summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/vf610_nfc.c
blob: 9814fd4a84cfd59bac00e04c50e3b48b4d0e75b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
/*
 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
 *
 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
 * Jason ported to M54418TWR and MVFA5 (VF610).
 * Authors: Stefan Agner <stefan.agner@toradex.com>
 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
 *          Shaohui Xie <b21989@freescale.com>
 *          Jason Jin <Jason.jin@freescale.com>
 *
 * Based on original driver mpc5121_nfc.c.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Limitations:
 * - Untested on MPC5125 and M54418.
 * - DMA and pipelining not used.
 * - 2K pages or less.
 * - HW ECC: Only 2K page with 64+ OOB.
 * - HW ECC: Only 24 and 32-bit error correction implemented.
 */

#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/swab.h>

#define	DRV_NAME		"vf610_nfc"

/* Register Offsets */
#define NFC_FLASH_CMD1			0x3F00
#define NFC_FLASH_CMD2			0x3F04
#define NFC_COL_ADDR			0x3F08
#define NFC_ROW_ADDR			0x3F0c
#define NFC_ROW_ADDR_INC		0x3F14
#define NFC_FLASH_STATUS1		0x3F18
#define NFC_FLASH_STATUS2		0x3F1c
#define NFC_CACHE_SWAP			0x3F28
#define NFC_SECTOR_SIZE			0x3F2c
#define NFC_FLASH_CONFIG		0x3F30
#define NFC_IRQ_STATUS			0x3F38

/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n)		((n) *  0x1000)

#define PAGE_2K				0x0800
#define OOB_64				0x0040
#define OOB_MAX				0x0100

/* NFC_CMD2[CODE] controller cycle bit masks */
#define COMMAND_CMD_BYTE1		BIT(14)
#define COMMAND_CAR_BYTE1		BIT(13)
#define COMMAND_CAR_BYTE2		BIT(12)
#define COMMAND_RAR_BYTE1		BIT(11)
#define COMMAND_RAR_BYTE2		BIT(10)
#define COMMAND_RAR_BYTE3		BIT(9)
#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
#define COMMAND_WRITE_DATA		BIT(8)
#define COMMAND_CMD_BYTE2		BIT(7)
#define COMMAND_RB_HANDSHAKE		BIT(6)
#define COMMAND_READ_DATA		BIT(5)
#define COMMAND_CMD_BYTE3		BIT(4)
#define COMMAND_READ_STATUS		BIT(3)
#define COMMAND_READ_ID			BIT(2)

/* NFC ECC mode define */
#define ECC_BYPASS			0
#define ECC_45_BYTE			6
#define ECC_60_BYTE			7

/*** Register Mask and bit definitions */

/* NFC_FLASH_CMD1 Field */
#define CMD_BYTE2_MASK				0xFF000000
#define CMD_BYTE2_SHIFT				24

/* NFC_FLASH_CM2 Field */
#define CMD_BYTE1_MASK				0xFF000000
#define CMD_BYTE1_SHIFT				24
#define CMD_CODE_MASK				0x00FFFF00
#define CMD_CODE_SHIFT				8
#define BUFNO_MASK				0x00000006
#define BUFNO_SHIFT				1
#define START_BIT				BIT(0)

/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK				0x0000FFFF
#define COL_ADDR_SHIFT				0
#define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))

/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK				0x00FFFFFF
#define ROW_ADDR_SHIFT				0
#define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))

#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
#define ROW_ADDR_CHIP_SEL_SHIFT			24

/* NFC_FLASH_STATUS2 Field */
#define STATUS_BYTE1_MASK			0x000000FF

/* NFC_FLASH_CONFIG Field */
#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
#define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
#define CONFIG_DMA_REQ_BIT			BIT(20)
#define CONFIG_ECC_MODE_MASK			0x000E0000
#define CONFIG_ECC_MODE_SHIFT			17
#define CONFIG_FAST_FLASH_BIT			BIT(16)
#define CONFIG_16BIT				BIT(7)
#define CONFIG_BOOT_MODE_BIT			BIT(6)
#define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
#define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
#define CONFIG_PAGE_CNT_MASK			0xF
#define CONFIG_PAGE_CNT_SHIFT			0

