summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/pl35x-nand-controller.c
blob: 8da5fee321b57110da7fbc696dea6f5c0d256d71 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
// SPDX-License-Identifier: GPL-2.0
/*
 * ARM PL35X NAND flash controller driver
 *
 * Copyright (C) 2017 Xilinx, Inc
 * Author:
 *   Miquel Raynal <miquel.raynal@bootlin.com>
 * Original work (rewritten):
 *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
 *   Naga Sureshkumar Relli <nagasure@xilinx.com>
 */

#include <linux/amba/bus.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/clk.h>

#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"

/* SMC controller status register (RO) */
#define PL35X_SMC_MEMC_STATUS 0x0
#define   PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1	BIT(6)
/* SMC clear config register (WO) */
#define PL35X_SMC_MEMC_CFG_CLR 0xC
#define   PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1	BIT(1)
#define   PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1	BIT(4)
#define   PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1	BIT(6)
/* SMC direct command register (WO) */
#define PL35X_SMC_DIRECT_CMD 0x10
#define   PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
#define   PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
/* SMC set cycles register (WO) */
#define PL35X_SMC_CYCLES 0x14
#define   PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
#define   PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
#define   PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
#define   PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
#define   PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
#define   PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
#define   PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
/* SMC set opmode register (WO) */
#define PL35X_SMC_OPMODE 0x18
#define   PL35X_SMC_OPMODE_BW_8 0
#define   PL35X_SMC_OPMODE_BW_16 1
/* SMC ECC status register (RO) */
#define PL35X_SMC_ECC_STATUS 0x400
#define   PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
/* SMC ECC configuration register */
#define PL35X_SMC_ECC_CFG 0x404
#define   PL35X_SMC_ECC_CFG_MODE_MASK 0xC
#define   PL35X_SMC_ECC_CFG_MODE_BYPASS 0
#define   PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
#define   PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
#define   PL35X_SMC_ECC_CFG_PGSIZE_MASK	0x3
/* SMC ECC command 1 register */
#define PL35X_SMC_ECC_CMD1 0x408
#define   PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
#define   PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
#define   PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
#define   PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
/* SMC ECC command 2 register */
#define PL35X_SMC_ECC_CMD2 0x40C
#define   PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
#define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
/* SMC ECC value registers (RO) */
#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
#define   PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
#define   PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
#define   PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))

/* NAND AXI interface */
#define PL35X_SMC_CMD_PHASE 0
#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
#define PL35X_SMC_DATA_PHASE BIT(19)
#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)

#define PL35X_NAND_MAX_CS 1
#define PL35X_NAND_LAST_XFER_SZ 4
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))

#define PL35X_NAND_ECC_BITS_MASK 0xFFF
#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7

struct pl35x_nand_timings {
	unsigned int t_rc:4;
	unsigned int t_wc:4;
	unsigned int t_rea:3;
	unsigned int t_wp:3;
	unsigned int t_clr:3;
	unsigned int t_ar:3;
	unsigned int t_rr:4;
	unsigned int rsvd:8;
};

struct pl35x_nand {
	struct list_head node;
	struct nand_chip chip;
	unsigned int cs;
	unsigned int addr_cycles;
	u32 ecc_cfg;
	u32 timings;
};

/**
 * struct pl35x_nandc - NAND flash controller driver structure
 * @dev: Kernel device
 * @conf_regs: SMC configuration registers for command phase
 * @io_regs: NAND data registers for data phase
 * @controller: Core NAND controller structure
 * @chip: NAND chip information structure
 * @selected_chip: NAND chip currently selected by the controller
 * @assigned_cs: List of assigned CS
 * @ecc_buf: Temporary buffer to extract ECC bytes
 */
struct pl35x_nandc {
	struct device *dev;
	void __iomem *conf_regs;
	void __iomem *io_regs;
	struct nand_controller controller;
	struct list_head chips;
	struct nand_chip *selected_chip;
	unsigned long assigned_cs;
	u8 *ecc_buf;
};

static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
{
	return container_of(ctrl, struct pl35x_nandc, controller);
}

static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
{
	return container_of(chip, struct pl35x_nand, chip);
}

static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
				     struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (section * chip->ecc.bytes);
	oobregion->length = chip->ecc.bytes;

	return 0;
}

static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
				      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (section * chip->ecc.bytes) + 8;
	oobregion->length = 8;

	return 0;
}

static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
	.ecc = pl35x_ecc_ooblayout16_ecc,
	.free = pl35x_ecc_ooblayout16_free,
};

