summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/mtk_nand.c
blob: 2bb0df1b7244795658e2620ace4c6bc4b45d4359 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
/*
 * MTK NAND Flash controller driver.
 * Copyright (C) 2016 MediaTek Inc.
 * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
 *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "mtk_ecc.h"

/* NAND controller register definition */
#define NFI_CNFG		(0x00)
#define		CNFG_AHB		BIT(0)
#define		CNFG_READ_EN		BIT(1)
#define		CNFG_DMA_BURST_EN	BIT(2)
#define		CNFG_BYTE_RW		BIT(6)
#define		CNFG_HW_ECC_EN		BIT(8)
#define		CNFG_AUTO_FMT_EN	BIT(9)
#define		CNFG_OP_CUST		(6 << 12)
#define NFI_PAGEFMT		(0x04)
#define		PAGEFMT_FDM_ECC_SHIFT	(12)
#define		PAGEFMT_FDM_SHIFT	(8)
#define		PAGEFMT_SEC_SEL_512	BIT(2)
#define		PAGEFMT_512_2K		(0)
#define		PAGEFMT_2K_4K		(1)
#define		PAGEFMT_4K_8K		(2)
#define		PAGEFMT_8K_16K		(3)
/* NFI control */
#define NFI_CON			(0x08)
#define		CON_FIFO_FLUSH		BIT(0)
#define		CON_NFI_RST		BIT(1)
#define		CON_BRD			BIT(8)  /* burst  read */
#define		CON_BWR			BIT(9)	/* burst  write */
#define		CON_SEC_SHIFT		(12)
/* Timming control register */
#define NFI_ACCCON		(0x0C)
#define NFI_INTR_EN		(0x10)
#define		INTR_AHB_DONE_EN	BIT(6)
#define NFI_INTR_STA		(0x14)
#define NFI_CMD			(0x20)
#define NFI_ADDRNOB		(0x30)
#define NFI_COLADDR		(0x34)
#define NFI_ROWADDR		(0x38)
#define NFI_STRDATA		(0x40)
#define		STAR_EN			(1)
#define		STAR_DE			(0)
#define NFI_CNRNB		(0x44)
#define NFI_DATAW		(0x50)
#define NFI_DATAR		(0x54)
#define NFI_PIO_DIRDY		(0x58)
#define		PIO_DI_RDY		(0x01)
#define NFI_STA			(0x60)
#define		STA_CMD			BIT(0)
#define		STA_ADDR		BIT(1)
#define		STA_BUSY		BIT(8)
#define		STA_EMP_PAGE		BIT(12)
#define		NFI_FSM_CUSTDATA	(0xe << 16)
#define		NFI_FSM_MASK		(0xf << 16)
#define NFI_ADDRCNTR		(0x70)
#define		CNTR_MASK		GENMASK(16, 12)
#define		ADDRCNTR_SEC_SHIFT	(12)
#define		ADDRCNTR_SEC(val) \
		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
#define NFI_STRADDR		(0x80)
#define NFI_BYTELEN		(0x84)
#define NFI_CSEL		(0x90)
#define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
#define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
#define NFI_FDM_MAX_SIZE	(8)
#define NFI_FDM_MIN_SIZE	(1)
#define NFI_MASTER_STA		(0x224)
#define		MASTER_STA_MASK		(0x0FFF)
#define NFI_EMPTY_THRESH	(0x23C)

#define MTK_NAME		"mtk-nand"
#define KB(x)			((x) * 1024UL)
#define MB(x)			(KB(x) * 1024UL)

#define MTK_TIMEOUT		(500000)
#define MTK_RESET_TIMEOUT	(1000000)
#define MTK_NAND_MAX_NSELS	(2)
#define MTK_NFC_MIN_SPARE	(16)
#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))

struct mtk_nfc_caps {
	const u8 *spare_size;
	u8 num_spare_size;
	u8 pageformat_spare_shift;
	u8 nfi_clk_div;
	u8 max_sector;
	u32 max_sector_size;
};

struct mtk_nfc_bad_mark_ctl {
	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
	u32 sec;
	u32 pos;
};

