summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/nand_bcm_umi.h
blob: d90186684db85ff18a99fbbb95f93a466824e37b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/*****************************************************************************
* Copyright 2003 - 2009 Broadcom Corporation.  All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
#ifndef NAND_BCM_UMI_H
#define NAND_BCM_UMI_H

/* ---- Include Files ---------------------------------------------------- */
#include <mach/reg_umi.h>
#include <mach/reg_nand.h>
#include <mach/cfg_global.h>

/* ---- Constants and Types ---------------------------------------------- */
#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
#else
#define NAND_ECC_BCH 0
#endif

#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES	13

#if NAND_ECC_BCH
#ifdef BOOT0_BUILD
#define NAND_ECC_NUM_BYTES 13
#else
#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES
#endif
#else
#define NAND_ECC_NUM_BYTES 3
#endif

#define NAND_DATA_ACCESS_SIZE 512

/* ---- Variable Externs ------------------------------------------ */
/* ---- Function Prototypes --------------------------------------- */
int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
				  int numEccBytes);

/* Check in device is ready */
static inline int nand_bcm_umi_dev_ready(void)
{
	return readl(&REG_UMI_NAND_RCSR) & REG_UMI_NAND_RCSR_RDY;
}

/* Wait until device is ready */
static inline void nand_bcm_umi_wait_till_ready(void)
{
	while (nand_bcm_umi_dev_ready() == 0)
		;
}

/* Enable Hamming ECC */
static inline void nand_bcm_umi_hamming_enable_hwecc(void)
{
	/* disable and reset ECC, 512 byte page */
	writel(readl(&REG_UMI_NAND_ECC_CSR) & ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
		REG_UMI_NAND_ECC_CSR_256BYTE), &REG_UMI_NAND_ECC_CSR);
	/* enable ECC */
	writel(readl(&REG_UMI_NAND_ECC_CSR) | REG_UMI_NAND_ECC_CSR_ECC_ENABLE,
		&REG_UMI_NAND_ECC_CSR);
}

#if NAND_ECC_BCH
/* BCH ECC specifics */
#define ECC_BITS_PER_CORRECTABLE_BIT 13

/* Enable BCH Read ECC */
static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
{
	/* disable and reset ECC */
	writel(REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID, &REG_UMI_BCH_CTRL_STATUS);
	/* Turn on ECC */
	writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, &REG_UMI_BCH_CTRL_STATUS);
}

/* Enable BCH Write ECC */
static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
{
	/* disable and reset ECC */
	writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID, &REG_UMI_BCH_CTRL_STATUS);
	/* Turn on ECC */
	writel(REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN, &REG_UMI_BCH_CTRL_STATUS);
}

/* Config number of BCH ECC bytes */
static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
{
	uint32_t nValue;
	uint32_t tValue;
	uint32_t kValue;
	uint32_t numBits = numEccBytes * 8;

	/* disable and reset ECC */
	writel(REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
	       REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID,
	       &REG_UMI_BCH_CTRL_STATUS);

	/* Every correctible bit requires 13 ECC bits */
	tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);

	/* Total data in number of bits for generating and computing BCH ECC */
	nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;

	/* K parameter is used internally.  K = N - (T * 13) */
	kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);

	/* Write the settings */
	writel(nValue, &REG_UMI_BCH_N);
	writel(tValue, &REG_UMI_BCH_T);
	writel(kValue, &REG_UMI_BCH_K);
}

/* Pause during ECC read calculation to skip bytes in OOB */
static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
{
	writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC, &REG_UMI_BCH_CTRL_STATUS);
}

/* Resume during ECC read calculation after skipping bytes in OOB */
static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
{
	writel(REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN, &REG_UMI_BCH_CTRL_STATUS);
}

/* Poll read ECC calc to check when hardware completes */
static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
{
	uint32_t regVal;

	do {
		/* wait for ECC to be valid */
		regVal = readl(&REG_UMI_BCH_CTRL_STATUS);
	} while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);

	return regVal;
}

/* Poll write ECC calc to check when hardware completes */
static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
{
	/* wait for ECC to be valid */
	while ((readl(&REG_UMI_BCH_CTRL_STATUS) & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
	       == 0)
		;
}

/* Read the OOB and ECC, for kernel write OOB to a buffer */
#if defined(__KERNEL__) && !defined(STANDALONE)
static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
	uint8_t *eccCalc, int numEccBytes, uint8_t *oobp)
#else
static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
	uint8_t *eccCalc, int numEccBytes)
#endif
{
	int eccPos = 0;
	int numToRead = 16;	/* There are 16 bytes per sector in the OOB */

	/* ECC is already paused when this function is called */
	if (pageSize != NAND_DATA_ACCESS_SIZE) {
		/* skip BI */
#if defined(__KERNEL__) && !defined(STANDALONE)
		*oobp++ = readb(&REG_NAND_DATA8);
#else
		readb(&REG_NAND_DATA8);
#endif
		numToRead--;
	}

	while (numToRead > numEccBytes) {
		/* skip free oob region */
#if defined(__KERNEL__) && !defined(STANDALONE)
		*oobp++ = readb(&REG_NAND_DATA8);
#else
		readb(&REG_NAND_DATA8);
#endif
		numToRead--;
	}

	if (pageSize == NAND_DATA_ACCESS_SIZE) {
		/* read ECC bytes before BI */
		nand_bcm_umi_bch_resume_read_ecc_calc();

		while (numToRead > 11) {
#if defined(__KERNEL__) && !defined(STANDALONE)
			*oobp = readb(&REG_NAND_DATA8);
			eccCalc[eccPos++] = *oobp;
			oobp++;
#else
			eccCalc[eccPos++] = readb(&REG_NAND_DATA8);
#endif
			numToRead--;
		}

		nand_bcm_umi_bch_pause_read_ecc_calc();

		if (numToRead == 11) {
			/* read BI */
#if defined(__KERNEL__) && !defined(STANDALONE)
			*oobp++ = readb(&REG_NAND_DATA8);
#else
			readb(&REG_NAND_DATA8);
#endif
			numToRead--;
		}

	}
	/* read ECC bytes */
	nand_bcm_umi_bch_resume_read_ecc_calc();
	while (numToRead) {
#if defined(__KERNEL__) && !defined(STANDALONE)
		*oobp = readb(&REG_NAND_DATA8);
		eccCalc[eccPos++] = *oobp;
		oobp++;
#else
		eccCalc[eccPos++] = readb(&REG_NAND_DATA8);
#endif
		numToRead--;
	}
}

/* Helper function to write ECC */
static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos,
					  uint8_t *oobp, uint8_t eccVal)
{
	if (eccBytePos <= numEccBytes)
		*oobp = eccVal;
}

/* Write OOB with ECC */
static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
						 uint8_t *oobp, int numEccBytes)
{
	uint32_t eccVal = 0xffffffff;

	/* wait for write ECC to be valid */
	nand_bcm_umi_bch_poll_write_ecc_calc();

	/*
	 ** Get the hardware ecc from the 32-bit result registers.
	 ** Read after 512 byte accesses. Format B3B2B1B0
	 ** where B3 = ecc3, etc.
	 */

	if (pageSize == NAND_DATA_ACCESS_SIZE) {
		/* Now fill in the ECC bytes */
		if (numEccBytes >= 13)
			eccVal = readl(&REG_UMI_BCH_WR_ECC_3);

		/* Usually we skip CM in oob[0,1] */
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
			(eccVal >> 16) & 0xff);
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1],
			(eccVal >> 8) & 0xff);

		/* Write ECC in oob[2,3,4] */
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2],
			eccVal & 0xff);	/* ECC 12 */

		if (numEccBytes >= 9)
			eccVal = readl(&REG_UMI_BCH_WR_ECC_2);

		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
			(eccVal >> 24) & 0xff);	/* ECC11 */
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4],
			(eccVal >> 16) & 0xff);	/* ECC10 */

		/* Always Skip BI in oob[5] */
	} else {
		/* Always Skip BI in oob[0] */

		/* Now fill in the ECC bytes */
		if (numEccBytes >= 13)
			eccVal = readl(&REG_UMI_BCH_WR_ECC_3);

		/* Usually skip CM in oob[1,2] */
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
			(eccVal >> 16) & 0xff);
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2],
			(eccVal >> 8) & 0xff);

		/* Write ECC in oob[3-15] */
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3],
			eccVal & 0xff);	/* ECC12 */

		if (numEccBytes >= 9)
			eccVal = readl(&REG_UMI_BCH_WR_ECC_2);

		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
			(eccVal >> 24) & 0xff);	/* ECC11 */
		NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5],
			(eccVal >> 16) & 0xff);	/* ECC10 */
	}

	/* Fill in the remainder of ECC locations */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6],
		(eccVal >> 8) & 0xff);	/* ECC9 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7],
		eccVal & 0xff);	/* ECC8 */

	if (numEccBytes >= 5)
		eccVal = readl(&REG_UMI_BCH_WR_ECC_1);

	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
		(eccVal >> 24) & 0xff);	/* ECC7 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9],
		(eccVal >> 16) & 0xff);	/* ECC6 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10],
		(eccVal >> 8) & 0xff);	/* ECC5 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11],
		eccVal & 0xff);	/* ECC4 */

	if (numEccBytes >= 1)
		eccVal = readl(&REG_UMI_BCH_WR_ECC_0);

	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
		(eccVal >> 24) & 0xff);	/* ECC3 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13],
		(eccVal >> 16) & 0xff);	/* ECC2 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14],
		(eccVal >> 8) & 0xff);	/* ECC1 */
	NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15],
		eccVal & 0xff);	/* ECC0 */
}
#endif

#endif /* NAND_BCM_UMI_H */