/* NFC_IRQ_STATUS Field */
#define IDLE_IRQ_BIT				BIT(29)
#define IDLE_EN_BIT				BIT(20)
#define CMD_DONE_CLEAR_BIT			BIT(18)
#define IDLE_CLEAR_BIT				BIT(17)

/*
 * ECC status - seems to consume 8 bytes (double word). The documented
 * status byte is located in the lowest byte of the second word (which is
 * the 4th or 7th byte depending on endianness).
 * Calculate an offset to store the ECC status at the end of the buffer.
 */
#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)

#define ECC_STATUS		0x4
#define ECC_STATUS_MASK		0x80
#define ECC_STATUS_ERR_COUNT	0x3F

enum vf610_nfc_variant {
	NFC_VFC610 = 1,
};

struct vf610_nfc {
	struct nand_chip chip;
	struct device *dev;
	void __iomem *regs;
	struct completion cmd_done;
	/* Status and ID are in alternate locations. */
	enum vf610_nfc_variant variant;
	struct clk *clk;
	/*
	 * Indicate that user data is accessed (full page/oob). This is
	 * useful to indicate the driver whether to swap byte endianness.
	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
	 */
	bool data_access;
	u32 ecc_mode;
};

static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
}

static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
{
	return container_of(chip, struct vf610_nfc, chip);
}

static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
{
	return readl(nfc->regs + reg);
}

static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
{
	writel(val, nfc->regs + reg);
}

static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
{
	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
}

static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
{
	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
}

static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
				       u32 mask, u32 shift, u32 val)
{
	vf610_nfc_write(nfc, reg,
			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
}

static inline bool vf610_nfc_kernel_is_little_endian(void)
{
#ifdef __LITTLE_ENDIAN
	return true;
#else
	return false;
#endif
}

/**
 * Read accessor for internal SRAM buffer
 * @dst: destination address in regular memory
 * @src: source address in SRAM buffer
 * @len: bytes to copy
 * @fix_endian: Fix endianness if required
 *
 * Use this accessor for the internal SRAM buffers. On the ARM
 * Freescale Vybrid SoC it's known that the driver can treat
 * the SRAM buffer as if it's memory. Other platform might need
 * to treat the buffers differently.
 *
 * The controller stores bytes from the NAND chip internally in big
 * endianness. On little endian platforms such as Vybrid this leads
 * to reversed byte order.
 * For performance reason (and earlier probably due to unawareness)
 * the driver avoids correcting endianness where it has control over
 * write and read side (e.g. page wise data access).
 */
static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
					  size_t len, bool fix_endian)
{
	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
		unsigned int i;

		for (i = 0; i < len; i += 4) {
			u32 val = swab32(__raw_readl(src + i));

			memcpy(dst + i, &val, min(sizeof(val), len - i));
		}
	} else {
		memcpy_fromio(dst, src, len);
	}
}

/**
 * Write accessor for internal SRAM buffer
 * @dst: destination address in SRAM buffer
 * @src: source address in regular memory
 * @len: bytes to copy
 * @fix_endian: Fix endianness if required
 *
 * Use this accessor for the internal SRAM buffers. On the ARM
 * Freescale Vybrid SoC it's known that the driver can treat
 * the SRAM buffer as if it's memory. Other platform might need
 * to treat the buffers differently.
 *
 * The controller stores bytes from the NAND chip internally in big
 * endianness. On little endian platforms such as Vybrid this leads
 * to reversed byte order.
 * For performance reason (and earlier probably due to unawareness)
 * the driver avoids correcting endianness where it has control over
 * write and read side (e.g. page wise data access).
 */
static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
					size_t len, bool fix_endian)
{
	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
		unsigned int i;

		for (i = 0; i < len; i += 4) {
			u32 val;

			memcpy(&val, src + i, min(sizeof(val), len - i));
			__raw_writel(swab32(val), dst + i);
		}
	} else {
		memcpy_toio(dst, src, len);
	}
}

/* Clear flags for upcoming command */
static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
{
	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);

	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
}

static void vf610_nfc_done(struct vf610_nfc *nfc)
{
	unsigned long timeout = msecs_to_jiffies(100);

	/*
	 * Barrier is needed after this write. This write need
	 * to be done before reading the next register the first
	 * time.
	 * vf610_nfc_set implicates such a barrier by using writel
	 * to write to the register.
	 */
	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);

	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");

	vf610_nfc_clear_status(nfc);
}

static irqreturn_t vf610_nfc_irq(int irq, void *data)
{
	struct mtd_info *mtd = data;
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
	complete(&nfc->cmd_done);

	return IRQ_HANDLED;
}

static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
{
	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
			    CONFIG_ECC_MODE_MASK,
			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
}

static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
{
	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
}

static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
				 u32 cmd1, u32 cmd2, u32 trfr_sz)
{
	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
			    COL_ADDR_SHIFT, col);

	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
			    ROW_ADDR_SHIFT, row);

	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);

	dev_dbg(nfc->dev,
		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
		col, row, cmd1, cmd2, trfr_sz);

	vf610_nfc_done(nfc);
}

static inline const struct nand_op_instr *
vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
{
	if (*op_id + 1 >= subop->ninstrs)
		return NULL;

	(*op_id)++;

	return &subop->instrs[*op_id];
}

static int vf610_nfc_cmd(struct nand_chip *chip,
			 const struct nand_subop *subop)
{
	const struct nand_op_instr *instr;
	struct vf610_nfc *nfc = chip_to_nfc(chip);
	int op_id = -1, trfr_sz = 0, offset;
	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
	bool force8bit = false;

	/*
	 * Some ops are optional, but the hardware requires the operations
	 * to be in this exact order.
	 * The op parser enforces the order and makes sure that there isn't
	 * a read and write element in a single operation.
	 */
	instr = vf610_get_next_instr(subop, &op_id);
	if (!instr)
		return -EINVAL;

	if (instr && instr->type == NAND_OP_CMD_INSTR) {
		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
		code |= COMMAND_CMD_BYTE1;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
		int i = nand_subop_get_addr_start_off(subop, op_id);

		for (; i < naddrs; i++) {
			u8 val = instr->ctx.addr.addrs[i];

			if (i < 2)
				col |= COL_ADDR(i, val);
			else
				row |= ROW_ADDR(i - 2, val);
		}
		code |= COMMAND_NADDR_BYTES(naddrs);

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
		trfr_sz = nand_subop_get_data_len(subop, op_id);
		offset = nand_subop_get_data_start_off(subop, op_id);
		force8bit = instr->ctx.data.force_8bit;

		/*
		 * Don't fix endianness on page access for historical reasons.
		 * See comment in vf610_nfc_wr_to_sram
		 */
		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
				     instr->ctx.data.buf.out + offset,
				     trfr_sz, !nfc->data_access);
		code |= COMMAND_WRITE_DATA;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_CMD_INSTR) {
		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
		code |= COMMAND_CMD_BYTE2;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
		code |= COMMAND_RB_HANDSHAKE;

		instr = vf610_get_next_instr(subop, &op_id);
	}

	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
		trfr_sz = nand_subop_get_data_len(subop, op_id);
		offset = nand_subop_get_data_start_off(subop, op_id);
		force8bit = instr->ctx.data.force_8bit;

		code |= COMMAND_READ_DATA;
	}

	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);

	cmd2 |= code << CMD_CODE_SHIFT;

	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);

	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
		/*
		 * Don't fix endianness on page access for historical reasons.
		 * See comment in vf610_nfc_rd_from_sram
		 */
		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
				       nfc->regs + NFC_MAIN_AREA(0) + offset,
				       trfr_sz, !nfc->data_access);
	}

	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);

	return 0;
}

static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
	);

static int vf610_nfc_exec_op(struct nand_chip *chip,
			     const struct nand_operation *op,
			     bool check_only)
{
	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
				      check_only);
}

/*
 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
 */
static void vf610_nfc_select_chip(struct nand_chip *chip, int cs)
{
	struct vf610_nfc *nfc = mtd_to_nfc(nand_to_mtd(chip));
	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);

	/* Vybrid only (MPC5125 would have full RB and four CS) */
	if (nfc->variant != NFC_VFC610)
		return;

	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);

	if (cs >= 0) {
		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
		tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
	}

	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
}

static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
					 uint8_t *oob, int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
	u8 ecc_status;
	u8 ecc_count;
	int flips_threshold = nfc->chip.ecc.strength / 2;

	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;

	if (!(ecc_status & ECC_STATUS_MASK))
		return ecc_count;

	nfc->data_access = true;
	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
	nfc->data_access = false;

	/*
	 * On an erased page, bit count (including OOB) should be zero or
	 * at least less then half of the ECC strength.
	 */
	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
					   mtd->oobsize, NULL, 0,
					   flips_threshold);
}

static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
			       u32 *row)
{
	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;

	if (chip->options & NAND_ROW_ADDR_3) {
		*row |= ROW_ADDR(2, page >> 16);
		*code |= COMMAND_RAR_BYTE3;
	}
}

static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
			       int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int trfr_sz = mtd->writesize + mtd->oobsize;
	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
	int stat;

	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;

	vf610_nfc_fill_row(chip, page, &code, &row);

	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;

	cmd2 |= code << CMD_CODE_SHIFT;

	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);

	/*
	 * Don't fix endianness on page access for historical reasons.
	 * See comment in vf610_nfc_rd_from_sram
	 */
	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
			       mtd->writesize, false);
	if (oob_required)
		vf610_nfc_rd_from_sram(chip->oob_poi,
				       nfc->regs + NFC_MAIN_AREA(0) +
						   mtd->writesize,
				       mtd->oobsize, false);

	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
		return 0;
	} else {
		mtd->ecc_stats.corrected += stat;
		return stat;
	}
}

static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
				int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int trfr_sz = mtd->writesize + mtd->oobsize;
	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
	u8 status;
	int ret;

	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;

	vf610_nfc_fill_row(chip, page, &code, &row);

	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;

	/*
	 * Don't fix endianness on page access for historical reasons.
	 * See comment in vf610_nfc_wr_to_sram
	 */
	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
			     mtd->writesize, false);

	code |= COMMAND_RB_HANDSHAKE;
	cmd2 |= code << CMD_CODE_SHIFT;

	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);

	ret = nand_status_op(chip, &status);
	if (ret)
		return ret;

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}

static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
				   int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_read_page_raw(chip, buf, oob_required, page);
	nfc->data_access = false;

	return ret;
}

static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
				    int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
	if (!ret && oob_required)
		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
					 false);
	nfc->data_access = false;

	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
}

static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(nand_to_mtd(chip));
	int ret;

	nfc->data_access = true;
	ret = nand_read_oob_std(chip, page);
	nfc->data_access = false;

	return ret;
}

static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	int ret;

	nfc->data_access = true;
	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
				      chip->oob_poi, mtd->oobsize);
	nfc->data_access = false;

	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
}

static const struct of_device_id vf610_nfc_dt_ids[] = {
	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);

static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
{
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);

	/* Disable virtual pages, only one elementary transfer unit */
	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
			    CONFIG_PAGE_CNT_SHIFT, 1);
}

static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
{
	if (nfc->chip.options & NAND_BUSWIDTH_16)
		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
	else
		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);

	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
		/* Set ECC status offset in SRAM */
		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
				    CONFIG_ECC_SRAM_ADDR_MASK,
				    CONFIG_ECC_SRAM_ADDR_SHIFT,
				    ECC_SRAM_ADDR >> 3);

		/* Enable ECC status in SRAM */
		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
	}
}

static int vf610_nfc_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	vf610_nfc_init_controller(nfc);

	/* Bad block options. */
	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->bbt_options |= NAND_BBT_NO_OOB;

	/* Single buffer only, max 256 OOB minus ECC status */
	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
		dev_err(nfc->dev, "Unsupported flash page size\n");
		return -ENXIO;
	}

	if (chip->ecc.mode != NAND_ECC_HW)
		return 0;

	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
		return -ENXIO;
	}

	if (chip->ecc.size != mtd->writesize) {
		dev_err(nfc->dev, "Step size needs to be page size\n");
		return -ENXIO;
	}

	/* Only 64 byte ECC layouts known */
	if (mtd->oobsize > 64)
		mtd->oobsize = 64;