/*
 * FDM: region used to store free OOB data
 */
struct mtk_nfc_fdm {
	u32 reg_size;
	u32 ecc_size;
};

struct mtk_nfc_nand_chip {
	struct list_head node;
	struct nand_chip nand;

	struct mtk_nfc_bad_mark_ctl bad_mark;
	struct mtk_nfc_fdm fdm;
	u32 spare_per_sector;

	int nsels;
	u8 sels[0];
	/* nothing after this field */
};

struct mtk_nfc_clk {
	struct clk *nfi_clk;
	struct clk *pad_clk;
};

struct mtk_nfc {
	struct nand_controller controller;
	struct mtk_ecc_config ecc_cfg;
	struct mtk_nfc_clk clk;
	struct mtk_ecc *ecc;

	struct device *dev;
	const struct mtk_nfc_caps *caps;
	void __iomem *regs;

	struct completion done;
	struct list_head chips;

	u8 *buffer;
};

/*
 * supported spare size of each IP.
 * order should be the same with the spare size bitfiled defination of
 * register NFI_PAGEFMT.
 */
static const u8 spare_size_mt2701[] = {
	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
};

static const u8 spare_size_mt2712[] = {
	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
	74
};

static const u8 spare_size_mt7622[] = {
	16, 26, 27, 28
};

static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
{
	return container_of(nand, struct mtk_nfc_nand_chip, nand);
}

static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
{
	return (u8 *)p + i * chip->ecc.size;
}

static inline u8 *oob_ptr(struct nand_chip *chip, int i)
{
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	u8 *poi;

	/* map the sector's FDM data to free oob:
	 * the beginning of the oob area stores the FDM data of bad mark sectors
	 */

	if (i < mtk_nand->bad_mark.sec)
		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
	else if (i == mtk_nand->bad_mark.sec)
		poi = chip->oob_poi;
	else
		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;

	return poi;
}

static inline int mtk_data_len(struct nand_chip *chip)
{
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);

	return chip->ecc.size + mtk_nand->spare_per_sector;
}

static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);

	return nfc->buffer + i * mtk_data_len(chip);
}

static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);

	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
}

static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
{
	writel(val, nfc->regs + reg);
}

static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
{
	writew(val, nfc->regs + reg);
}

static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
{
	writeb(val, nfc->regs + reg);
}

static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
{
	return readl_relaxed(nfc->regs + reg);
}

static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
{
	return readw_relaxed(nfc->regs + reg);
}

static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
{
	return readb_relaxed(nfc->regs + reg);
}

static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
{
	struct device *dev = nfc->dev;
	u32 val;
	int ret;

	/* reset all registers and force the NFI master to terminate */
	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);

	/* wait for the master to finish the last transaction */
	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
				 !(val & MASTER_STA_MASK), 50,
				 MTK_RESET_TIMEOUT);
	if (ret)
		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
			 NFI_MASTER_STA, val);

	/* ensure any status register affected by the NFI master is reset */
	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
}

static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
{
	struct device *dev = nfc->dev;
	u32 val;
	int ret;

	nfi_writel(nfc, command, NFI_CMD);

	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
					!(val & STA_CMD), 10,  MTK_TIMEOUT);
	if (ret) {
		dev_warn(dev, "nfi core timed out entering command mode\n");
		return -EIO;
	}

	return 0;
}

static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
{
	struct device *dev = nfc->dev;
	u32 val;
	int ret;

	nfi_writel(nfc, addr, NFI_COLADDR);
	nfi_writel(nfc, 0, NFI_ROWADDR);
	nfi_writew(nfc, 1, NFI_ADDRNOB);

	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
					!(val & STA_ADDR), 10, MTK_TIMEOUT);
	if (ret) {
		dev_warn(dev, "nfi core timed out entering address mode\n");
		return -EIO;
	}

	return 0;
}

static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	u32 fmt, spare, i;

	if (!mtd->writesize)
		return 0;

	spare = mtk_nand->spare_per_sector;

	switch (mtd->writesize) {
	case 512:
		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
		break;
	case KB(2):
		if (chip->ecc.size == 512)
			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
		else
			fmt = PAGEFMT_512_2K;
		break;
	case KB(4):
		if (chip->ecc.size == 512)
			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
		else
			fmt = PAGEFMT_2K_4K;
		break;
	case KB(8):
		if (chip->ecc.size == 512)
			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
		else
			fmt = PAGEFMT_4K_8K;
		break;
	case KB(16):
		fmt = PAGEFMT_8K_16K;
		break;
	default:
		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
		return -EINVAL;
	}