/* Generic flash bbt decriptors */
static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 4,
	.len = 4,
	.veroffs = 20,
	.maxblocks = 4,
	.pattern = bbt_pattern
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs = 4,
	.len = 4,
	.veroffs = 20,
	.maxblocks = 4,
	.pattern = mirror_pattern
};

static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
{
	writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
	       PL35X_SMC_DIRECT_CMD_UPD_REGS,
	       nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
}

static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
{
	if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
		return -EINVAL;

	writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
	pl35x_smc_update_regs(nfc);

	return 0;
}

static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
{
	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
}

static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
{
	u32 reg;
	int ret;

	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
				 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
				 10, 1000000);
	if (ret)
		dev_err(nfc->dev,
			"Timeout polling on NAND controller interrupt (0x%x)\n",
			reg);

	pl35x_smc_clear_irq(nfc);

	return ret;
}

static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
{
	u32 reg;
	int ret;

	ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
				 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
				 10, 1000000);
	if (ret)
		dev_err(nfc->dev,
			"Timeout polling on ECC controller interrupt\n");

	return ret;
}

static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
				  struct nand_chip *chip,
				  unsigned int mode)
{
	struct pl35x_nand *plnand;
	u32 ecc_cfg;

	ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
	ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
	ecc_cfg |= mode;
	writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);

	if (chip) {
		plnand = to_pl35x_nand(chip);
		plnand->ecc_cfg = ecc_cfg;
	}

	if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
		return pl35x_smc_wait_for_ecc_done(nfc);

	return 0;
}

static void pl35x_smc_force_byte_access(struct nand_chip *chip,
					bool force_8bit)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	int ret;

	if (!(chip->options & NAND_BUSWIDTH_16))
		return;

	if (force_8bit)
		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
	else
		ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);

	if (ret)
		dev_err(nfc->dev, "Error in Buswidth\n");
}

static void pl35x_nand_select_target(struct nand_chip *chip,
				     unsigned int die_nr)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	struct pl35x_nand *plnand = to_pl35x_nand(chip);

	if (chip == nfc->selected_chip)
		return;

	/* Setup the timings */
	writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
	pl35x_smc_update_regs(nfc);

	/* Configure the ECC engine */
	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);

	nfc->selected_chip = chip;
}

static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
				    unsigned int len, bool force_8bit,
				    unsigned int flags, unsigned int last_flags)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	unsigned int buf_end = len / 4;
	unsigned int in_start = round_down(len, 4);
	unsigned int data_phase_addr;
	u32 *buf32 = (u32 *)in;
	u8 *buf8 = (u8 *)in;
	int i;

	if (force_8bit)
		pl35x_smc_force_byte_access(chip, true);

	for (i = 0; i < buf_end; i++) {
		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
		if (i + 1 == buf_end)
			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;

		buf32[i] = readl(nfc->io_regs + data_phase_addr);
	}

	/* No working extra flags on unaligned data accesses */
	for (i = in_start; i < len; i++)
		buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);

	if (force_8bit)
		pl35x_smc_force_byte_access(chip, false);
}

static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
				     int len, bool force_8bit,
				     unsigned int flags,
				     unsigned int last_flags)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	unsigned int buf_end = len / 4;
	unsigned int in_start = round_down(len, 4);
	const u32 *buf32 = (const u32 *)out;
	const u8 *buf8 = (const u8 *)out;
	unsigned int data_phase_addr;
	int i;

	if (force_8bit)
		pl35x_smc_force_byte_access(chip, true);

	for (i = 0; i < buf_end; i++) {
		data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
		if (i + 1 == buf_end)
			data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;

		writel(buf32[i], nfc->io_regs + data_phase_addr);
	}

	/* No working extra flags on unaligned data accesses */
	for (i = in_start; i < len; i++)
		writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);

	if (force_8bit)
		pl35x_smc_force_byte_access(chip, false);
}

static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
				   unsigned char *read_ecc,
				   unsigned char *calc_ecc)
{
	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
	unsigned short calc_ecc_lower, calc_ecc_upper;
	unsigned short byte_addr, bit_addr;

	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
			 PL35X_NAND_ECC_BITS_MASK;
	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
			 PL35X_NAND_ECC_BITS_MASK;

	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
			 PL35X_NAND_ECC_BITS_MASK;
	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
			 PL35X_NAND_ECC_BITS_MASK;

	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
	ecc_even = read_ecc_upper ^ calc_ecc_upper;

	/* No error */
	if (likely(!ecc_odd && !ecc_even))
		return 0;

	/* One error in the main data; to be corrected */
	if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
		/* Bits [11:3] of error code give the byte offset */
		byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
		/* Bits [2:0] of error code give the bit offset */
		bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
		/* Toggle the faulty bit */
		buf[byte_addr] ^= (BIT(bit_addr));

		return 1;
	}

	/* One error in the ECC data; no action needed */
	if (hweight32(ecc_odd | ecc_even) == 1)
		return 1;

	return -EBADMSG;
}

static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
					u8 *ecc_array)
{
	u32 ecc_value = ~ecc_reg;
	unsigned int ecc_byte;

	for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
		ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
}

static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
				    struct nand_chip *chip, u8 *read_ecc)
{
	u32 ecc_value;
	int chunk;

	for (chunk = 0; chunk < chip->ecc.steps;
	     chunk++, read_ecc += chip->ecc.bytes) {
		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
			return -EINVAL;

		pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
	}

	return 0;
}

static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
					 struct nand_chip *chip, u8 *data,
					 u8 *read_ecc)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int max_bitflips = 0, chunk;
	u8 calc_ecc[3];
	u32 ecc_value;
	int stats;

	for (chunk = 0; chunk < chip->ecc.steps;
	     chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
		/* Read ECC value for each chunk */
		ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));

		if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
			return -EINVAL;

		if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
			mtd->ecc_stats.failed++;
			continue;
		}

		pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
		stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
		if (stats < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stats;
			max_bitflips = max_t(unsigned int, max_bitflips, stats);
		}
	}

	return max_bitflips;
}

static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
				       const u8 *buf, int oob_required,
				       int page)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	struct pl35x_nand *plnand = to_pl35x_nand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
	unsigned int nrows = plnand->addr_cycles;
	u32 addr1 = 0, addr2 = 0, row;
	u32 cmd_addr;
	int i, ret;

	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
	if (ret)
		return ret;

	cmd_addr = PL35X_SMC_CMD_PHASE |
		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);

	for (i = 0, row = first_row; row < nrows; i++, row++) {
		u8 addr = page >> ((i * 8) & 0xFF);

		if (row < 4)
			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
		else
			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
	}

	/* Send the command and address cycles */
	writel(addr1, nfc->io_regs + cmd_addr);
	if (plnand->addr_cycles > 4)
		writel(addr2, nfc->io_regs + cmd_addr);

	/* Write the data with the engine enabled */
	pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
				 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
	ret = pl35x_smc_wait_for_ecc_done(nfc);
	if (ret)
		goto disable_ecc_engine;

	/* Copy the HW calculated ECC bytes in the OOB buffer */
	ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
	if (ret)
		goto disable_ecc_engine;

	if (!oob_required)
		memset(chip->oob_poi, 0xFF, mtd->oobsize);

	ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
					 0, chip->ecc.total);
	if (ret)
		goto disable_ecc_engine;

	/* Write the spare area with ECC bytes */
	pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
				 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
				 PL35X_SMC_CMD_PHASE_CMD1_VALID |
				 PL35X_SMC_DATA_PHASE_CLEAR_CS);
	ret = pl35x_smc_wait_for_irq(nfc);
	if (ret)
		goto disable_ecc_engine;

disable_ecc_engine:
	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);

	return ret;
}

/*
 * This functions reads data and checks the data integrity by comparing hardware
 * generated ECC values and read ECC values from spare area.
 *
 * There is a limitation with SMC controller: ECC_LAST must be set on the
 * last data access to tell the ECC engine not to expect any further data.
 * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
 * and doing a last 4-byte transfer with the additional bit set. The last block
 * should be aligned with the end of an ECC block. Because of this limitation,
 * it is not possible to use the core routines.
 */
static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
				      u8 *buf, int oob_required, int page)
{
	const struct nand_sdr_timings *sdr =
		nand_get_sdr_timings(nand_get_interface_config(chip));
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	struct pl35x_nand *plnand = to_pl35x_nand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
	unsigned int nrows = plnand->addr_cycles;
	unsigned int addr1 = 0, addr2 = 0, row;
	u32 cmd_addr;
	int i, ret;

	ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
	if (ret)
		return ret;

	cmd_addr = PL35X_SMC_CMD_PHASE |
		   PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
		   PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
		   PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
		   PL35X_SMC_CMD_PHASE_CMD1_VALID;

	for (i = 0, row = first_row; row < nrows; i++, row++) {
		u8 addr = page >> ((i * 8) & 0xFF);

		if (row < 4)
			addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
		else
			addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
	}

	/* Send the command and address cycles */
	writel(addr1, nfc->io_regs + cmd_addr);
	if (plnand->addr_cycles > 4)
		writel(addr2, nfc->io_regs + cmd_addr);

	/* Wait the data to be available in the NAND cache */
	ndelay(PSEC_TO_NSEC(sdr->tRR_min));
	ret = pl35x_smc_wait_for_irq(nfc);
	if (ret)
		goto disable_ecc_engine;

	/* Retrieve the raw data with the engine enabled */
	pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
				0, PL35X_SMC_DATA_PHASE_ECC_LAST);
	ret = pl35x_smc_wait_for_ecc_done(nfc);
	if (ret)
		goto disable_ecc_engine;

	/* Retrieve the stored ECC bytes */
	pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
				0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
	ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		goto disable_ecc_engine;

	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);

	/* Correct the data and report failures */
	return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);

disable_ecc_engine:
	pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);

	return ret;
}

static int pl35x_nand_exec_op(struct nand_chip *chip,
			      const struct nand_subop *subop)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	const struct nand_op_instr *instr, *data_instr = NULL;
	unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
	u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
	unsigned int op_id, len, offset, rdy_del_ns;
	int last_instr_type = -1;
	bool cmd1_valid = false;
	const u8 *addrs;
	int i, ret;

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		instr = &subop->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			if (!cmds) {
				cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
			} else {
				cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
				if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
					cmd1_valid = true;
			}
			cmds++;
			break;

		case NAND_OP_ADDR_INSTR:
			offset = nand_subop_get_addr_start_off(subop, op_id);
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];
			cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);

			for (i = offset; i < naddrs; i++) {
				if (i < 4)
					addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
				else
					addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
			}
			break;

		case NAND_OP_DATA_IN_INSTR:
		case NAND_OP_DATA_OUT_INSTR:
			data_instr = instr;
			len = nand_subop_get_data_len(subop, op_id);
			break;

		case NAND_OP_WAITRDY_INSTR:
			rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
			rdy_del_ns = instr->delay_ns;
			break;
		}

		last_instr_type = instr->type;
	}

	/* Command phase */
	cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
		    (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
	writel(addr1, nfc->io_regs + cmd_addr);
	if (naddrs > 4)
		writel(addr2, nfc->io_regs + cmd_addr);

	/* Data phase */
	if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
		last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
		if (cmds == 2)
			last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;

		pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
					 len, data_instr->ctx.data.force_8bit,
					 0, last_flags);
	}

	if (rdy_tim_ms) {
		ndelay(rdy_del_ns);
		ret = pl35x_smc_wait_for_irq(nfc);
		if (ret)
			return ret;
	}

	if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
		pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
					len, data_instr->ctx.data.force_8bit,
					0, PL35X_SMC_DATA_PHASE_CLEAR_CS);

	return 0;
}

static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
			       NAND_OP_PARSER_PAT_CMD_ELEM(false),
			       NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	);

static int pl35x_nfc_exec_op(struct nand_chip *chip,
			     const struct nand_operation *op,
			     bool check_only)
{
	if (!check_only)
		pl35x_nand_select_target(chip, op->cs);

	return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
				      op, check_only);
}

static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
				     const struct nand_interface_config *conf)
{
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	struct pl35x_nand *plnand = to_pl35x_nand(chip);
	struct pl35x_nand_timings tmgs = {};
	const struct nand_sdr_timings *sdr;
	unsigned int period_ns, val;
	struct clk *mclk;

	sdr = nand_get_sdr_timings(conf);
	if (IS_ERR(sdr))
		return PTR_ERR(sdr);

	mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
	if (IS_ERR(mclk)) {
		dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
		return PTR_ERR(mclk);
	}

	/*
	 * SDR timings are given in pico-seconds while NFC timings must be
	 * expressed in NAND controller clock cycles. We use the TO_CYCLE()
	 * macro to convert from one to the other.
	 */
	period_ns = NSEC_PER_SEC / clk_get_rate(mclk);

	/*
	 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
	 * written anywhere in the datasheet but is an empirical observation.
	 */
	val = TO_CYCLES(sdr->tRC_min, period_ns);
	if (sdr->tRC_min <= 20000)
		val++;

	tmgs.t_rc = val;
	if (tmgs.t_rc != val || tmgs.t_rc < 2)
		return -EINVAL;

	val = TO_CYCLES(sdr->tWC_min, period_ns);
	tmgs.t_wc = val;
	if (tmgs.t_wc != val || tmgs.t_wc < 2)
		return -EINVAL;

	/*
	 * For all SDR modes, PL35X SMC needs tREA_max being 1,
	 * this is also an empirical result.
	 */
	tmgs.t_rea = 1;

	val = TO_CYCLES(sdr->tWP_min, period_ns);
	tmgs.t_wp = val;
	if (tmgs.t_wp != val || tmgs.t_wp < 1)
		return -EINVAL;

	val = TO_CYCLES(sdr->tCLR_min, period_ns);
	tmgs.t_clr = val;
	if (tmgs.t_clr != val)
		return -EINVAL;

	val = TO_CYCLES(sdr->tAR_min, period_ns);
	tmgs.t_ar = val;
	if (tmgs.t_ar != val)
		return -EINVAL;

	val = TO_CYCLES(sdr->tRR_min, period_ns);
	tmgs.t_rr = val;
	if (tmgs.t_rr != val)
		return -EINVAL;

	if (cs == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
			  PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
			  PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
			  PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
			  PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
			  PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
			  PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);

	return 0;
}

static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
				      struct nand_chip *chip,
				      unsigned int pg_sz)
{
	struct pl35x_nand *plnand = to_pl35x_nand(chip);
	u32 sz;

	switch (pg_sz) {
	case SZ_512:
		sz = 1;
		break;
	case SZ_1K:
		sz = 2;
		break;
	case SZ_2K:
		sz = 3;
		break;
	default:
		sz = 0;
		break;
	}

	plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
	plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
	plnand->ecc_cfg |= sz;
	writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
}

static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
					     struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret = 0;

	if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
		dev_err(nfc->dev,
			"The hardware ECC engine is limited to pages up to 2kiB\n");
		return -EOPNOTSUPP;
	}

	chip->ecc.strength = 1;
	chip->ecc.bytes = 3;
	chip->ecc.size = SZ_512;
	chip->ecc.steps = mtd->writesize / chip->ecc.size;
	chip->ecc.read_page = pl35x_nand_read_page_hwecc;
	chip->ecc.write_page = pl35x_nand_write_page_hwecc;
	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
	pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);

	nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
				    GFP_KERNEL);
	if (!nfc->ecc_buf)
		return -ENOMEM;

	switch (mtd->oobsize) {
	case 16:
		/* Legacy Xilinx layout */
		mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
		break;
	case 64:
		mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
		break;
	default:
		dev_err(nfc->dev, "Unsupported OOB size\n");
		return -EOPNOTSUPP;
	}

	return ret;
}

static int pl35x_nand_attach_chip(struct nand_chip *chip)
{
	const struct nand_ecc_props *requirements =
		nanddev_get_ecc_requirements(&chip->base);
	struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
	struct pl35x_nand *plnand = to_pl35x_nand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
	    (!chip->ecc.size || !chip->ecc.strength)) {
		if (requirements->step_size && requirements->strength) {
			chip->ecc.size = requirements->step_size;
			chip->ecc.strength = requirements->strength;
		} else {
			dev_info(nfc->dev,
				 "No minimum ECC strength, using 1b/512B\n");
			chip->ecc.size = 512;
			chip->ecc.strength = 1;
		}
	}

	if (mtd->writesize <= SZ_512)
		plnand->addr_cycles = 1;
	else
		plnand->addr_cycles = 2;

	if (chip->options & NAND_ROW_ADDR_3)
		plnand->addr_cycles += 3;
	else
		plnand->addr_cycles += 2;

	switch (chip->ecc.engine_type) {
	case NAND_ECC_ENGINE_TYPE_ON_DIE:
		/* Keep these legacy BBT descriptors for ON_DIE situations */
		chip->bbt_td = &bbt_main_descr;
		chip->bbt_md = &bbt_mirror_descr;
		fallthrough;
	case NAND_ECC_ENGINE_TYPE_NONE:
	case NAND_ECC_ENGINE_TYPE_SOFT:
		break;
	case NAND_ECC_ENGINE_TYPE_ON_HOST:
		ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
		if (ret)
			return ret;
		break;
	default:
		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
			chip->ecc.engine_type);
		return -EINVAL;
	}

	return 0;
}

static const struct nand_controller_ops pl35x_nandc_ops = {
	.attach_chip = pl35x_nand_attach_chip,
	.exec_op = pl35x_nfc_exec_op,
	.setup_interface = pl35x_nfc_setup_interface,
};

static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
{
	int ret;