	/* Use default large page ECC layout defined in NAND core */
	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
	if (chip->ecc.strength == 32) {
		nfc->ecc_mode = ECC_60_BYTE;
		chip->ecc.bytes = 60;
	} else if (chip->ecc.strength == 24) {
		nfc->ecc_mode = ECC_45_BYTE;
		chip->ecc.bytes = 45;
	} else {
		dev_err(nfc->dev, "Unsupported ECC strength\n");
		return -ENXIO;
	}

	chip->ecc.read_page = vf610_nfc_read_page;
	chip->ecc.write_page = vf610_nfc_write_page;
	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
	chip->ecc.read_oob = vf610_nfc_read_oob;
	chip->ecc.write_oob = vf610_nfc_write_oob;

	chip->ecc.size = PAGE_2K;

	return 0;
}

static const struct nand_controller_ops vf610_nfc_controller_ops = {
	.attach_chip = vf610_nfc_attach_chip,
};

static int vf610_nfc_probe(struct platform_device *pdev)
{
	struct vf610_nfc *nfc;
	struct resource *res;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	struct device_node *child;
	const struct of_device_id *of_id;
	int err;
	int irq;

	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = &pdev->dev;
	chip = &nfc->chip;
	mtd = nand_to_mtd(chip);

	mtd->owner = THIS_MODULE;
	mtd->dev.parent = nfc->dev;
	mtd->name = DRV_NAME;

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0)
		return -EINVAL;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(nfc->dev, res);
	if (IS_ERR(nfc->regs))
		return PTR_ERR(nfc->regs);

	nfc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(nfc->clk))
		return PTR_ERR(nfc->clk);

	err = clk_prepare_enable(nfc->clk);
	if (err) {
		dev_err(nfc->dev, "Unable to enable clock!\n");
		return err;
	}

	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
	nfc->variant = (enum vf610_nfc_variant)of_id->data;

	for_each_available_child_of_node(nfc->dev->of_node, child) {
		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {

			if (nand_get_flash_node(chip)) {
				dev_err(nfc->dev,
					"Only one NAND chip supported!\n");
				err = -EINVAL;
				goto err_disable_clk;
			}

			nand_set_flash_node(chip, child);
		}
	}

	if (!nand_get_flash_node(chip)) {
		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
		err = -ENODEV;
		goto err_disable_clk;
	}

	chip->exec_op = vf610_nfc_exec_op;
	chip->select_chip = vf610_nfc_select_chip;

	chip->options |= NAND_NO_SUBPAGE_WRITE;

	init_completion(&nfc->cmd_done);

	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
	if (err) {
		dev_err(nfc->dev, "Error requesting IRQ!\n");
		goto err_disable_clk;
	}

	vf610_nfc_preinit_controller(nfc);

	/* Scan the NAND chip */
	chip->dummy_controller.ops = &vf610_nfc_controller_ops;
	err = nand_scan(chip, 1);
	if (err)
		goto err_disable_clk;

	platform_set_drvdata(pdev, mtd);

	/* Register device in MTD */
	err = mtd_device_register(mtd, NULL, 0);
	if (err)
		goto err_cleanup_nand;
	return 0;

err_cleanup_nand:
	nand_cleanup(chip);
err_disable_clk:
	clk_disable_unprepare(nfc->clk);
	return err;
}

static int vf610_nfc_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	nand_release(mtd_to_nand(mtd));
	clk_disable_unprepare(nfc->clk);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int vf610_nfc_suspend(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	clk_disable_unprepare(nfc->clk);
	return 0;
}

static int vf610_nfc_resume(struct device *dev)
{
	int err;

	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	err = clk_prepare_enable(nfc->clk);
	if (err)
		return err;

	vf610_nfc_preinit_controller(nfc);
	vf610_nfc_init_controller(nfc);
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);

static struct platform_driver vf610_nfc_driver = {
	.driver		= {
		.name	= DRV_NAME,
		.of_match_table = vf610_nfc_dt_ids,
		.pm	= &vf610_nfc_pm_ops,
	},
	.probe		= vf610_nfc_probe,
	.remove		= vf610_nfc_remove,
};

module_platform_driver(vf610_nfc_driver);

MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
MODULE_LICENSE("GPL");