summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/nand_micron.c
blob: c30ab60f8e1bb1013a7d6fd7f88fd75b958e258a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * Copyright (C) 2017 Free Electrons
 * Copyright (C) 2017 NextThing Co
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/mtd/nand.h>

/*
 * Special Micron status bit that indicates when the block has been
 * corrected by on-die ECC and should be rewritten
 */
#define NAND_STATUS_WRITE_RECOMMENDED	BIT(3)

struct nand_onfi_vendor_micron {
	u8 two_plane_read;
	u8 read_cache;
	u8 read_unique_id;
	u8 dq_imped;
	u8 dq_imped_num_settings;
	u8 dq_imped_feat_addr;
	u8 rb_pulldown_strength;
	u8 rb_pulldown_strength_feat_addr;
	u8 rb_pulldown_strength_num_settings;
	u8 otp_mode;
	u8 otp_page_start;
	u8 otp_data_prot_addr;
	u8 otp_num_pages;
	u8 otp_feat_addr;
	u8 read_retry_options;
	u8 reserved[72];
	u8 param_revision;
} __packed;

static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
				       feature);
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static int micron_nand_onfi_init(struct nand_chip *chip)
{
	struct nand_onfi_params *p = &chip->onfi_params;
	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;

	if (!chip->onfi_version)
		return 0;

	if (le16_to_cpu(p->vendor_revision) < 1)
		return 0;

	chip->read_retries = micron->read_retry_options;
	chip->setup_read_retry = micron_nand_setup_read_retry;

	return 0;
}

static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section,
					    struct mtd_oob_region *oobregion)
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 8;
	oobregion->length = 8;

	return 0;
}

static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section,
					     struct mtd_oob_region *oobregion)
{
	if (section >= 4)
		return -ERANGE;

	oobregion->offset = (section * 16) + 2;
	oobregion->length = 6;

	return 0;
}

static const struct mtd_ooblayout_ops micron_nand_on_die_ooblayout_ops = {
	.ecc = micron_nand_on_die_ooblayout_ecc,
	.free = micron_nand_on_die_ooblayout_free,
};

static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
{
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };

	if (enable)
		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;

	return chip->onfi_set_features(nand_to_mtd(chip), chip,
				       ONFI_FEATURE_ON_DIE_ECC, feature);
}

static int
micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required,
				 int page)
{
	int status;
	int max_bitflips = 0;

	micron_nand_on_die_ecc_setup(chip, true);

	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	status = chip->read_byte(mtd);
	if (status & NAND_STATUS_FAIL)
		mtd->ecc_stats.failed++;
	/*
	 * The internal ECC doesn't tell us the number of bitflips
	 * that have been corrected, but tells us if it recommends to
	 * rewrite the block. If it's the case, then we pretend we had
	 * a number of bitflips equal to the ECC strength, which will
	 * hint the NAND core to rewrite the block.
	 */
	else if (status & NAND_STATUS_WRITE_RECOMMENDED)
		max_bitflips = chip->ecc.strength;

	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);

	nand_read_page_raw(mtd, chip, buf, oob_required, page);

	micron_nand_on_die_ecc_setup(chip, false);

	return max_bitflips;
}

static int
micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required,
				  int page)
{
	int status;

	micron_nand_on_die_ecc_setup(chip, true);

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
	nand_write_page_raw(mtd, chip, buf, oob_required, page);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	micron_nand_on_die_ecc_setup(chip, false);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

static int
micron_nand_read_page_raw_on_die_ecc(struct mtd_info *mtd,
				     struct nand_chip *chip,
				     uint8_t *buf, int oob_required,
				     int page)
{
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
	nand_read_page_raw(mtd, chip, buf, oob_required, page);

	return 0;
}

static int
micron_nand_write_page_raw_on_die_ecc(struct mtd_info *mtd,
				      struct nand_chip *chip,
				      const uint8_t *buf, int oob_required,
				      int page)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
	nand_write_page_raw(mtd, chip, buf, oob_required, page);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

enum {
	/* The NAND flash doesn't support on-die ECC */
	MICRON_ON_DIE_UNSUPPORTED,

	/*
	 * The NAND flash supports on-die ECC and it can be
	 * enabled/disabled by a set features command.
	 */
	MICRON_ON_DIE_SUPPORTED,

	/*
	 * The NAND flash supports on-die ECC, and it cannot be
	 * disabled.
	 */
	MICRON_ON_DIE_MANDATORY,
};

/*
 * Try to detect if the NAND support on-die ECC. To do this, we enable
 * the feature, and read back if it has been enabled as expected. We
 * also check if it can be disabled, because some Micron NANDs do not
 * allow disabling the on-die ECC and we don't support such NANDs for
 * now.
 *
 * This function also has the side effect of disabling on-die ECC if
 * it had been left enabled by the firmware/bootloader.
 */
static int micron_supports_on_die_ecc(struct nand_chip *chip)
{
	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
	int ret;

	if (chip->onfi_version == 0)
		return MICRON_ON_DIE_UNSUPPORTED;

	if (chip->bits_per_cell != 1)
		return MICRON_ON_DIE_UNSUPPORTED;

	ret = micron_nand_on_die_ecc_setup(chip, true);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

	chip->onfi_get_features(nand_to_mtd(chip), chip,
				ONFI_FEATURE_ON_DIE_ECC, feature);
	if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0)
		return MICRON_ON_DIE_UNSUPPORTED;

	ret = micron_nand_on_die_ecc_setup(chip, false);
	if (ret)
		return MICRON_ON_DIE_UNSUPPORTED;

	chip->onfi_get_features(nand_to_mtd(chip), chip,
				ONFI_FEATURE_ON_DIE_ECC, feature);
	if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN)
		return MICRON_ON_DIE_MANDATORY;

	/*
	 * Some Micron NANDs have an on-die ECC of 4/512, some other
	 * 8/512. We only support the former.
	 */
	if (chip->onfi_params.ecc_bits != 4)
		return MICRON_ON_DIE_UNSUPPORTED;

	return MICRON_ON_DIE_SUPPORTED;
}

static int micron_nand_init(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ondie;
	int ret;

	ret = micron_nand_onfi_init(chip);
	if (ret)
		return ret;

	if (mtd->writesize == 2048)
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;

	ondie = micron_supports_on_die_ecc(chip);

	if (ondie == MICRON_ON_DIE_MANDATORY) {
		pr_err("On-die ECC forcefully enabled, not supported\n");
		return -EINVAL;
	}

	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
			pr_err("On-die ECC selected but not supported\n");
			return -EINVAL;
		}

		chip->ecc.options = NAND_ECC_CUSTOM_PAGE_ACCESS;
		chip->ecc.bytes = 8;
		chip->ecc.size = 512;
		chip->ecc.strength = 4;
		chip->ecc.algo = NAND_ECC_BCH;
		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
		chip->ecc.read_page_raw =
			micron_nand_read_page_raw_on_die_ecc;
		chip->ecc.write_page_raw =
			micron_nand_write_page_raw_on_die_ecc;

		mtd_set_ooblayout(mtd, &micron_nand_on_die_ooblayout_ops);
	}

	return 0;
}

const struct nand_manufacturer_ops micron_nand_manuf_ops = {
	.init = micron_nand_init,
};