PTR(err);
}

/**
 * create_empty_lvol - create empty layout volume.
 * @ubi: UBI device description object
 * @si: scanning information
 *
 * This function returns volume table contents in case of success and a
 * negative error code in case of failure.
 */
static struct ubi_vtbl_record *create_empty_lvol(const struct ubi_device *ubi,
						 struct ubi_scan_info *si)
{
	int i;
	struct ubi_vtbl_record *vtbl;

	vtbl = vmalloc(ubi->vtbl_size);
	if (!vtbl)
		return ERR_PTR(-ENOMEM);
	memset(vtbl, 0, ubi->vtbl_size);

	for (i = 0; i < ubi->vtbl_slots; i++)
		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);

	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
		int err;

		err = create_vtbl(ubi, si, i, vtbl);
		if (err) {
			vfree(vtbl);
			return ERR_PTR(err);
		}
	}

	return vtbl;
}

/**
 * init_volumes - initialize volume information for existing volumes.
 * @ubi: UBI device description object
 * @si: scanning information
 * @vtbl: volume table
 *
 * This function allocates volume description objects for existing volumes.
 * Returns zero in case of success and a negative error code in case of
 * failure.
 */
static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
			const struct ubi_vtbl_record *vtbl)
{
	int i, reserved_pebs = 0;
	struct ubi_scan_volume *sv;
	struct ubi_volume *vol;

	for (i = 0; i < ubi->vtbl_slots; i++) {
		cond_resched();

		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
			continue; /* Empty record */

		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
		if (!vol)
			return -ENOMEM;

		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
		vol->alignment = be32_to_cpu(vtbl[i].alignment);
		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
		vol->name_len = be16_to_cpu(vtbl[i].name_len);
		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
		memcpy(vol->name, vtbl[i].name, vol->name_len);
		vol->name[vol->name_len] = '\0';
		vol->vol_id = i;

		ubi_assert(!ubi->volumes[i]);
		ubi->volumes[i] = vol;
		ubi->vol_count += 1;
		vol->ubi = ubi;
		reserved_pebs += vol->reserved_pebs;

		/*
		 * In case of dynamic volume UBI knows nothing about how many
		 * data is stored there. So assume the whole volume is used.
		 */
		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
			vol->used_ebs = vol->reserved_pebs;
			vol->last_eb_bytes = vol->usable_leb_size;
			vol->used_bytes =
				(long long)vol->used_ebs * vol->usable_leb_size;
			continue;
		}

		/* Static volumes only */
		sv = ubi_scan_find_sv(si, i);
		if (!sv) {
			/*
			 * No eraseblocks belonging to this volume found. We
			 * don't actually know whether this static volume is
			 * completely corrupted or just contains no data. And
			 * we cannot know this as long as data size is not
			 * stored on flash. So we just assume the volume is
			 * empty. FIXME: this should be handled.
			 */
			continue;
		}

		if (sv->leb_count != sv->used_ebs) {
			/*
			 * We found a static volume which misses several
			 * eraseblocks. Treat it as corrupted.
			 */
			ubi_warn("static volume %d misses %d LEBs - corrupted",
				 sv->vol_id, sv->used_ebs - sv->leb_count);
			vol->corrupted = 1;
			continue;
		}

		vol->used_ebs = sv->used_ebs;
		vol->used_bytes =
			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
		vol->used_bytes += sv->last_data_size;
		vol->last_eb_bytes = sv->last_data_size;
	}

	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
	if (!vol)
		return -ENOMEM;

	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
	vol->alignment = 1;
	vol->vol_type = UBI_DYNAMIC_VOLUME;
	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
	vol->usable_leb_size = ubi->leb_size;
	vol->used_ebs = vol->reserved_pebs;
	vol->last_eb_bytes = vol->reserved_pebs;
	vol->used_bytes =
		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
	vol->vol_id = UBI_LAYOUT_VOL_ID;

	ubi_assert(!ubi->volumes[i]);
	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
	reserved_pebs += vol->reserved_pebs;
	ubi->vol_count += 1;
	vol->ubi = ubi;

	if (reserved_pebs > ubi->avail_pebs)
		ubi_err("not enough PEBs, required %d, available %d",
			reserved_pebs, ubi->avail_pebs);
	ubi->rsvd_pebs += reserved_pebs;
	ubi->avail_pebs -= reserved_pebs;

	return 0;
}

/**
 * check_sv - check volume scanning information.
 * @vol: UBI volume description object
 * @sv: volume scanning information
 *
 * This function returns zero if the volume scanning information is consistent
 * to the data read from the volume tabla, and %-EINVAL if not.
 */
static int check_sv(const struct ubi_volume *vol,
		    const struct ubi_scan_volume *sv)
{
	if (sv->highest_lnum >= vol->reserved_pebs) {
		dbg_err("bad highest_lnum");
		goto bad;
	}
	if (sv->leb_count > vol->reserved_pebs) {
		dbg_err("bad leb_count");
		goto bad;
	}
	if (sv->vol_type != vol->vol_type) {
		dbg_err("bad vol_type");
		goto bad;
	}
	if (sv->used_ebs > vol->reserved_pebs) {
		dbg_err("bad used_ebs");
		goto bad;
	}
	if (sv->data_pad != vol->data_pad) {
		dbg_err("bad data_pad");
		goto bad;
	}
	return 0;

bad:
	ubi_err("bad scanning information");
	ubi_dbg_dump_sv(sv);
	ubi_dbg_dump_vol_info(vol);
	return -EINVAL;
}