	/*
	 * the hardware will double the value for this eccsize, so we need to
	 * halve it
	 */
	if (chip->ecc.size == 1024)
		spare >>= 1;

	for (i = 0; i < nfc->caps->num_spare_size; i++) {
		if (nfc->caps->spare_size[i] == spare)
			break;
	}

	if (i == nfc->caps->num_spare_size) {
		dev_err(nfc->dev, "invalid spare size %d\n", spare);
		return -EINVAL;
	}

	fmt |= i << nfc->caps->pageformat_spare_shift;

	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
	nfi_writel(nfc, fmt, NFI_PAGEFMT);

	nfc->ecc_cfg.strength = chip->ecc.strength;
	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;

	return 0;
}

static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
{
	struct mtk_nfc *nfc = nand_get_controller_data(nand);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);

	if (chip < 0)
		return;

	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));

	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
}

static int mtk_nfc_dev_ready(struct nand_chip *nand)
{
	struct mtk_nfc *nfc = nand_get_controller_data(nand);

	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
		return 0;

	return 1;
}

static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
			     unsigned int ctrl)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);

	if (ctrl & NAND_ALE) {
		mtk_nfc_send_address(nfc, dat);
	} else if (ctrl & NAND_CLE) {
		mtk_nfc_hw_reset(nfc);

		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
		mtk_nfc_send_command(nfc, dat);
	}
}

static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
{
	int rc;
	u8 val;

	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
	if (rc < 0)
		dev_err(nfc->dev, "data not ready\n");
}

static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	u32 reg;

	/* after each byte read, the NFI_STA reg is reset by the hardware */
	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
	if (reg != NFI_FSM_CUSTDATA) {
		reg = nfi_readw(nfc, NFI_CNFG);
		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
		nfi_writew(nfc, reg, NFI_CNFG);

		/*
		 * set to max sector to allow the HW to continue reading over
		 * unaligned accesses
		 */
		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
		nfi_writel(nfc, reg, NFI_CON);

		/* trigger to fetch data */
		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
	}

	mtk_nfc_wait_ioready(nfc);

	return nfi_readb(nfc, NFI_DATAR);
}

static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		buf[i] = mtk_nfc_read_byte(chip);
}

static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	u32 reg;

	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;

	if (reg != NFI_FSM_CUSTDATA) {
		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
		nfi_writew(nfc, reg, NFI_CNFG);

		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
		nfi_writel(nfc, reg, NFI_CON);

		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
	}

	mtk_nfc_wait_ioready(nfc);
	nfi_writeb(nfc, byte, NFI_DATAW);
}

static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		mtk_nfc_write_byte(chip, buf[i]);
}

static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
					const struct nand_data_interface *conf)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	const struct nand_sdr_timings *timings;
	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return -ENOTSUPP;

	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	rate = clk_get_rate(nfc->clk.nfi_clk);
	/* There is a frequency divider in some IPs */
	rate /= nfc->caps->nfi_clk_div;

	/* turn clock rate into KHZ */
	rate /= 1000;

	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
	tpoecs &= 0xf;

	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
	tprecs &= 0x3f;

	/* sdr interface has no tCR which means CE# low to RE# low */
	tc2r = 0;

	tw2r = timings->tWHR_min / 1000;
	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
	tw2r &= 0xf;

	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
	twh &= 0xf;

	twst = timings->tWP_min / 1000;
	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
	twst &= 0xf;

	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
	trlt &= 0xf;

	/*
	 * ACCON: access timing control register
	 * -------------------------------------
	 * 31:28: tpoecs, minimum required time for CS post pulling down after
	 *        accessing the device
	 * 27:22: tprecs, minimum required time for CS pre pulling down before
	 *        accessing the device
	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
	 * 11:08: twh, write enable hold time
	 * 07:04: twst, write wait states
	 * 03:00: trlt, read wait states
	 */
	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
	nfi_writel(nfc, trlt, NFI_ACCCON);

	return 0;
}

static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	int size = chip->ecc.size + mtk_nand->fdm.reg_size;

	nfc->ecc_cfg.mode = ECC_DMA_MODE;
	nfc->ecc_cfg.op = ECC_ENCODE;

	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
}

static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
{
	/* nop */
}

static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
	u32 bad_pos = nand->bad_mark.pos;

	if (raw)
		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
	else
		bad_pos += nand->bad_mark.sec * chip->ecc.size;

	swap(chip->oob_poi[0], buf[bad_pos]);
}

static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
				  u32 len, const u8 *buf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
	u32 start, end;
	int i, ret;

	start = offset / chip->ecc.size;
	end = DIV_ROUND_UP(offset + len, chip->ecc.size);

	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
	for (i = 0; i < chip->ecc.steps; i++) {
		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
		       chip->ecc.size);

		if (start > i || i >= end)
			continue;

		if (i == mtk_nand->bad_mark.sec)
			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);

		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);

		/* program the CRC back to the OOB */
		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
		if (ret < 0)
			return ret;
	}

	return 0;
}

static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
	u32 i;

	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
	for (i = 0; i < chip->ecc.steps; i++) {
		if (buf)
			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
			       chip->ecc.size);

		if (i == mtk_nand->bad_mark.sec)
			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);

		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
	}
}

static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
				    u32 sectors)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
	u32 vall, valm;
	u8 *oobptr;
	int i, j;

	for (i = 0; i < sectors; i++) {
		oobptr = oob_ptr(chip, start + i);
		vall = nfi_readl(nfc, NFI_FDML(i));
		valm = nfi_readl(nfc, NFI_FDMM(i));

		for (j = 0; j < fdm->reg_size; j++)
			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
	}
}

static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
	u32 vall, valm;
	u8 *oobptr;
	int i, j;

	for (i = 0; i < chip->ecc.steps; i++) {
		oobptr = oob_ptr(chip, i);
		vall = 0;
		valm = 0;
		for (j = 0; j < 8; j++) {
			if (j < 4)
				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
						<< (j * 8);
			else
				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
						<< ((j - 4) * 8);
		}
		nfi_writel(nfc, vall, NFI_FDML(i));
		nfi_writel(nfc, valm, NFI_FDMM(i));
	}
}

static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				 const u8 *buf, int page, int len)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct device *dev = nfc->dev;
	dma_addr_t addr;
	u32 reg;
	int ret;

	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
	ret = dma_mapping_error(nfc->dev, addr);
	if (ret) {
		dev_err(nfc->dev, "dma mapping error\n");
		return -EINVAL;
	}

	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
	nfi_writew(nfc, reg, NFI_CNFG);

	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);

	init_completion(&nfc->done);

	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
	nfi_writel(nfc, reg, NFI_CON);
	nfi_writew(nfc, STAR_EN, NFI_STRDATA);

	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
	if (!ret) {
		dev_err(dev, "program ahb done timeout\n");
		nfi_writew(nfc, 0, NFI_INTR_EN);
		ret = -ETIMEDOUT;
		goto timeout;
	}

	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
					10, MTK_TIMEOUT);
	if (ret)
		dev_err(dev, "hwecc write timeout\n");

timeout:

	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
	nfi_writel(nfc, 0, NFI_CON);

	return ret;
}

static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
			      const u8 *buf, int page, int raw)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	size_t len;
	const u8 *bufpoi;
	u32 reg;
	int ret;

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	if (!raw) {
		/* OOB => FDM: from register,  ECC: from HW */
		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);

		nfc->ecc_cfg.op = ECC_ENCODE;
		nfc->ecc_cfg.mode = ECC_NFI_MODE;
		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
		if (ret) {
			/* clear NFI config */
			reg = nfi_readw(nfc, NFI_CNFG);
			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
			nfi_writew(nfc, reg, NFI_CNFG);

			return ret;
		}

		memcpy(nfc->buffer, buf, mtd->writesize);
		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
		bufpoi = nfc->buffer;

		/* write OOB into the FDM registers (OOB area in MTK NAND) */
		mtk_nfc_write_fdm(chip);
	} else {
		bufpoi = buf;
	}

	len = mtd->writesize + (raw ? mtd->oobsize : 0);
	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);

	if (!raw)
		mtk_ecc_disable(nfc->ecc);

	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
}

static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
				    int oob_on, int page)
{
	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
}

static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
				  int oob_on, int pg)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);

	mtk_nfc_format_page(mtd, buf);
	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
}

static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
				       u32 data_len, const u8 *buf,
				       int oob_on, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	int ret;

	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
	if (ret < 0)
		return ret;

	/* use the data in the private buffer (now with FDM and CRC) */
	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
}

static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
{
	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
}

static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_ecc_stats stats;
	int rc, i;

	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
	if (rc) {
		memset(buf, 0xff, sectors * chip->ecc.size);
		for (i = 0; i < sectors; i++)
			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
		return 0;
	}

	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
	mtd->ecc_stats.corrected += stats.corrected;
	mtd->ecc_stats.failed += stats.failed;

	return stats.bitflips;
}

static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
				u32 data_offs, u32 readlen,
				u8 *bufpoi, int page, int raw)
{
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	u32 spare = mtk_nand->spare_per_sector;
	u32 column, sectors, start, end, reg;
	dma_addr_t addr;
	int bitflips;
	size_t len;
	u8 *buf;
	int rc;

	start = data_offs / chip->ecc.size;
	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);

	sectors = end - start;
	column = start * (chip->ecc.size + spare);

	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
	buf = bufpoi + start * chip->ecc.size;

	nand_read_page_op(chip, page, column, NULL, 0);

	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
	rc = dma_mapping_error(nfc->dev, addr);
	if (rc) {
		dev_err(nfc->dev, "dma mapping error\n");

		return -EINVAL;
	}

	reg = nfi_readw(nfc, NFI_CNFG);
	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
	if (!raw) {
		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
		nfi_writew(nfc, reg, NFI_CNFG);

		nfc->ecc_cfg.mode = ECC_NFI_MODE;
		nfc->ecc_cfg.sectors = sectors;
		nfc->ecc_cfg.op = ECC_DECODE;
		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
		if (rc) {
			dev_err(nfc->dev, "ecc enable\n");
			/* clear NFI_CNFG */
			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
			nfi_writew(nfc, reg, NFI_CNFG);
			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);

			return rc;
		}
	} else {
		nfi_writew(nfc, reg, NFI_CNFG);
	}

	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);

	init_completion(&nfc->done);
	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
	nfi_writel(nfc, reg, NFI_CON);
	nfi_writew(nfc, STAR_EN, NFI_STRDATA);

	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
	if (!rc)
		dev_warn(nfc->dev, "read ahb/dma done timeout\n");

	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
				       ADDRCNTR_SEC(reg) >= sectors, 10,
				       MTK_TIMEOUT);
	if (rc < 0) {
		dev_err(nfc->dev, "subpage done timeout\n");
		bitflips = -EIO;
	} else {
		bitflips = 0;
		if (!raw) {
			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
			bitflips = rc < 0 ? -ETIMEDOUT :
				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
			mtk_nfc_read_fdm(chip, start, sectors);
		}
	}

	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);

	if (raw)
		goto done;

	mtk_ecc_disable(nfc->ecc);

	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
done:
	nfi_writel(nfc, 0, NFI_CON);

	return bitflips;
}

static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
				      u32 len, u8 *p, int pg)
{
	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
				    0);
}

static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
				   int pg)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
}

static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
				 int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
	int i, ret;

	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
				   page, 1);
	if (ret < 0)
		return ret;

	for (i = 0; i < chip->ecc.steps; i++) {
		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);

		if (i == mtk_nand->bad_mark.sec)
			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);

		if (buf)
			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
			       chip->ecc.size);
	}

	return ret;
}

static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
{
	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
}

static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
{
	/*
	 * CNRNB: nand ready/busy register
	 * -------------------------------
	 * 7:4: timeout register for polling the NAND busy/ready signal
	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
	 */
	nfi_writew(nfc, 0xf1, NFI_CNRNB);
	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);

	mtk_nfc_hw_reset(nfc);

	nfi_readl(nfc, NFI_INTR_STA);
	nfi_writel(nfc, 0, NFI_INTR_EN);
}

static irqreturn_t mtk_nfc_irq(int irq, void *id)
{
	struct mtk_nfc *nfc = id;
	u16 sta, ien;

	sta = nfi_readw(nfc, NFI_INTR_STA);
	ien = nfi_readw(nfc, NFI_INTR_EN);

	if (!(sta & ien))
		return IRQ_NONE;

	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
	complete(&nfc->done);

	return IRQ_HANDLED;
}

static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
{
	int ret;

	ret = clk_prepare_enable(clk->nfi_clk);
	if (ret) {
		dev_err(dev, "failed to enable nfi clk\n");
		return ret;
	}

	ret = clk_prepare_enable(clk->pad_clk);
	if (ret) {
		dev_err(dev, "failed to enable pad clk\n");
		clk_disable_unprepare(clk->nfi_clk);
		return ret;
	}

	return 0;
}

static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
{
	clk_disable_unprepare(clk->nfi_clk);
	clk_disable_unprepare(clk->pad_clk);
}

static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oob_region)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
	u32 eccsteps;

	eccsteps = mtd->writesize / chip->ecc.size;

	if (section >= eccsteps)
		return -ERANGE;

	oob_region->length = fdm->reg_size - fdm->ecc_size;
	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;

	return 0;
}

static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oob_region)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	u32 eccsteps;

	if (section)
		return -ERANGE;

	eccsteps = mtd->writesize / chip->ecc.size;
	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
	oob_region->length = mtd->oobsize - oob_region->offset;

	return 0;
}

static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
	.free = mtk_nfc_ooblayout_free,
	.ecc = mtk_nfc_ooblayout_ecc,
};

static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
	struct mtk_nfc *nfc = nand_get_controller_data(nand);
	u32 ecc_bytes;

	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
				 mtk_ecc_get_parity_bits(nfc->ecc), 8);

	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
		fdm->reg_size = NFI_FDM_MAX_SIZE;

	/* bad block mark storage */
	fdm->ecc_size = 1;
}

static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
				     struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd_to_nand(mtd);

	if (mtd->writesize == 512) {
		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
	} else {
		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
	}
}

static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mtk_nfc *nfc = nand_get_controller_data(nand);
	const u8 *spare = nfc->caps->spare_size;
	u32 eccsteps, i, closest_spare = 0;

	eccsteps = mtd->writesize / nand->ecc.size;
	*sps = mtd->oobsize / eccsteps;

	if (nand->ecc.size == 1024)
		*sps >>= 1;

	if (*sps < MTK_NFC_MIN_SPARE)
		return -EINVAL;

	for (i = 0; i < nfc->caps->num_spare_size; i++) {
		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
			closest_spare = i;
			if (*sps == spare[i])
				break;
		}
	}

	*sps = spare[closest_spare];

	if (nand->ecc.size == 1024)
		*sps <<= 1;

	return 0;
}

static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mtk_nfc *nfc = nand_get_controller_data(nand);
	u32 spare;
	int free, ret;

	/* support only ecc hw mode */
	if (nand->ecc.mode != NAND_ECC_HW) {
		dev_err(dev, "ecc.mode not supported\n");
		return -EINVAL;
	}

	/* if optional dt settings not present */
	if (!nand->ecc.size || !nand->ecc.strength) {
		/* use datasheet requirements */
		nand->ecc.strength = nand->ecc_strength_ds;
		nand->ecc.size = nand->ecc_step_ds;

		/*
		 * align eccstrength and eccsize
		 * this controller only supports 512 and 1024 sizes
		 */
		if (nand->ecc.size < 1024) {
			if (mtd->writesize > 512 &&
			    nfc->caps->max_sector_size > 512) {
				nand->ecc.size = 1024;
				nand->ecc.strength <<= 1;
			} else {
				nand->ecc.size = 512;
			}
		} else {
			nand->ecc.size = 1024;
		}

		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
		if (ret)
			return ret;

		/* calculate oob bytes except ecc parity data */
		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
			+ 7) >> 3;
		free = spare - free;

		/*
		 * enhance ecc strength if oob left is bigger than max FDM size
		 * or reduce ecc strength if oob size is not enough for ecc
		 * parity data.
		 */
		if (free > NFI_FDM_MAX_SIZE) {
			spare -= NFI_FDM_MAX_SIZE;
			nand->ecc.strength = (spare << 3) /
					     mtk_ecc_get_parity_bits(nfc->ecc);
		} else if (free < 0) {
			spare -= NFI_FDM_MIN_SIZE;
			nand->ecc.strength = (spare << 3) /
					     mtk_ecc_get_parity_bits(nfc->ecc);
		}
	}

	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);

	dev_info(dev, "eccsize %d eccstrength %d\n",
		 nand->ecc.size, nand->ecc.strength);

	return 0;
}

static int mtk_nfc_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct device *dev = mtd->dev.parent;
	struct mtk_nfc *nfc = nand_get_controller_data(chip);
	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
	int len;
	int ret;

	if (chip->options & NAND_BUSWIDTH_16) {
		dev_err(dev, "16bits buswidth not supported");
		return -EINVAL;
	}

	/* store bbt magic in page, cause OOB is not protected */
	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->bbt_options |= NAND_BBT_NO_OOB;

	ret = mtk_nfc_ecc_init(dev, mtd);
	if (ret)
		return ret;

	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
	if (ret)
		return ret;

	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);

	len = mtd->writesize + mtd->oobsize;
	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
	if (!nfc->buffer)
		return  -ENOMEM;

	return 0;
}

static const struct nand_controller_ops mtk_nfc_controller_ops = {
	.attach_chip = mtk_nfc_attach_chip,
};

static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
				  struct device_node *np)
{
	struct mtk_nfc_nand_chip *chip;
	struct nand_chip *nand;
	struct mtd_info *mtd;
	int nsels;
	u32 tmp;
	int ret;
	int i;

	if (!of_get_property(np, "reg", &nsels))
		return -ENODEV;

	nsels /= sizeof(u32);
	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
		dev_err(dev, "invalid reg property size %d\n", nsels);
		return -EINVAL;
	}

	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
			    GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

	chip->nsels = nsels;
	for (i = 0; i < nsels; i++) {
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
		if (ret) {
			dev_err(dev, "reg property failure : %d\n", ret);
			return ret;
		}
		chip->sels[i] = tmp;
	}

	nand = &chip->nand;
	nand->controller = &nfc->controller;

	nand_set_flash_node(nand, np);
	nand_set_controller_data(nand, nfc);

	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
	nand->legacy.dev_ready = mtk_nfc_dev_ready;
	nand->select_chip = mtk_nfc_select_chip;
	nand->legacy.write_byte = mtk_nfc_write_byte;
	nand->legacy.write_buf = mtk_nfc_write_buf;
	nand->legacy.read_byte = mtk_nfc_read_byte;
	nand->legacy.read_buf = mtk_nfc_read_buf;
	nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
	nand->setup_data_interface = mtk_nfc_setup_data_interface;

	/* set default mode in case dt entry is missing */
	nand->ecc.mode = NAND_ECC_HW;

	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
	nand->ecc.write_oob = mtk_nfc_write_oob_std;

	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
	nand->ecc.read_oob = mtk_nfc_read_oob_std;

	mtd = nand_to_mtd(nand);
	mtd->owner = THIS_MODULE;
	mtd->dev.parent = dev;
	mtd->name = MTK_NAME;
	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);

	mtk_nfc_hw_init(nfc);

	ret = nand_scan(nand, nsels);
	if (ret)
		return ret;

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		dev_err(dev, "mtd parse partition error\n");
		nand_release(nand);
		return ret;
	}

	list_add_tail(&chip->node, &nfc->chips);

	return 0;
}

static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
{
	struct device_node *np = dev->of_node;
	struct device_node *nand_np;
	int ret;

	for_each_child_of_node(np, nand_np) {
		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			return ret;
		}
	}

	return 0;
}

static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
	.spare_size = spare_size_mt2701,
	.num_spare_size = 16,
	.pageformat_spare_shift = 4,
	.nfi_clk_div = 1,
	.max_sector = 16,
	.max_sector_size = 1024,
};

static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
	.spare_size = spare_size_mt2712,
	.num_spare_size = 19,
	.pageformat_spare_shift = 16,
	.nfi_clk_div = 2,
	.max_sector = 16,
	.max_sector_size = 1024,
};

