1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
// SPDX-License-Identifier: GPL-2.0
/*
* Support for Macronix external hardware ECC engine for NAND devices, also
* called DPE for Data Processing Engine.
*
* Copyright © 2019 Macronix
* Author: Miquel Raynal <miquel.raynal@bootlin.com>
*/
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand-ecc-mxic.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/* DPE Configuration */
#define DP_CONFIG 0x00
#define ECC_EN BIT(0)
#define ECC_TYP(idx) (((idx) << 3) & GENMASK(6, 3))
/* DPE Interrupt Status */
#define INTRPT_STS 0x04
#define TRANS_CMPLT BIT(0)
#define SDMA_MAIN BIT(1)
#define SDMA_SPARE BIT(2)
#define ECC_ERR BIT(3)
#define TO_SPARE BIT(4)
#define TO_MAIN BIT(5)
/* DPE Interrupt Status Enable */
#define INTRPT_STS_EN 0x08
/* DPE Interrupt Signal Enable */
#define INTRPT_SIG_EN 0x0C
/* Host Controller Configuration */
#define HC_CONFIG 0x10
#define DEV2MEM 0 /* TRANS_TYP_DMA in the spec */
#define MEM2MEM BIT(4) /* TRANS_TYP_IO in the spec */
#define MAPPING BIT(5) /* TRANS_TYP_MAPPING in the spec */
#define ECC_PACKED 0 /* LAYOUT_TYP_INTEGRATED in the spec */
#define ECC_INTERLEAVED BIT(2) /* LAYOUT_TYP_DISTRIBUTED in the spec */
#define BURST_TYP_FIXED 0
#define BURST_TYP_INCREASING BIT(0)
/* Host Controller Slave Address */
#define HC_SLV_ADDR 0x14
/* ECC Chunk Size */
#define CHUNK_SIZE 0x20
/* Main Data Size */
#define MAIN_SIZE 0x24
/* Spare Data Size */
#define SPARE_SIZE 0x28
#define META_SZ(reg) ((reg) & GENMASK(7, 0))
#define PARITY_SZ(reg) (((reg) & GENMASK(15, 8)) >> 8)
#define RSV_SZ(reg) (((reg) & GENMASK(23, 16)) >> 16)
#define SPARE_SZ(reg) ((reg) >> 24)
/* ECC Chunk Count */
#define CHUNK_CNT 0x30
/* SDMA Control */
#define SDMA_CTRL 0x40
#define WRITE_NAND 0
#define READ_NAND BIT(1)
#define CONT_NAND BIT(29)
#define CONT_SYSM BIT(30) /* Continue System Memory? */
#define SDMA_STRT BIT(31)
/* SDMA Address of Main Data */
#define SDMA_MAIN_ADDR 0x44
/* SDMA Address of Spare Data */
#define SDMA_SPARE_ADDR 0x48
/* DPE Version Number */
#define DP_VER 0xD0
#define DP_VER_OFFSET 16
/* Status bytes between each chunk of spare data */
#define STAT_BYTES 4
#define NO_ERR 0x00
#define MAX_CORR_ERR 0x28
#define UNCORR_ERR 0xFE
#define ERASED_CHUNK 0xFF
struct mxic_ecc_engine {
struct device *dev;
void __iomem *regs;
int irq;
struct completion complete;
struct nand_ecc_engine external_engine;
struct nand_ecc_engine pipelined_engine;
struct mutex lock;
};
struct mxic_ecc_ctx {
/* ECC machinery */
unsigned int data_step_sz;
unsigned int oob_step_sz;
unsigned int parity_sz;
unsigned int meta_sz;
u8 *status;
int steps;
/* DMA boilerplate */
struct nand_ecc_req_tweak_ctx req_ctx;
u8 *oobwithstat;
struct scatterlist sg[2];
struct nand_page_io_req *req;
unsigned int pageoffs;
};
static struct mxic_ecc_engine *ext_ecc_eng_to_mxic(struct nand_ecc_engine *eng)
{
return container_of(eng, struct mxic_ecc_engine, external_engine);
}
static struct mxic_ecc_engine *pip_ecc_eng_to_mxic(struct nand_ecc_engine *eng)
{
return container_of(eng, struct mxic_ecc_engine, pipelined_engine);
}
static struct mxic_ecc_engine *nand_to_mxic(struct nand_device *nand)
{
struct nand_ecc_engine *eng = nand->ecc.engine;
if (eng->integration == NAND_ECC_ENGINE_INTEGRATION_EXTERNAL)
return ext_ecc_eng_to_mxic(eng);
else
return pip_ecc_eng_to_mxic(eng);
}
static int mxic_ecc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
if (section < 0 || section >= ctx->steps)
return -ERANGE;
oobregion->offset = (section * ctx->oob_step_sz) + ctx->meta_sz;
oobregion->length = ctx->parity_sz;
return 0;
}
static int mxic_ecc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
if (section < 0 || section >= ctx->steps)
return -ERANGE;
if (!section) {
oobregion->offset = 2;
oobregion->length = ctx->meta_sz - 2;
} else {
oobregion->offset = section * ctx->oob_step_sz;
oobregion->length = ctx->meta_sz;
}
return 0;
}
static const struct mtd_ooblayout_ops mxic_ecc_ooblayout_ops = {
.ecc = mxic_ecc_ooblayout_ecc,
.free = mxic_ecc_ooblayout_free,
};
static void mxic_ecc_disable_engine(struct mxic_ecc_engine *mxic)
{
u32 reg;
reg = readl(mxic->regs + DP_CONFIG);
reg &= ~ECC_EN;
writel(reg, mxic->regs + DP_CONFIG);
}
static void mxic_ecc_enable_engine(struct mxic_ecc_engine *mxic)
{
u32 reg;
reg = readl(mxic->regs + DP_CONFIG);
reg |= ECC_EN;
writel(reg, mxic->regs + DP_CONFIG);
}
static void mxic_ecc_disable_int(struct mxic_ecc_engine *mxic)
{
writel(0, mxic->regs + INTRPT_SIG_EN);
}
static void mxic_ecc_enable_int(struct mxic_ecc_engine *mxic)
{
writel(TRANS_CMPLT, mxic->regs + INTRPT_SIG_EN);
}
static irqreturn_t mxic_ecc_isr(int irq, void *dev_id)
{
struct mxic_ecc_engine *mxic = dev_id;
u32 sts;
sts = readl(mxic->regs + INTRPT_STS);
if (!sts)
return IRQ_NONE;
if (sts & TRANS_CMPLT)
complete(&mxic->complete);
writel(sts, mxic->regs + INTRPT_STS);
return IRQ_HANDLED;
}
static int mxic_ecc_init_ctx(struct nand_device *nand, struct device *dev)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
struct nand_ecc_props *reqs = &nand->ecc.requirements;
struct nand_ecc_props *user = &nand->ecc.user_conf;
struct mtd_info *mtd = nanddev_to_mtd(nand);
int step_size = 0, strength = 0, desired_correction = 0, steps, idx;
static const int possible_strength[] = {4, 8, 40, 48};
static const int spare_size[] = {32, 32, 96, 96};
struct mxic_ecc_ctx *ctx;
u32 spare_reg;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
nand->ecc.ctx.priv = ctx;
/* Only large page NAND chips may use BCH */
if (mtd->oobsize < 64) {
pr_err("BCH cannot be used with small page NAND chips\n");
return -EINVAL;
}
mtd_set_ooblayout(mtd, &mxic_ecc_ooblayout_ops);
/* Enable all status bits */
writel(TRANS_CMPLT | SDMA_MAIN | SDMA_SPARE | ECC_ERR |
TO_SPARE | TO_MAIN, mxic->regs + INTRPT_STS_EN);
/* Configure the correction depending on the NAND device topology */
if (user->step_size && user->strength) {
step_size = user->step_size;
strength = user->strength;
} else if (reqs->step_size && reqs->strength) {
step_size = reqs->step_size;
strength = reqs->strength;
}
if (step_size && strength) {
steps = mtd->writesize / step_size;
desired_correction = steps * strength;
}
/* Step size is fixed to 1kiB, strength may vary (4 possible values) */
conf->step_size = SZ_1K;
steps = mtd->writesize / conf->step_size;
ctx->status = devm_kzalloc(dev, steps * sizeof(u8), GFP_KERNEL);
if (!ctx->status)
return -ENOMEM;
if (desired_correction) {
strength = desired_correction / steps;
for (idx = 0; idx < ARRAY_SIZE(possible_strength); idx++)
if (possible_strength[idx] >= strength)
break;
idx = min_t(unsigned int, idx,
ARRAY_SIZE(possible_strength) - 1);
} else {
/* Missing data, maximize the correction */
idx = ARRAY_SIZE(possible_strength) - 1;
}
/* Tune the selected strength until it fits in the OOB area */
for (; idx >= 0; idx--) {
if (spare_size[idx] * steps <= mtd->oobsize)
break;
}
/* This engine cannot be used with this NAND device */
if (idx < 0)
return -EINVAL;
/* Configure the engine for the desired strength */
writel(ECC_TYP(idx), mxic->regs + DP_CONFIG);
conf->strength = possible_strength[idx];
spare_reg = readl(mxic->regs + SPARE_SIZE);
ctx->steps = steps;
ctx->data_step_sz = mtd->writesize / steps;
ctx->oob_step_sz = mtd->oobsize / steps;
ctx->parity_sz = PARITY_SZ(spare_reg);
ctx->meta_sz = META_SZ(spare_reg);
/* Ensure buffers will contain enough bytes to store the STAT_BYTES */
ctx->req_ctx.oob_buffer_size = nanddev_per_page_oobsize(nand) +
(ctx->steps * STAT_BYTES);
ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand);
if (ret)
return ret;
ctx->oobwithstat = kmalloc(mtd->oobsize + (ctx->steps * STAT_BYTES),
GFP_KERNEL);
if (!ctx->oobwithstat) {
ret = -ENOMEM;
goto cleanup_req_tweak;
}
sg_init_table(ctx->sg, 2);
/* Configuration dump and sanity checks */
dev_err(dev, "DPE version number: %d\n",
readl(mxic->regs + DP_VER) >> DP_VER_OFFSET);
dev_err(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE));
dev_err(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE));
dev_err(dev, "Spare size: %d\n", SPARE_SZ(spare_reg));
dev_err(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg));
dev_err(dev, "Parity size: %d\n", ctx->parity_sz);
dev_err(dev, "Meta size: %d\n", ctx->meta_sz);
if ((ctx->meta_sz + ctx->parity_sz + RSV_SZ(spare_reg)) !=
SPARE_SZ(spare_reg)) {
dev_err(dev, "Wrong OOB configuration: %d + %d + %ld != %d\n",
ctx->meta_sz, ctx->parity_sz, RSV_SZ(spare_reg),
SPARE_SZ(spare_reg));
ret = -EINVAL;
goto free_oobwithstat;
}
if (ctx->oob_step_sz != SPARE_SZ(spare_reg)) {
dev_err(dev, "Wrong OOB configuration: %d != %d\n",
ctx->oob_step_sz, SPARE_SZ(spare_reg));
ret = -EINVAL;
goto free_oobwithstat;
}
return 0;
free_oobwithstat:
kfree(ctx->oobwithstat);
cleanup_req_tweak:
nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
return ret;
}
static int mxic_ecc_init_ctx_external(struct nand_device *nand)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct device *dev = nand->ecc.engine->dev;
int ret;
dev_info(dev, "Macronix ECC engine in external mode\n");
ret = mxic_ecc_init_ctx(nand, dev);
if (ret)
return ret;
/* Trigger each step manually */
writel(1, mxic->regs + CHUNK_CNT);
writel(BURST_TYP_INCREASING | ECC_PACKED | MEM2MEM,
mxic->regs + HC_CONFIG);
return 0;
}
static int mxic_ecc_init_ctx_pipelined(struct nand_device *nand)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct mxic_ecc_ctx *ctx;
struct device *dev;
int ret;
dev = nand_ecc_get_engine_dev(nand->ecc.engine->dev);
if (!dev)
return -EINVAL;
dev_info(dev, "Macronix ECC engine in pipelined/mapping mode\n");
ret = mxic_ecc_init_ctx(nand, dev);
if (ret)
return ret;
ctx = nand_to_ecc_ctx(nand);
/* All steps should be handled in one go directly by the internal DMA */
writel(ctx->steps, mxic->regs + CHUNK_CNT);
/*
* Interleaved ECC scheme cannot be used otherwise factory bad block
* markers would be lost. A packed layout is mandatory.
*/
writel(BURST_TYP_INCREASING | ECC_PACKED | MAPPING,
mxic->regs + HC_CONFIG);
return 0;
}
static void mxic_ecc_cleanup_ctx(struct nand_device *nand)
{
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
if (ctx) {
nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
kfree(ctx->oobwithstat);
}
}
static int mxic_ecc_data_xfer_wait_for_completion(struct mxic_ecc_engine *mxic)
{
u32 val;
int ret;
if (mxic->irq) {
reinit_completion(&mxic->complete);
mxic_ecc_enable_int(mxic);
ret = wait_for_completion_timeout(&mxic->complete,
msecs_to_jiffies(1000));
ret = ret ? 0 : -ETIMEDOUT;
mxic_ecc_disable_int(mxic);
} else {
ret = readl_poll_timeout(mxic->regs + INTRPT_STS, val,
val & TRANS_CMPLT, 10, USEC_PER_SEC);
writel(val, mxic->regs + INTRPT_STS);
}
if (ret) {
dev_err(mxic->dev, "Timeout on data xfer completion\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxic_ecc_process_data(struct mxic_ecc_engine *mxic,
unsigned int direction)
{
unsigned int dir = (direction == NAND_PAGE_READ) ?