/**
 * check_scanning_info - check that scanning information.
 * @ubi: UBI device description object
 * @si: scanning information
 *
 * Even though we protect on-flash data by CRC checksums, we still don't trust
 * the media. This function ensures that scanning information is consistent to
 * the information read from the volume table. Returns zero if the scanning
 * information is OK and %-EINVAL if it is not.
 */
static int check_scanning_info(const struct ubi_device *ubi,
			       struct ubi_scan_info *si)
{
	int err, i;
	struct ubi_scan_volume *sv;
	struct ubi_volume *vol;

	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
		ubi_err("scanning found %d volumes, maximum is %d + %d",
			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
		return -EINVAL;
	}

	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
		ubi_err("too large volume ID %d found by scanning",
			si->highest_vol_id);
		return -EINVAL;
	}


	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
		cond_resched();

		sv = ubi_scan_find_sv(si, i);
		vol = ubi->volumes[i];
		if (!vol) {
			if (sv)
				ubi_scan_rm_volume(si, sv);
			continue;
		}

		if (vol->reserved_pebs == 0) {
			ubi_assert(i < ubi->vtbl_slots);

			if (!sv)
				continue;

			/*
			 * During scanning we found a volume which does not
			 * exist according to the information in the volume
			 * table. This must have happened due to an unclean
			 * reboot while the volume was being removed. Discard
			 * these eraseblocks.
			 */
			ubi_msg("finish volume %d removal", sv->vol_id);
			ubi_scan_rm_volume(si, sv);
		} else if (sv) {
			err = check_sv(vol, sv);
			if (err)
				return err;
		}
	}

	return 0;
}

/**
 * ubi_read_volume_table - read volume table.
 * information.
 * @ubi: UBI device description object
 * @si: scanning information
 *
 * This function reads volume table, checks it, recover from errors if needed,
 * or creates it if needed. Returns zero in case of success and a negative
 * error code in case of failure.
 */
int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
{
	int i, err;
	struct ubi_scan_volume *sv;

	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);

	/*
	 * The number of supported volumes is limited by the eraseblock size
	 * and by the UBI_MAX_VOLUMES constant.
	 */
	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
		ubi->vtbl_slots = UBI_MAX_VOLUMES;

	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);

	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOL_ID);
	if (!sv) {
		/*
		 * No logical eraseblocks belonging to the layout volume were
		 * found. This could mean that the flash is just empty. In
		 * this case we create empty layout volume.
		 *
		 * But if flash is not empty this must be a corruption or the
		 * MTD device just contains garbage.
		 */
		if (si->is_empty) {
			ubi->vtbl = create_empty_lvol(ubi, si);
			if (IS_ERR(ubi->vtbl))
				return PTR_ERR(ubi->vtbl);
		} else {
			ubi_err("the layout volume was not found");
			return -EINVAL;
		}
	} else {
		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
			/* This must not happen with proper UBI images */
			dbg_err("too many LEBs (%d) in layout volume",
				sv->leb_count);
			return -EINVAL;
		}

		ubi->vtbl = process_lvol(ubi, si, sv);
		if (IS_ERR(ubi->vtbl))
			return PTR_ERR(ubi->vtbl);
	}

	ubi->avail_pebs = ubi->good_peb_count;

	/*
	 * The layout volume is OK, initialize the corresponding in-RAM data
	 * structures.
	 */
	err = init_volumes(ubi, si, ubi->vtbl);
	if (err)
		goto out_free;

	/*
	 * Get sure that the scanning information is consistent to the
	 * information stored in the volume table.
	 */
	err = check_scanning_info(ubi, si);
	if (err)
		goto out_free;

	return 0;

out_free:
	vfree(ubi->vtbl);
	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
		if (ubi->volumes[i]) {
			kfree(ubi->volumes[i]);
			ubi->volumes[i] = NULL;
		}
	return err;
}

#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID

/**
 * paranoid_vtbl_check - check volume table.
 * @ubi: UBI device description object
 */
static void paranoid_vtbl_check(const struct ubi_device *ubi)
{
	if (vtbl_check(ubi, ubi->vtbl)) {
		ubi_err("paranoid check failed");
		BUG();
	}
}

#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */