summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/omap2.c
blob: 5a2bf1ed9c8641d0f1dc965351322044b8731bff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
/*
 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 * Copyright © 2004 Micron Technology Inc.
 * Copyright © 2004 David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/omap-dma.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>

#include <linux/mtd/nand_bch.h>
#include <linux/platform_data/elm.h>

#include <linux/omap-gpmc.h>
#include <linux/platform_data/mtd-nand-omap2.h>

#define	DRIVER_NAME	"omap2-nand"
#define	OMAP_NAND_TIMEOUT_MS	5000

#define NAND_Ecc_P1e		(1 << 0)
#define NAND_Ecc_P2e		(1 << 1)
#define NAND_Ecc_P4e		(1 << 2)
#define NAND_Ecc_P8e		(1 << 3)
#define NAND_Ecc_P16e		(1 << 4)
#define NAND_Ecc_P32e		(1 << 5)
#define NAND_Ecc_P64e		(1 << 6)
#define NAND_Ecc_P128e		(1 << 7)
#define NAND_Ecc_P256e		(1 << 8)
#define NAND_Ecc_P512e		(1 << 9)
#define NAND_Ecc_P1024e		(1 << 10)
#define NAND_Ecc_P2048e		(1 << 11)

#define NAND_Ecc_P1o		(1 << 16)
#define NAND_Ecc_P2o		(1 << 17)
#define NAND_Ecc_P4o		(1 << 18)
#define NAND_Ecc_P8o		(1 << 19)
#define NAND_Ecc_P16o		(1 << 20)
#define NAND_Ecc_P32o		(1 << 21)
#define NAND_Ecc_P64o		(1 << 22)
#define NAND_Ecc_P128o		(1 << 23)
#define NAND_Ecc_P256o		(1 << 24)
#define NAND_Ecc_P512o		(1 << 25)
#define NAND_Ecc_P1024o		(1 << 26)
#define NAND_Ecc_P2048o		(1 << 27)

#define TF(value)	(value ? 1 : 0)

#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)

#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)

#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)

#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)

#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)

#define	PREFETCH_CONFIG1_CS_SHIFT	24
#define	ECC_CONFIG_CS_SHIFT		1
#define	CS_MASK				0x7
#define	ENABLE_PREFETCH			(0x1 << 7)
#define	DMA_MPU_MODE_SHIFT		2
#define	ECCSIZE0_SHIFT			12
#define	ECCSIZE1_SHIFT			22
#define	ECC1RESULTSIZE			0x1
#define	ECCCLEAR			0x100
#define	ECC1				0x1
#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
#define	STATUS_BUFF_EMPTY		0x00000001

#define SECTOR_BYTES		512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD		4

/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */

/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */

#define BADBLOCK_MARKER_LENGTH		2

static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
				0x07, 0x0e};
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
	0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};

struct omap_nand_info {
	struct nand_chip		nand;
	struct platform_device		*pdev;

	int				gpmc_cs;
	bool				dev_ready;
	enum nand_io			xfer_type;
	int				devsize;
	enum omap_ecc			ecc_opt;
	struct device_node		*elm_of_node;

	unsigned long			phys_base;
	struct completion		comp;
	struct dma_chan			*dma;
	int				gpmc_irq_fifo;
	int				gpmc_irq_count;
	enum {
		OMAP_NAND_IO_READ = 0,	/* read */
		OMAP_NAND_IO_WRITE,	/* write */
	} iomode;
	u_char				*buf;
	int					buf_len;
	/* Interface to GPMC */
	struct gpmc_nand_regs		reg;
	struct gpmc_nand_ops		*ops;
	bool				flash_bbt;
	/* fields specific for BCHx_HW ECC scheme */
	struct device			*elm_dev;
	/* NAND ready gpio */
	struct gpio_desc		*ready_gpiod;
};

static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
}

/**
 * omap_prefetch_enable - configures and starts prefetch transfer
 * @cs: cs (chip select) number
 * @fifo_th: fifo threshold to be used for read/ write
 * @dma_mode: dma mode enable (1) or disable (0)
 * @u32_count: number of bytes to be transferred
 * @is_write: prefetch read(0) or write post(1) mode
 */
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
	unsigned int u32_count, int is_write, struct omap_nand_info *info)
{
	u32 val;

	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
		return -1;

	if (readl(info->reg.gpmc_prefetch_control))
		return -EBUSY;

	/* Set the amount of bytes to be prefetched */
	writel(u32_count, info->reg.gpmc_prefetch_config2);

	/* Set dma/mpu mode, the prefetch read / post write and
	 * enable the engine. Set which cs is has requested for.
	 */
	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
	writel(val, info->reg.gpmc_prefetch_config1);

	/*  Start the prefetch engine */
	writel(0x1, info->reg.gpmc_prefetch_control);

	return 0;
}

/**
 * omap_prefetch_reset - disables and stops the prefetch engine
 */
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
{
	u32 config1;

	/* check if the same module/cs is trying to reset */
	config1 = readl(info->reg.gpmc_prefetch_config1);
	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
		return -EINVAL;

	/* Stop the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_control);

	/* Reset/disable the PFPW engine */
	writel(0x0, info->reg.gpmc_prefetch_config1);

	return 0;
}

/**
 * omap_hwcontrol - hardware specific access to control-lines
 * @mtd: MTD device structure
 * @cmd: command to device
 * @ctrl:
 * NAND_NCE: bit 0 -> don't care
 * NAND_CLE: bit 1 -> Command Latch
 * NAND_ALE: bit 2 -> Address Latch
 *
 * NOTE: boards may use different bits for these!!
 */
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);

	if (cmd != NAND_CMD_NONE) {
		if (ctrl & NAND_CLE)
			writeb(cmd, info->reg.gpmc_nand_command);

		else if (ctrl & NAND_ALE)
			writeb(cmd, info->reg.gpmc_nand_address);

		else /* NAND_NCE */
			writeb(cmd, info->reg.gpmc_nand_data);
	}
}

/**
 * omap_read_buf8 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd_to_nand(mtd);

	ioread8_rep(nand->IO_ADDR_R, buf, len);
}

/**
 * omap_write_buf8 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	u_char *p = (u_char *)buf;
	bool status;

	while (len--) {
		iowrite8(*p++, info->nand.IO_ADDR_W);
		/* wait until buffer is available for write */
		do {
			status = info->ops->nand_writebuffer_empty();
		} while (!status);
	}
}

/**
 * omap_read_buf16 - read data from NAND controller into buffer
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand = mtd_to_nand(mtd);

	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
}

/**
 * omap_write_buf16 - write buffer to NAND controller
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	u16 *p = (u16 *) buf;
	bool status;
	/* FIXME try bursts of writesw() or DMA ... */
	len >>= 1;

	while (len--) {
		iowrite16(*p++, info->nand.IO_ADDR_W);
		/* wait until buffer is available for write */
		do {
			status = info->ops->nand_writebuffer_empty();
		} while (!status);
	}
}