static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
	.spare_size = spare_size_mt7622,
	.num_spare_size = 4,
	.pageformat_spare_shift = 4,
	.nfi_clk_div = 1,
	.max_sector = 8,
	.max_sector_size = 512,
};

static const struct of_device_id mtk_nfc_id_table[] = {
	{
		.compatible = "mediatek,mt2701-nfc",
		.data = &mtk_nfc_caps_mt2701,
	}, {
		.compatible = "mediatek,mt2712-nfc",
		.data = &mtk_nfc_caps_mt2712,
	}, {
		.compatible = "mediatek,mt7622-nfc",
		.data = &mtk_nfc_caps_mt7622,
	},
	{}
};
MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);

static int mtk_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct mtk_nfc *nfc;
	struct resource *res;
	int ret, irq;

	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	spin_lock_init(&nfc->controller.lock);
	init_waitqueue_head(&nfc->controller.wq);
	INIT_LIST_HEAD(&nfc->chips);
	nfc->controller.ops = &mtk_nfc_controller_ops;

	/* probe defer if not ready */
	nfc->ecc = of_mtk_ecc_get(np);
	if (IS_ERR(nfc->ecc))
		return PTR_ERR(nfc->ecc);
	else if (!nfc->ecc)
		return -ENODEV;

	nfc->caps = of_device_get_match_data(dev);
	nfc->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(nfc->regs)) {
		ret = PTR_ERR(nfc->regs);
		goto release_ecc;
	}

	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
	if (IS_ERR(nfc->clk.nfi_clk)) {
		dev_err(dev, "no clk\n");
		ret = PTR_ERR(nfc->clk.nfi_clk);
		goto release_ecc;
	}

	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
	if (IS_ERR(nfc->clk.pad_clk)) {
		dev_err(dev, "no pad clk\n");
		ret = PTR_ERR(nfc->clk.pad_clk);
		goto release_ecc;
	}

	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
	if (ret)
		goto release_ecc;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "no nfi irq resource\n");
		ret = -EINVAL;
		goto clk_disable;
	}

	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
	if (ret) {
		dev_err(dev, "failed to request nfi irq\n");
		goto clk_disable;
	}

	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
	if (ret) {
		dev_err(dev, "failed to set dma mask\n");
		goto clk_disable;
	}

	platform_set_drvdata(pdev, nfc);

	ret = mtk_nfc_nand_chips_init(dev, nfc);
	if (ret) {
		dev_err(dev, "failed to init nand chips\n");
		goto clk_disable;
	}

	return 0;

clk_disable:
	mtk_nfc_disable_clk(&nfc->clk);

release_ecc:
	mtk_ecc_release(nfc->ecc);

	return ret;
}

static int mtk_nfc_remove(struct platform_device *pdev)
{
	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
	struct mtk_nfc_nand_chip *chip;

	while (!list_empty(&nfc->chips)) {
		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
					node);
		nand_release(&chip->nand);
		list_del(&chip->node);
	}

	mtk_ecc_release(nfc->ecc);
	mtk_nfc_disable_clk(&nfc->clk);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int mtk_nfc_suspend(struct device *dev)
{
	struct mtk_nfc *nfc = dev_get_drvdata(dev);

	mtk_nfc_disable_clk(&nfc->clk);

	return 0;
}

static int mtk_nfc_resume(struct device *dev)
{
	struct mtk_nfc *nfc = dev_get_drvdata(dev);
	struct mtk_nfc_nand_chip *chip;
	struct nand_chip *nand;
	int ret;
	u32 i;

	udelay(200);

	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
	if (ret)
		return ret;

	/* reset NAND chip if VCC was powered off */
	list_for_each_entry(chip, &nfc->chips, node) {
		nand = &chip->nand;
		for (i = 0; i < chip->nsels; i++)
			nand_reset(nand, i);
	}

	return 0;
}

static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
#endif

static struct platform_driver mtk_nfc_driver = {
	.probe  = mtk_nfc_probe,
	.remove = mtk_nfc_remove,
	.driver = {
		.name  = MTK_NAME,
		.of_match_table = mtk_nfc_id_table,
#ifdef CONFIG_PM_SLEEP
		.pm = &mtk_nfc_pm_ops,
#endif
	},
};

module_platform_driver(mtk_nfc_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");