	/* Disable interrupts and clear their status */
	writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
	       PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
	       PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
	       nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);

	/* Set default bus width to 8-bit */
	ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
	if (ret)
		return ret;

	/* Ensure the ECC controller is bypassed by default */
	ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
	if (ret)
		return ret;

	/*
	 * Configure the commands that the ECC block uses to detect the
	 * operations it should start/end.
	 */
	writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
	       PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
	       PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
	       PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
	       nfc->conf_regs + PL35X_SMC_ECC_CMD1);
	writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
	       PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
	       PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
	       nfc->conf_regs + PL35X_SMC_ECC_CMD2);

	return 0;
}

static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
				struct device_node *np)
{
	struct pl35x_nand *plnand;
	struct nand_chip *chip;
	struct mtd_info *mtd;
	int cs, ret;

	plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
	if (!plnand)
		return -ENOMEM;

	ret = of_property_read_u32(np, "reg", &cs);
	if (ret)
		return ret;

	if (cs >= PL35X_NAND_MAX_CS) {
		dev_err(nfc->dev, "Wrong CS %d\n", cs);
		return -EINVAL;
	}

	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
		return -EINVAL;
	}

	plnand->cs = cs;

	chip = &plnand->chip;
	chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
	chip->bbt_options = NAND_BBT_USE_FLASH;
	chip->controller = &nfc->controller;
	mtd = nand_to_mtd(chip);
	mtd->dev.parent = nfc->dev;
	nand_set_flash_node(chip, np);
	if (!mtd->name) {
		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
					   "%s", PL35X_NANDC_DRIVER_NAME);
		if (!mtd->name) {
			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
			return -ENOMEM;
		}
	}

	ret = nand_scan(chip, 1);
	if (ret)
		return ret;

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		nand_cleanup(chip);
		return ret;
	}

	list_add_tail(&plnand->node, &nfc->chips);

	return ret;
}

static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
{
	struct pl35x_nand *plnand, *tmp;
	struct nand_chip *chip;
	int ret;

	list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
		chip = &plnand->chip;
		ret = mtd_device_unregister(nand_to_mtd(chip));
		WARN_ON(ret);
		nand_cleanup(chip);
		list_del(&plnand->node);
	}
}

static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
{
	struct device_node *np = nfc->dev->of_node, *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (!nchips || nchips > PL35X_NAND_MAX_CS) {
		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
			nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = pl35x_nand_chip_init(nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			pl35x_nand_chips_cleanup(nfc);
			break;
		}
	}

	return ret;
}

static int pl35x_nand_probe(struct platform_device *pdev)
{
	struct device *smc_dev = pdev->dev.parent;
	struct amba_device *smc_amba = to_amba_device(smc_dev);
	struct pl35x_nandc *nfc;
	u32 ret;

	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = &pdev->dev;
	nand_controller_init(&nfc->controller);
	nfc->controller.ops = &pl35x_nandc_ops;
	INIT_LIST_HEAD(&nfc->chips);

	nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
	if (IS_ERR(nfc->conf_regs))
		return PTR_ERR(nfc->conf_regs);

	nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(nfc->io_regs))
		return PTR_ERR(nfc->io_regs);

	ret = pl35x_nand_reset_state(nfc);
	if (ret)
		return ret;

	ret = pl35x_nand_chips_init(nfc);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, nfc);

	return 0;
}

static void pl35x_nand_remove(struct platform_device *pdev)
{
	struct pl35x_nandc *nfc = platform_get_drvdata(pdev);

	pl35x_nand_chips_cleanup(nfc);
}

static const struct of_device_id pl35x_nand_of_match[] = {
	{ .compatible = "arm,pl353-nand-r2p1" },
	{},
};
MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);

static struct platform_driver pl35x_nandc_driver = {
	.probe = pl35x_nand_probe,
	.remove_new = pl35x_nand_remove,
	.driver = {
		.name = PL35X_NANDC_DRIVER_NAME,
		.of_match_table = pl35x_nand_of_match,
	},
};
module_platform_driver(pl35x_nandc_driver);

MODULE_AUTHOR("Xilinx, Inc.");
MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
MODULE_LICENSE("GPL");