/**
 * omap_read_buf_pref - read data from NAND controller into buffer
 * @chip: NAND chip object
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	uint32_t r_count = 0;
	int ret = 0;
	u32 *p = (u32 *)buf;

	/* take care of subpage reads */
	if (len % 4) {
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, buf, len % 4);
		else
			omap_read_buf8(mtd, buf, len % 4);
		p = (u32 *) (buf + len % 4);
		len -= len % 4;
	}

	/* configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_read_buf16(mtd, (u_char *)p, len);
		else
			omap_read_buf8(mtd, (u_char *)p, len);
	} else {
		do {
			r_count = readl(info->reg.gpmc_prefetch_status);
			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
			r_count = r_count >> 2;
			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
			p += r_count;
			len -= r_count << 2;
		} while (len);
		/* disable and stop the PFPW engine */
		omap_prefetch_reset(info->gpmc_cs, info);
	}
}

/**
 * omap_write_buf_pref - write buffer to NAND controller
 * @chip: NAND chip object
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
				int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	uint32_t w_count = 0;
	int i = 0, ret = 0;
	u16 *p = (u16 *)buf;
	unsigned long tim, limit;
	u32 val;

	/* take care of subpage writes */
	if (len % 2 != 0) {
		writeb(*buf, info->nand.IO_ADDR_W);
		p = (u16 *)(buf + 1);
		len--;
	}

	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
	if (ret) {
		/* PFPW engine is busy, use cpu copy method */
		if (info->nand.options & NAND_BUSWIDTH_16)
			omap_write_buf16(mtd, (u_char *)p, len);
		else
			omap_write_buf8(mtd, (u_char *)p, len);
	} else {
		while (len) {
			w_count = readl(info->reg.gpmc_prefetch_status);
			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
			w_count = w_count >> 1;
			for (i = 0; (i < w_count) && len; i++, len -= 2)
				iowrite16(*p++, info->nand.IO_ADDR_W);
		}
		/* wait for data to flushed-out before reset the prefetch */
		tim = 0;
		limit = (loops_per_jiffy *
					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
		do {
			cpu_relax();
			val = readl(info->reg.gpmc_prefetch_status);
			val = PREFETCH_STATUS_COUNT(val);
		} while (val && (tim++ < limit));

		/* disable and stop the PFPW engine */
		omap_prefetch_reset(info->gpmc_cs, info);
	}
}

/*
 * omap_nand_dma_callback: callback on the completion of dma transfer
 * @data: pointer to completion data structure
 */
static void omap_nand_dma_callback(void *data)
{
	complete((struct completion *) data);
}

/*
 * omap_nand_dma_transfer: configure and start dma transfer
 * @mtd: MTD device structure
 * @addr: virtual address in RAM of source/destination
 * @len: number of data bytes to be transferred
 * @is_write: flag for read/write operation
 */
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
					unsigned int len, int is_write)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	struct dma_async_tx_descriptor *tx;
	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
							DMA_FROM_DEVICE;
	struct scatterlist sg;
	unsigned long tim, limit;
	unsigned n;
	int ret;
	u32 val;

	if (!virt_addr_valid(addr))
		goto out_copy;

	sg_init_one(&sg, addr, len);
	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
	if (n == 0) {
		dev_err(&info->pdev->dev,
			"Couldn't DMA map a %d byte buffer\n", len);
		goto out_copy;
	}

	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!tx)
		goto out_copy_unmap;

	tx->callback = omap_nand_dma_callback;
	tx->callback_param = &info->comp;
	dmaengine_submit(tx);

	init_completion(&info->comp);

	/* setup and start DMA using dma_addr */
	dma_async_issue_pending(info->dma);

	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy_unmap;

	wait_for_completion(&info->comp);
	tim = 0;
	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));

	do {
		cpu_relax();
		val = readl(info->reg.gpmc_prefetch_status);
		val = PREFETCH_STATUS_COUNT(val);
	} while (val && (tim++ < limit));

	/* disable and stop the PFPW engine */
	omap_prefetch_reset(info->gpmc_cs, info);

	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
	return 0;

out_copy_unmap:
	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
			: omap_write_buf16(mtd, (u_char *) addr, len);
	else
		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
			: omap_write_buf8(mtd, (u_char *) addr, len);
	return 0;
}

/**
 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 * @chip: NAND chip object
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
				   int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (len <= mtd->oobsize)
		omap_read_buf_pref(chip, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, buf, len, 0x0);
}

/**
 * omap_write_buf_dma_pref - write buffer to NAND controller
 * @chip: NAND chip object
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
				    int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (len <= mtd->oobsize)
		omap_write_buf_pref(chip, buf, len);
	else
		/* start transfer in DMA mode */
		omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
}

/*
 * omap_nand_irq - GPMC irq handler
 * @this_irq: gpmc irq number
 * @dev: omap_nand_info structure pointer is passed here
 */
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
{
	struct omap_nand_info *info = (struct omap_nand_info *) dev;
	u32 bytes;

	bytes = readl(info->reg.gpmc_prefetch_status);
	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
		if (this_irq == info->gpmc_irq_count)
			goto done;

		if (info->buf_len && (info->buf_len < bytes))
			bytes = info->buf_len;
		else if (!info->buf_len)
			bytes = 0;
		iowrite32_rep(info->nand.IO_ADDR_W,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;
		info->buf_len -= bytes;

	} else {
		ioread32_rep(info->nand.IO_ADDR_R,
						(u32 *)info->buf, bytes >> 2);
		info->buf = info->buf + bytes;

		if (this_irq == info->gpmc_irq_count)
			goto done;
	}

	return IRQ_HANDLED;

done:
	complete(&info->comp);

	disable_irq_nosync(info->gpmc_irq_fifo);
	disable_irq_nosync(info->gpmc_irq_count);

	return IRQ_HANDLED;
}

/*
 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 * @chip: NAND chip object
 * @buf: buffer to store date
 * @len: number of bytes to read
 */
static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
				   int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	int ret = 0;

	if (len <= mtd->oobsize) {
		omap_read_buf_pref(chip, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_READ;
	info->buf = buf;
	init_completion(&info->comp);

	/*  configure and start prefetch transfer */
	ret = omap_prefetch_enable(info->gpmc_cs,
			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);

	/* waiting for read to complete */
	wait_for_completion(&info->comp);

	/* disable and stop the PFPW engine */
	omap_prefetch_reset(info->gpmc_cs, info);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_read_buf16(mtd, buf, len);
	else
		omap_read_buf8(mtd, buf, len);
}

/*
 * omap_write_buf_irq_pref - write buffer to NAND controller
 * @chip: NAND chip object
 * @buf: data buffer
 * @len: number of bytes to write
 */
static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
				    int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	int ret = 0;
	unsigned long tim, limit;
	u32 val;

	if (len <= mtd->oobsize) {
		omap_write_buf_pref(chip, buf, len);
		return;
	}

	info->iomode = OMAP_NAND_IO_WRITE;
	info->buf = (u_char *) buf;
	init_completion(&info->comp);

	/* configure and start prefetch transfer : size=24 */
	ret = omap_prefetch_enable(info->gpmc_cs,
		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
	if (ret)
		/* PFPW engine is busy, use cpu copy method */
		goto out_copy;

	info->buf_len = len;

	enable_irq(info->gpmc_irq_count);
	enable_irq(info->gpmc_irq_fifo);

	/* waiting for write to complete */
	wait_for_completion(&info->comp);

	/* wait for data to flushed-out before reset the prefetch */
	tim = 0;
	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
	do {
		val = readl(info->reg.gpmc_prefetch_status);
		val = PREFETCH_STATUS_COUNT(val);
		cpu_relax();
	} while (val && (tim++ < limit));

	/* disable and stop the PFPW engine */
	omap_prefetch_reset(info->gpmc_cs, info);
	return;

out_copy:
	if (info->nand.options & NAND_BUSWIDTH_16)
		omap_write_buf16(mtd, buf, len);
	else
		omap_write_buf8(mtd, buf, len);
}

/**
 * gen_true_ecc - This function will generate true ECC value
 * @ecc_buf: buffer to store ecc code
 *
 * This generated true ECC value can be used when correcting
 * data read from NAND flash memory core
 */
static void gen_true_ecc(u8 *ecc_buf)
{
	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);

	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
}

/**
 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 * @ecc_data1:  ecc code from nand spare area
 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 * @page_data:  page data
 *
 * This function compares two ECC's and indicates if there is an error.
 * If the error can be corrected it will be corrected to the buffer.
 * If there is no error, %0 is returned. If there is an error but it
 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 */
static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
			    u8 *ecc_data2,	/* read from register */
			    u8 *page_data)
{
	uint	i;
	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
	u8	ecc_bit[24];
	u8	ecc_sum = 0;
	u8	find_bit = 0;
	uint	find_byte = 0;
	int	isEccFF;

	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);

	gen_true_ecc(ecc_data1);
	gen_true_ecc(ecc_data2);

	for (i = 0; i <= 2; i++) {
		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
	}

	for (i = 0; i < 8; i++) {
		tmp0_bit[i]     = *ecc_data1 % 2;
		*ecc_data1	= *ecc_data1 / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp0_bit[i]     = *ecc_data2 % 2;
		*ecc_data2       = *ecc_data2 / 2;
	}

	for (i = 0; i < 8; i++) {
		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
	}

	for (i = 0; i < 8; i++) {
		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
	}

	for (i = 0; i < 6; i++)
		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];

	for (i = 0; i < 8; i++)
		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];

	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];

	for (i = 0; i < 24; i++)
		ecc_sum += ecc_bit[i];

	switch (ecc_sum) {
	case 0:
		/* Not reached because this function is not called if
		 *  ECC values are equal
		 */
		return 0;

	case 1:
		/* Uncorrectable error */
		pr_debug("ECC UNCORRECTED_ERROR 1\n");
		return -EBADMSG;

	case 11:
		/* UN-Correctable error */
		pr_debug("ECC UNCORRECTED_ERROR B\n");
		return -EBADMSG;

	case 12:
		/* Correctable error */
		find_byte = (ecc_bit[23] << 8) +
			    (ecc_bit[21] << 7) +
			    (ecc_bit[19] << 6) +
			    (ecc_bit[17] << 5) +
			    (ecc_bit[15] << 4) +
			    (ecc_bit[13] << 3) +
			    (ecc_bit[11] << 2) +
			    (ecc_bit[9]  << 1) +
			    ecc_bit[7];

		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];

		pr_debug("Correcting single bit ECC error at offset: "
				"%d, bit: %d\n", find_byte, find_bit);

		page_data[find_byte] ^= (1 << find_bit);

		return 1;
	default:
		if (isEccFF) {
			if (ecc_data2[0] == 0 &&
			    ecc_data2[1] == 0 &&
			    ecc_data2[2] == 0)
				return 0;
		}
		pr_debug("UNCORRECTED_ERROR default\n");
		return -EBADMSG;
	}
}

/**
 * omap_correct_data - Compares the ECC read with HW generated ECC
 * @chip: NAND chip object
 * @dat: page data
 * @read_ecc: ecc read from nand flash
 * @calc_ecc: ecc read from HW ECC registers
 *
 * Compares the ecc read from nand spare area with ECC registers values
 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 * detection and correction. If there are no errors, %0 is returned. If
 * there were errors and all of the errors were corrected, the number of
 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 * returned.
 */
static int omap_correct_data(struct nand_chip *chip, u_char *dat,
			     u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
	int blockCnt = 0, i = 0, ret = 0;
	int stat = 0;

	/* Ex NAND_ECC_HW12_2048 */
	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
			(info->nand.ecc.size  == 2048))
		blockCnt = 4;
	else
		blockCnt = 1;

	for (i = 0; i < blockCnt; i++) {
		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
			if (ret < 0)
				return ret;
			/* keep track of the number of corrected errors */
			stat += ret;
		}
		read_ecc += 3;
		calc_ecc += 3;
		dat      += 512;
	}
	return stat;
}

/**
 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 * @chip: NAND chip object
 * @dat: The pointer to data on which ecc is computed
 * @ecc_code: The ecc_code buffer
 *
 * Using noninverted ECC can be considered ugly since writing a blank
 * page ie. padding will clear the ECC bytes. This is no problem as long
 * nobody is trying to write data on the seemingly unused page. Reading
 * an erased page will produce an ECC mismatch between generated and read
 * ECC bytes that has to be dealt with separately.
 */
static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
			      u_char *ecc_code)
{
	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
	u32 val;

	val = readl(info->reg.gpmc_ecc_config);
	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
		return -EINVAL;

	/* read ecc result */
	val = readl(info->reg.gpmc_ecc1_result);
	*ecc_code++ = val;          /* P128e, ..., P1e */
	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);

	return 0;
}

/**
 * omap_enable_hwecc - This function enables the hardware ecc functionality
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 */
static void omap_enable_hwecc(struct nand_chip *chip, int mode)
{
	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
	u32 val;

	/* clear ecc and enable bits */
	val = ECCCLEAR | ECC1;
	writel(val, info->reg.gpmc_ecc_control);

	/* program ecc and result sizes */
	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
			 ECC1RESULTSIZE);
	writel(val, info->reg.gpmc_ecc_size_config);

	switch (mode) {
	case NAND_ECC_READ:
	case NAND_ECC_WRITE:
		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
		break;
	case NAND_ECC_READSYN:
		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
		break;
	default:
		dev_info(&info->pdev->dev,
			"error: unrecognized Mode[%d]!\n", mode);
		break;
	}

	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
	writel(val, info->reg.gpmc_ecc_config);
}

/**
 * omap_wait - wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND Chip structure
 *
 * Wait function is called during Program and erase operations and
 * the way it is called from MTD layer, we should wait till the NAND
 * chip is ready after the programming/erase operation has completed.
 *
 * Erase can take up to 400ms and program up to 20ms according to
 * general NAND and SmartMedia specs
 */
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct nand_chip *this = mtd_to_nand(mtd);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	unsigned long timeo = jiffies;
	int status, state = this->state;

	if (state == FL_ERASING)
		timeo += msecs_to_jiffies(400);
	else
		timeo += msecs_to_jiffies(20);

	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
	while (time_before(jiffies, timeo)) {
		status = readb(info->reg.gpmc_nand_data);
		if (status & NAND_STATUS_READY)
			break;
		cond_resched();
	}

	status = readb(info->reg.gpmc_nand_data);
	return status;
}

/**
 * omap_dev_ready - checks the NAND Ready GPIO line
 * @mtd: MTD device structure
 *
 * Returns true if ready and false if busy.
 */
static int omap_dev_ready(struct mtd_info *mtd)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);

	return gpiod_get_value(info->ready_gpiod);
}

/**
 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
 * @mtd: MTD device structure
 * @mode: Read/Write mode
 *
 * When using BCH with SW correction (i.e. no ELM), sector size is set
 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
 * for both reading and writing with:
 * eccsize0 = 0  (no additional protected byte in spare area)
 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 */
static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
						 int mode)
{
	unsigned int bch_type;
	unsigned int dev_width, nsectors;
	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
	enum omap_ecc ecc_opt = info->ecc_opt;
	u32 val, wr_mode;
	unsigned int ecc_size1, ecc_size0;

	/* GPMC configurations for calculating ECC */
	switch (ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		bch_type = 0;
		nsectors = 1;
		wr_mode	  = BCH_WRAPMODE_6;
		ecc_size0 = BCH_ECC_SIZE0;
		ecc_size1 = BCH_ECC_SIZE1;
		break;
	case OMAP_ECC_BCH4_CODE_HW:
		bch_type = 0;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH4R_ECC_SIZE0;
			ecc_size1 = BCH4R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		bch_type = 1;
		nsectors = 1;
		wr_mode	  = BCH_WRAPMODE_6;
		ecc_size0 = BCH_ECC_SIZE0;
		ecc_size1 = BCH_ECC_SIZE1;
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		bch_type = 1;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = BCH_WRAPMODE_1;
			ecc_size0 = BCH8R_ECC_SIZE0;
			ecc_size1 = BCH8R_ECC_SIZE1;
		} else {
			wr_mode   = BCH_WRAPMODE_6;
			ecc_size0 = BCH_ECC_SIZE0;
			ecc_size1 = BCH_ECC_SIZE1;
		}
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		bch_type = 0x2;
		nsectors = chip->ecc.steps;
		if (mode == NAND_ECC_READ) {
			wr_mode	  = 0x01;
			ecc_size0 = 52; /* ECC bits in nibbles per sector */
			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
		} else {
			wr_mode	  = 0x01;
			ecc_size0 = 0;  /* extra bits in nibbles per sector */
			ecc_size1 = 52; /* OOB bits in nibbles per sector */
		}
		break;
	default:
		return;
	}

	writel(ECC1, info->reg.gpmc_ecc_control);

	/* Configure ecc size for BCH */
	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
	writel(val, info->reg.gpmc_ecc_size_config);

	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;

	/* BCH configuration */
	val = ((1                        << 16) | /* enable BCH */
	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
	       (wr_mode                  <<  8) | /* wrap mode */
	       (dev_width                <<  7) | /* bus width */
	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
	       (info->gpmc_cs            <<  1) | /* ECC CS */
	       (0x1));                            /* enable ECC */

	writel(val, info->reg.gpmc_ecc_config);

	/* Clear ecc and enable bits */
	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
}

static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
				0x97, 0x79, 0xe5, 0x24, 0xb5};

/**
 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 * @i:		The sector number (for a multi sector page)
 *
 * Support calculating of BCH4/8/16 ECC vectors for one sector
 * within a page. Sector number is in @i.
 */
static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
				   const u_char *dat, u_char *ecc_calc, int i)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	int eccbytes	= info->nand.ecc.bytes;
	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
	u8 *ecc_code;
	unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
	u32 val;
	int j;

	ecc_code = ecc_calc;
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
	case OMAP_ECC_BCH8_CODE_HW:
		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
		bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
		bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
		*ecc_code++ = (bch_val4 & 0xFF);
		*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
		*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
		*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
		*ecc_code++ = (bch_val3 & 0xFF);
		*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
		*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
		*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
		*ecc_code++ = (bch_val2 & 0xFF);
		*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
		*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
		*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
		*ecc_code++ = (bch_val1 & 0xFF);
		break;
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
	case OMAP_ECC_BCH4_CODE_HW:
		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
		*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
		*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
		*ecc_code++ = ((bch_val2 & 0xF) << 4) |
			((bch_val1 >> 28) & 0xF);
		*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
		*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
		*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
		*ecc_code++ = ((bch_val1 & 0xF) << 4);
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		val = readl(gpmc_regs->gpmc_bch_result6[i]);
		ecc_code[0]  = ((val >>  8) & 0xFF);
		ecc_code[1]  = ((val >>  0) & 0xFF);
		val = readl(gpmc_regs->gpmc_bch_result5[i]);
		ecc_code[2]  = ((val >> 24) & 0xFF);
		ecc_code[3]  = ((val >> 16) & 0xFF);
		ecc_code[4]  = ((val >>  8) & 0xFF);
		ecc_code[5]  = ((val >>  0) & 0xFF);
		val = readl(gpmc_regs->gpmc_bch_result4[i]);
		ecc_code[6]  = ((val >> 24) & 0xFF);
		ecc_code[7]  = ((val >> 16) & 0xFF);
		ecc_code[8]  = ((val >>  8) & 0xFF);
		ecc_code[9]  = ((val >>  0) & 0xFF);
		val = readl(gpmc_regs->gpmc_bch_result3[i]);
		ecc_code[10] = ((val >> 24) & 0xFF);
		ecc_code[11] = ((val >> 16) & 0xFF);
		ecc_code[12] = ((val >>  8) & 0xFF);
		ecc_code[13] = ((val >>  0) & 0xFF);
		val = readl(gpmc_regs->gpmc_bch_result2[i]);
		ecc_code[14] = ((val >> 24) & 0xFF);
		ecc_code[15] = ((val >> 16) & 0xFF);
		ecc_code[16] = ((val >>  8) & 0xFF);
		ecc_code[17] = ((val >>  0) & 0xFF);
		val = readl(gpmc_regs->gpmc_bch_result1[i]);
		ecc_code[18] = ((val >> 24) & 0xFF);
		ecc_code[19] = ((val >> 16) & 0xFF);
		ecc_code[20] = ((val >>  8) & 0xFF);
		ecc_code[21] = ((val >>  0) & 0xFF);
		val = readl(gpmc_regs->gpmc_bch_result0[i]);
		ecc_code[22] = ((val >> 24) & 0xFF);
		ecc_code[23] = ((val >> 16) & 0xFF);
		ecc_code[24] = ((val >>  8) & 0xFF);
		ecc_code[25] = ((val >>  0) & 0xFF);
		break;
	default:
		return -EINVAL;
	}

	/* ECC scheme specific syndrome customizations */
	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		/* Add constant polynomial to remainder, so that
		 * ECC of blank pages results in 0x0 on reading back
		 */
		for (j = 0; j < eccbytes; j++)
			ecc_calc[j] ^= bch4_polynomial[j];
		break;
	case OMAP_ECC_BCH4_CODE_HW:
		/* Set  8th ECC byte as 0x0 for ROM compatibility */
		ecc_calc[eccbytes - 1] = 0x0;
		break;
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		/* Add constant polynomial to remainder, so that
		 * ECC of blank pages results in 0x0 on reading back
		 */
		for (j = 0; j < eccbytes; j++)
			ecc_calc[j] ^= bch8_polynomial[j];
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* Set 14th ECC byte as 0x0 for ROM compatibility */
		ecc_calc[eccbytes - 1] = 0x0;
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
 * @chip:	NAND chip object
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
 * when SW based correction is required as ECC is required for one sector
 * at a time.
 */
static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
				     const u_char *dat, u_char *ecc_calc)
{
	return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
}

/**
 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
 * @mtd:	MTD device structure
 * @dat:	The pointer to data on which ecc is computed
 * @ecc_code:	The ecc_code buffer
 *
 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
 */
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
					const u_char *dat, u_char *ecc_calc)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	int eccbytes = info->nand.ecc.bytes;
	unsigned long nsectors;
	int i, ret;

	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
	for (i = 0; i < nsectors; i++) {
		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
		if (ret)
			return ret;

		ecc_calc += eccbytes;
	}

	return 0;
}

/**
 * erased_sector_bitflips - count bit flips
 * @data:	data sector buffer
 * @oob:	oob buffer
 * @info:	omap_nand_info
 *
 * Check the bit flips in erased page falls below correctable level.
 * If falls below, report the page as erased with correctable bit
 * flip, else report as uncorrectable page.
 */
static int erased_sector_bitflips(u_char *data, u_char *oob,
		struct omap_nand_info *info)
{
	int flip_bits = 0, i;

	for (i = 0; i < info->nand.ecc.size; i++) {
		flip_bits += hweight8(~data[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
		flip_bits += hweight8(~oob[i]);
		if (flip_bits > info->nand.ecc.strength)
			return 0;
	}

	/*
	 * Bit flips falls in correctable level.
	 * Fill data area with 0xFF
	 */
	if (flip_bits) {
		memset(data, 0xFF, info->nand.ecc.size);
		memset(oob, 0xFF, info->nand.ecc.bytes);
	}

	return flip_bits;
}

/**
 * omap_elm_correct_data - corrects page data area in case error reported
 * @chip:	NAND chip object
 * @data:	page data
 * @read_ecc:	ecc read from nand flash
 * @calc_ecc:	ecc read from HW ECC registers
 *
 * Calculated ecc vector reported as zero in case of non-error pages.
 * In case of non-zero ecc vector, first filter out erased-pages, and
 * then process data via ELM to detect bit-flips.
 */
static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
				 u_char *read_ecc, u_char *calc_ecc)
{
	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
	int eccsteps = info->nand.ecc.steps;
	int i , j, stat = 0;
	int eccflag, actual_eccbytes;
	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
	u_char *ecc_vec = calc_ecc;
	u_char *spare_ecc = read_ecc;
	u_char *erased_ecc_vec;
	u_char *buf;
	int bitflip_count;
	bool is_error_reported = false;
	u32 bit_pos, byte_pos, error_max, pos;
	int err;

	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW:
		/* omit  7th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
		erased_ecc_vec = bch4_vector;
		break;
	case OMAP_ECC_BCH8_CODE_HW:
		/* omit 14th ECC byte reserved for ROM code compatibility */
		actual_eccbytes = ecc->bytes - 1;
		erased_ecc_vec = bch8_vector;
		break;
	case OMAP_ECC_BCH16_CODE_HW:
		actual_eccbytes = ecc->bytes;
		erased_ecc_vec = bch16_vector;
		break;
	default:
		dev_err(&info->pdev->dev, "invalid driver configuration\n");
		return -EINVAL;
	}

	/* Initialize elm error vector to zero */
	memset(err_vec, 0, sizeof(err_vec));

	for (i = 0; i < eccsteps ; i++) {
		eccflag = 0;	/* initialize eccflag */

		/*
		 * Check any error reported,
		 * In case of error, non zero ecc reported.
		 */
		for (j = 0; j < actual_eccbytes; j++) {
			if (calc_ecc[j] != 0) {
				eccflag = 1; /* non zero ecc, error present */
				break;
			}
		}

		if (eccflag == 1) {
			if (memcmp(calc_ecc, erased_ecc_vec,
						actual_eccbytes) == 0) {
				/*
				 * calc_ecc[] matches pattern for ECC(all 0xff)
				 * so this is definitely an erased-page
				 */
			} else {
				buf = &data[info->nand.ecc.size * i];
				/*
				 * count number of 0-bits in read_buf.
				 * This check can be removed once a similar
				 * check is introduced in generic NAND driver
				 */
				bitflip_count = erased_sector_bitflips(
						buf, read_ecc, info);
				if (bitflip_count) {
					/*
					 * number of 0-bits within ECC limits
					 * So this may be an erased-page
					 */
					stat += bitflip_count;
				} else {
					/*
					 * Too many 0-bits. It may be a
					 * - programmed-page, OR
					 * - erased-page with many bit-flips
					 * So this page requires check by ELM
					 */
					err_vec[i].error_reported = true;
					is_error_reported = true;
				}
			}
		}

		/* Update the ecc vector */
		calc_ecc += ecc->bytes;
		read_ecc += ecc->bytes;
	}

	/* Check if any error reported */
	if (!is_error_reported)
		return stat;

	/* Decode BCH error using ELM module */
	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);

	err = 0;
	for (i = 0; i < eccsteps; i++) {
		if (err_vec[i].error_uncorrectable) {
			dev_err(&info->pdev->dev,
				"uncorrectable bit-flips found\n");
			err = -EBADMSG;
		} else if (err_vec[i].error_reported) {
			for (j = 0; j < err_vec[i].error_count; j++) {
				switch (info->ecc_opt) {
				case OMAP_ECC_BCH4_CODE_HW:
					/* Add 4 bits to take care of padding */
					pos = err_vec[i].error_loc[j] +
						BCH4_BIT_PAD;
					break;
				case OMAP_ECC_BCH8_CODE_HW:
				case OMAP_ECC_BCH16_CODE_HW:
					pos = err_vec[i].error_loc[j];
					break;
				default:
					return -EINVAL;
				}
				error_max = (ecc->size + actual_eccbytes) * 8;
				/* Calculate bit position of error */
				bit_pos = pos % 8;

				/* Calculate byte position of error */
				byte_pos = (error_max - pos - 1) / 8;

				if (pos < error_max) {
					if (byte_pos < 512) {
						pr_debug("bitflip@dat[%d]=%x\n",
						     byte_pos, data[byte_pos]);
						data[byte_pos] ^= 1 << bit_pos;
					} else {
						pr_debug("bitflip@oob[%d]=%x\n",
							(byte_pos - 512),
						     spare_ecc[byte_pos - 512]);
						spare_ecc[byte_pos - 512] ^=
							1 << bit_pos;
					}
				} else {
					dev_err(&info->pdev->dev,
						"invalid bit-flip @ %d:%d\n",
						byte_pos, bit_pos);
					err = -EBADMSG;
				}
			}
		}

		/* Update number of correctable errors */
		stat += err_vec[i].error_count;

		/* Update page data with sector size */
		data += ecc->size;
		spare_ecc += ecc->bytes;
	}

	return (err) ? err : stat;
}

/**
 * omap_write_page_bch - BCH ecc based write page function for entire page
 * @chip:		nand chip info structure
 * @buf:		data buffer
 * @oob_required:	must write chip->oob_poi to OOB
 * @page:		page
 *
 * Custom write page method evolved to support multi sector writing in one shot
 */
static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
			       int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;
	uint8_t *ecc_calc = chip->ecc.calc_buf;

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(chip, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(chip, buf, mtd->writesize);

	/* Update ecc vector from GPMC result registers */
	omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);

	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	/* Write ecc vector to OOB area */
	chip->write_buf(chip, chip->oob_poi, mtd->oobsize);

	return nand_prog_page_end_op(chip);
}

/**
 * omap_write_subpage_bch - BCH hardware ECC based subpage write
 * @chip:	nand chip info structure
 * @offset:	column address of subpage within the page
 * @data_len:	data length
 * @buf:	data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 *
 * OMAP optimized subpage write method.
 */
static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
				  u32 data_len, const u8 *buf,
				  int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 *ecc_calc = chip->ecc.calc_buf;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	u32 start_step = offset / ecc_size;
	u32 end_step   = (offset + data_len - 1) / ecc_size;
	int step, ret = 0;

	/*
	 * Write entire page at one go as it would be optimal
	 * as ECC is calculated by hardware.
	 * ECC is calculated for all subpages but we choose
	 * only what we want.
	 */
	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	/* Enable GPMC ECC engine */
	chip->ecc.hwctl(chip, NAND_ECC_WRITE);

	/* Write data */
	chip->write_buf(chip, buf, mtd->writesize);

	for (step = 0; step < ecc_steps; step++) {
		/* mask ECC of un-touched subpages by padding 0xFF */
		if (step < start_step || step > end_step)
			memset(ecc_calc, 0xff, ecc_bytes);
		else
			ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);

		if (ret)
			return ret;

		buf += ecc_size;
		ecc_calc += ecc_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->ecc.calc_buf;
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	/* write OOB buffer to NAND device */
	chip->write_buf(chip, chip->oob_poi, mtd->oobsize);

	return nand_prog_page_end_op(chip);
}

/**
 * omap_read_page_bch - BCH ecc based page read function for entire page
 * @chip:		nand chip info structure
 * @buf:		buffer to store read data
 * @oob_required:	caller requires OOB data read to chip->oob_poi
 * @page:		page number to read
 *
 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
 * used for error correction.
 * Custom method evolved to support ELM error correction & multi sector
 * reading. On reading page data area is read along with OOB data with
 * ecc engine enabled. ecc vector updated after read of OOB data.
 * For non error pages ecc vector reported as zero.
 */
static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
			      int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	uint8_t *ecc_code = chip->ecc.code_buf;
	int stat, ret;
	unsigned int max_bitflips = 0;

	nand_read_page_op(chip, page, 0, NULL, 0);

	/* Enable GPMC ecc engine */
	chip->ecc.hwctl(chip, NAND_ECC_READ);

	/* Read data */
	chip->read_buf(chip, buf, mtd->writesize);

	/* Read oob bytes */
	nand_change_read_column_op(chip,
				   mtd->writesize + BADBLOCK_MARKER_LENGTH,
				   chip->oob_poi + BADBLOCK_MARKER_LENGTH,
				   chip->ecc.total, false);

	/* Calculate ecc bytes */
	omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);

	if (stat < 0) {
		mtd->ecc_stats.failed++;
	} else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

/**
 * is_elm_present - checks for presence of ELM module by scanning DT nodes
 * @omap_nand_info: NAND device structure containing platform data
 */
static bool is_elm_present(struct omap_nand_info *info,
			   struct device_node *elm_node)
{
	struct platform_device *pdev;

	/* check whether elm-id is passed via DT */
	if (!elm_node) {
		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
		return false;
	}
	pdev = of_find_device_by_node(elm_node);
	/* check whether ELM device is registered */
	if (!pdev) {
		dev_err(&info->pdev->dev, "ELM device not found\n");
		return false;
	}
	/* ELM module available, now configure it */
	info->elm_dev = &pdev->dev;
	return true;
}

static bool omap2_nand_ecc_check(struct omap_nand_info *info)
{
	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;

	switch (info->ecc_opt) {
	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		ecc_needs_omap_bch = false;
		ecc_needs_bch = true;
		ecc_needs_elm = false;
		break;
	case OMAP_ECC_BCH4_CODE_HW:
	case OMAP_ECC_BCH8_CODE_HW:
	case OMAP_ECC_BCH16_CODE_HW:
		ecc_needs_omap_bch = true;
		ecc_needs_bch = false;
		ecc_needs_elm = true;
		break;
	default:
		ecc_needs_omap_bch = false;
		ecc_needs_bch = false;
		ecc_needs_elm = false;
		break;
	}

	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
		dev_err(&info->pdev->dev,
			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
		return false;
	}
	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
		dev_err(&info->pdev->dev,
			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
		return false;
	}
	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
		dev_err(&info->pdev->dev, "ELM not available\n");
		return false;
	}

	return true;
}

static const char * const nand_xfer_types[] = {
	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
	[NAND_OMAP_POLLED] = "polled",
	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
};

static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
{
	struct device_node *child = dev->of_node;
	int i;
	const char *s;
	u32 cs;

	if (of_property_read_u32(child, "reg", &cs) < 0) {
		dev_err(dev, "reg not found in DT\n");
		return -EINVAL;
	}

	info->gpmc_cs = cs;

	/* detect availability of ELM module. Won't be present pre-OMAP4 */
	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
	if (!info->elm_of_node) {
		info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
		if (!info->elm_of_node)
			dev_dbg(dev, "ti,elm-id not in DT\n");
	}

	/* select ecc-scheme for NAND */
	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
		dev_err(dev, "ti,nand-ecc-opt not found\n");
		return -EINVAL;
	}

	if (!strcmp(s, "sw")) {
		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
	} else if (!strcmp(s, "ham1") ||
		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
	} else if (!strcmp(s, "bch4")) {
		if (info->elm_of_node)
			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
		else
			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
	} else if (!strcmp(s, "bch8")) {
		if (info->elm_of_node)
			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
		else
			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
	} else if (!strcmp(s, "bch16")) {
		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
	} else {
		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
		return -EINVAL;
	}

	/* select data transfer mode */
	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
			if (!strcasecmp(s, nand_xfer_types[i])) {
				info->xfer_type = i;
				return 0;
			}
		}

		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
		return -EINVAL;
	}

	return 0;
}

static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
			      struct mtd_oob_region *oobregion)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	struct nand_chip *chip = &info->nand;
	int off = BADBLOCK_MARKER_LENGTH;

	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
	    !(chip->options & NAND_BUSWIDTH_16))
		off = 1;

	if (section)
		return -ERANGE;

	oobregion->offset = off;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int omap_ooblayout_free(struct mtd_info *mtd, int section,
			       struct mtd_oob_region *oobregion)
{
	struct omap_nand_info *info = mtd_to_omap(mtd);
	struct nand_chip *chip = &info->nand;
	int off = BADBLOCK_MARKER_LENGTH;

	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
	    !(chip->options & NAND_BUSWIDTH_16))
		off = 1;

	if (section)
		return -ERANGE;

	off += chip->ecc.total;
	if (off >= mtd->oobsize)
		return -ERANGE;

	oobregion->offset = off;
	oobregion->length = mtd->oobsize - off;

	return 0;
}

static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
	.ecc = omap_ooblayout_ecc,
	.free = omap_ooblayout_free,
};

static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int off = BADBLOCK_MARKER_LENGTH;

	if (section >= chip->ecc.steps)
		return -ERANGE;

	/*
	 * When SW correction is employed, one OMAP specific marker byte is
	 * reserved after each ECC step.
	 */
	oobregion->offset = off + (section * (chip->ecc.bytes + 1));
	oobregion->length = chip->ecc.bytes;

	return 0;
}

static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int off = BADBLOCK_MARKER_LENGTH;

	if (section)
		return -ERANGE;

	/*
	 * When SW correction is employed, one OMAP specific marker byte is
	 * reserved after each ECC step.
	 */
	off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
	if (off >= mtd->oobsize)
		return -ERANGE;

	oobregion->offset = off;
	oobregion->length = mtd->oobsize - off;

	return 0;
}

static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
	.ecc = omap_sw_ooblayout_ecc,
	.free = omap_sw_ooblayout_free,
};

static int omap_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	struct device *dev = &info->pdev->dev;
	int min_oobbytes = BADBLOCK_MARKER_LENGTH;
	int oobbytes_per_step;
	dma_cap_mask_t mask;
	int err;

	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->bbt_options |= NAND_BBT_NO_OOB;
	else
		chip->options |= NAND_SKIP_BBTSCAN;

	/* Re-populate low-level callbacks based on xfer modes */
	switch (info->xfer_type) {
	case NAND_OMAP_PREFETCH_POLLED:
		chip->read_buf = omap_read_buf_pref;
		chip->write_buf = omap_write_buf_pref;
		break;

	case NAND_OMAP_POLLED:
		/* Use nand_base defaults for {read,write}_buf */
		break;

	case NAND_OMAP_PREFETCH_DMA:
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
		info->dma = dma_request_chan(dev, "rxtx");

		if (IS_ERR(info->dma)) {
			dev_err(dev, "DMA engine request failed\n");
			return PTR_ERR(info->dma);
		} else {
			struct dma_slave_config cfg;

			memset(&cfg, 0, sizeof(cfg));
			cfg.src_addr = info->phys_base;
			cfg.dst_addr = info->phys_base;
			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
			cfg.src_maxburst = 16;
			cfg.dst_maxburst = 16;
			err = dmaengine_slave_config(info->dma, &cfg);
			if (err) {
				dev_err(dev,
					"DMA engine slave config failed: %d\n",
					err);
				return err;
			}
			chip->read_buf = omap_read_buf_dma_pref;
			chip->write_buf = omap_write_buf_dma_pref;
		}
		break;

	case NAND_OMAP_PREFETCH_IRQ:
		info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
		if (info->gpmc_irq_fifo <= 0) {
			dev_err(dev, "Error getting fifo IRQ\n");
			return -ENODEV;
		}
		err = devm_request_irq(dev, info->gpmc_irq_fifo,
				       omap_nand_irq, IRQF_SHARED,
				       "gpmc-nand-fifo", info);
		if (err) {
			dev_err(dev, "Requesting IRQ %d, error %d\n",
				info->gpmc_irq_fifo, err);
			info->gpmc_irq_fifo = 0;
			return err;
		}

		info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
		if (info->gpmc_irq_count <= 0) {
			dev_err(dev, "Error getting IRQ count\n");
			return -ENODEV;
		}
		err = devm_request_irq(dev, info->gpmc_irq_count,
				       omap_nand_irq, IRQF_SHARED,
				       "gpmc-nand-count", info);
		if (err) {
			dev_err(dev, "Requesting IRQ %d, error %d\n",
				info->gpmc_irq_count, err);
			info->gpmc_irq_count = 0;
			return err;
		}

		chip->read_buf = omap_read_buf_irq_pref;
		chip->write_buf = omap_write_buf_irq_pref;

		break;

	default:
		dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
		return -EINVAL;
	}

	if (!omap2_nand_ecc_check(info))
		return -EINVAL;

	/*
	 * Bail out earlier to let NAND_ECC_SOFT code create its own
	 * ooblayout instead of using ours.
	 */
	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
		chip->ecc.mode = NAND_ECC_SOFT;
		chip->ecc.algo = NAND_ECC_HAMMING;
		return 0;
	}

	/* Populate MTD interface based on ECC scheme */
	switch (info->ecc_opt) {
	case OMAP_ECC_HAM1_CODE_HW:
		dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
		chip->ecc.mode		= NAND_ECC_HW;
		chip->ecc.bytes		= 3;
		chip->ecc.size		= 512;
		chip->ecc.strength	= 1;
		chip->ecc.calculate	= omap_calculate_ecc;
		chip->ecc.hwctl		= omap_enable_hwecc;
		chip->ecc.correct	= omap_correct_data;
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step	= chip->ecc.bytes;

		if (!(chip->options & NAND_BUSWIDTH_16))
			min_oobbytes	= 1;

		break;

	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
		chip->ecc.mode		= NAND_ECC_HW;
		chip->ecc.size		= 512;
		chip->ecc.bytes		= 7;
		chip->ecc.strength	= 4;
		chip->ecc.hwctl		= omap_enable_hwecc_bch;
		chip->ecc.correct	= nand_bch_correct_data;
		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
		/* Reserve one byte for the OMAP marker */
		oobbytes_per_step	= chip->ecc.bytes + 1;
		/* Software BCH library is used for locating errors */
		chip->ecc.priv		= nand_bch_init(mtd);
		if (!chip->ecc.priv) {
			dev_err(dev, "Unable to use BCH library\n");
			return -EINVAL;
		}
		break;

	case OMAP_ECC_BCH4_CODE_HW:
		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
		chip->ecc.mode		= NAND_ECC_HW;
		chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		chip->ecc.bytes		= 7 + 1;
		chip->ecc.strength	= 4;
		chip->ecc.hwctl		= omap_enable_hwecc_bch;
		chip->ecc.correct	= omap_elm_correct_data;
		chip->ecc.read_page	= omap_read_page_bch;
		chip->ecc.write_page	= omap_write_page_bch;
		chip->ecc.write_subpage	= omap_write_subpage_bch;
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step	= chip->ecc.bytes;

		err = elm_config(info->elm_dev, BCH4_ECC,
				 mtd->writesize / chip->ecc.size,
				 chip->ecc.size, chip->ecc.bytes);
		if (err < 0)
			return err;
		break;

	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
		chip->ecc.mode		= NAND_ECC_HW;
		chip->ecc.size		= 512;
		chip->ecc.bytes		= 13;
		chip->ecc.strength	= 8;
		chip->ecc.hwctl		= omap_enable_hwecc_bch;
		chip->ecc.correct	= nand_bch_correct_data;
		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
		/* Reserve one byte for the OMAP marker */
		oobbytes_per_step	= chip->ecc.bytes + 1;
		/* Software BCH library is used for locating errors */
		chip->ecc.priv		= nand_bch_init(mtd);
		if (!chip->ecc.priv) {
			dev_err(dev, "unable to use BCH library\n");
			return -EINVAL;
		}
		break;

	case OMAP_ECC_BCH8_CODE_HW:
		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
		chip->ecc.mode		= NAND_ECC_HW;
		chip->ecc.size		= 512;
		/* 14th bit is kept reserved for ROM-code compatibility */
		chip->ecc.bytes		= 13 + 1;
		chip->ecc.strength	= 8;
		chip->ecc.hwctl		= omap_enable_hwecc_bch;
		chip->ecc.correct	= omap_elm_correct_data;
		chip->ecc.read_page	= omap_read_page_bch;
		chip->ecc.write_page	= omap_write_page_bch;
		chip->ecc.write_subpage	= omap_write_subpage_bch;
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step	= chip->ecc.bytes;

		err = elm_config(info->elm_dev, BCH8_ECC,
				 mtd->writesize / chip->ecc.size,
				 chip->ecc.size, chip->ecc.bytes);
		if (err < 0)
			return err;

		break;

	case OMAP_ECC_BCH16_CODE_HW:
		pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
		chip->ecc.mode		= NAND_ECC_HW;
		chip->ecc.size		= 512;
		chip->ecc.bytes		= 26;
		chip->ecc.strength	= 16;
		chip->ecc.hwctl		= omap_enable_hwecc_bch;
		chip->ecc.correct	= omap_elm_correct_data;
		chip->ecc.read_page	= omap_read_page_bch;
		chip->ecc.write_page	= omap_write_page_bch;
		chip->ecc.write_subpage	= omap_write_subpage_bch;
		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
		oobbytes_per_step	= chip->ecc.bytes;

		err = elm_config(info->elm_dev, BCH16_ECC,
				 mtd->writesize / chip->ecc.size,
				 chip->ecc.size, chip->ecc.bytes);
		if (err < 0)
			return err;

		break;
	default:
		dev_err(dev, "Invalid or unsupported ECC scheme\n");
		return -EINVAL;
	}

	/* Check if NAND device's OOB is enough to store ECC signatures */
	min_oobbytes += (oobbytes_per_step *
			 (mtd->writesize / chip->ecc.size));
	if (mtd->oobsize < min_oobbytes) {
		dev_err(dev,
			"Not enough OOB bytes: required = %d, available=%d\n",
			min_oobbytes, mtd->oobsize);
		return -EINVAL;
	}

	return 0;
}

static const struct nand_controller_ops omap_nand_controller_ops = {
	.attach_chip = omap_nand_attach_chip,
};

/* Shared among all NAND instances to synchronize access to the ECC Engine */
static struct nand_controller omap_gpmc_controller = {
	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
	.ops = &omap_nand_controller_ops,
};

static int omap_nand_probe(struct platform_device *pdev)
{
	struct omap_nand_info		*info;
	struct mtd_info			*mtd;
	struct nand_chip		*nand_chip;
	int				err;
	struct resource			*res;
	struct device			*dev = &pdev->dev;

	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
				GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	info->pdev = pdev;

	err = omap_get_dt_info(dev, info);
	if (err)
		return err;

	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
	if (!info->ops) {
		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
		return -ENODEV;
	}

	nand_chip		= &info->nand;
	mtd			= nand_to_mtd(nand_chip);
	mtd->dev.parent		= &pdev->dev;
	nand_chip->ecc.priv	= NULL;
	nand_set_flash_node(nand_chip, dev->of_node);

	if (!mtd->name) {
		mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
					   "omap2-nand.%d", info->gpmc_cs);
		if (!mtd->name) {
			dev_err(&pdev->dev, "Failed to set MTD name\n");
			return -ENOMEM;
		}
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(nand_chip->IO_ADDR_R))
		return PTR_ERR(nand_chip->IO_ADDR_R);

	info->phys_base = res->start;

	nand_chip->controller = &omap_gpmc_controller;

	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
	nand_chip->cmd_ctrl  = omap_hwcontrol;

	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
						    GPIOD_IN);
	if (IS_ERR(info->ready_gpiod)) {
		dev_err(dev, "failed to get ready gpio\n");
		return PTR_ERR(info->ready_gpiod);
	}

	/*
	 * If RDY/BSY line is connected to OMAP then use the omap ready
	 * function and the generic nand_wait function which reads the status
	 * register after monitoring the RDY/BSY line. Otherwise use a standard
	 * chip delay which is slightly more than tR (AC Timing) of the NAND
	 * device and read status register until you get a failure or success
	 */
	if (info->ready_gpiod) {
		nand_chip->dev_ready = omap_dev_ready;
		nand_chip->chip_delay = 0;
	} else {
		nand_chip->waitfunc = omap_wait;
		nand_chip->chip_delay = 50;
	}

	if (info->flash_bbt)
		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;

	/* scan NAND device connected to chip controller */
	nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;

	err = nand_scan(nand_chip, 1);
	if (err)
		goto return_error;

	err = mtd_device_register(mtd, NULL, 0);
	if (err)
		goto cleanup_nand;

	platform_set_drvdata(pdev, mtd);

	return 0;

cleanup_nand:
	nand_cleanup(nand_chip);

return_error:
	if (!IS_ERR_OR_NULL(info->dma))
		dma_release_channel(info->dma);
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
	return err;
}

static int omap_nand_remove(struct platform_device *pdev)
{
	struct mtd_info *mtd = platform_get_drvdata(pdev);
	struct nand_chip *nand_chip = mtd_to_nand(mtd);
	struct omap_nand_info *info = mtd_to_omap(mtd);
	if (nand_chip->ecc.priv) {
		nand_bch_free(nand_chip->ecc.priv);
		nand_chip->ecc.priv = NULL;
	}
	if (info->dma)
		dma_release_channel(info->dma);
	nand_release(nand_chip);
	return 0;
}

static const struct of_device_id omap_nand_ids[] = {
	{ .compatible = "ti,omap2-nand", },
	{},
};
MODULE_DEVICE_TABLE(of, omap_nand_ids);

static struct platform_driver omap_nand_driver = {
	.probe		= omap_nand_probe,
	.remove		= omap_nand_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.of_match_table = of_match_ptr(omap_nand_ids),
	},
};

module_platform_driver(omap_nand_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");