READ_NAND : WRITE_NAND;
int ret;
mxic_ecc_enable_engine(mxic);
/* Trigger processing */
writel(SDMA_STRT | dir, mxic->regs + SDMA_CTRL);
/* Wait for completion */
ret = mxic_ecc_data_xfer_wait_for_completion(mxic);
mxic_ecc_disable_engine(mxic);
return ret;
}
int mxic_ecc_process_data_pipelined(struct nand_ecc_engine *eng,
unsigned int direction, dma_addr_t dirmap)
{
struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng);
if (dirmap)
writel(dirmap, mxic->regs + HC_SLV_ADDR);
return mxic_ecc_process_data(mxic, direction);
}
EXPORT_SYMBOL_GPL(mxic_ecc_process_data_pipelined);
static void mxic_ecc_extract_status_bytes(struct mxic_ecc_ctx *ctx)
{
u8 *buf = ctx->oobwithstat;
int next_stat_pos;
int step;
/* Extract the ECC status */
for (step = 0; step < ctx->steps; step++) {
next_stat_pos = ctx->oob_step_sz +
((STAT_BYTES + ctx->oob_step_sz) * step);
ctx->status[step] = buf[next_stat_pos];
}
}
static void mxic_ecc_reconstruct_oobbuf(struct mxic_ecc_ctx *ctx,
u8 *dst, const u8 *src)
{
int step;
/* Reconstruct the OOB buffer linearly (without the ECC status bytes) */
for (step = 0; step < ctx->steps; step++)
memcpy(dst + (step * ctx->oob_step_sz),
src + (step * (ctx->oob_step_sz + STAT_BYTES)),
ctx->oob_step_sz);
}
static void mxic_ecc_add_room_in_oobbuf(struct mxic_ecc_ctx *ctx,
u8 *dst, const u8 *src)
{
int step;
/* Add some space in the OOB buffer for the status bytes */
for (step = 0; step < ctx->steps; step++)
memcpy(dst + (step * (ctx->oob_step_sz + STAT_BYTES)),
src + (step * ctx->oob_step_sz),
ctx->oob_step_sz);
}
static int mxic_ecc_count_biterrs(struct mxic_ecc_engine *mxic,
struct nand_device *nand)
{
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct device *dev = mxic->dev;
unsigned int max_bf = 0;
bool failure = false;
int step;
for (step = 0; step < ctx->steps; step++) {
u8 stat = ctx->status[step];
if (stat == NO_ERR) {
dev_dbg(dev, "ECC step %d: no error\n", step);
} else if (stat == ERASED_CHUNK) {
dev_dbg(dev, "ECC step %d: erased\n", step);
} else if (stat == UNCORR_ERR || stat > MAX_CORR_ERR) {
dev_dbg(dev, "ECC step %d: uncorrectable\n", step);
mtd->ecc_stats.failed++;
failure = true;
} else {
dev_dbg(dev, "ECC step %d: %d bits corrected\n",
step, stat);
max_bf = max_t(unsigned int, max_bf, stat);
mtd->ecc_stats.corrected += stat;
}
}
return failure ? -EBADMSG : max_bf;
}
/* External ECC engine helpers */
static int mxic_ecc_prepare_io_req_external(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
int offset, nents, step, ret;
if (req->mode == MTD_OPS_RAW)
return 0;
nand_ecc_tweak_req(&ctx->req_ctx, req);
ctx->req = req;
if (req->type == NAND_PAGE_READ)
return 0;
mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat,
ctx->req->oobbuf.out);
sg_set_buf(&ctx->sg[0], req->databuf.out, req->datalen);
sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
req->ooblen + (ctx->steps * STAT_BYTES));
nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
if (!nents)
return -EINVAL;
mutex_lock(&mxic->lock);
for (step = 0; step < ctx->steps; step++) {
writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz),
mxic->regs + SDMA_MAIN_ADDR);
writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)),
mxic->regs + SDMA_SPARE_ADDR);
ret = mxic_ecc_process_data(mxic, ctx->req->type);
if (ret)
break;
}
mutex_unlock(&mxic->lock);
dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
if (ret)
return ret;
/* Retrieve the calculated ECC bytes */
for (step = 0; step < ctx->steps; step++) {
offset = ctx->meta_sz + (step * ctx->oob_step_sz);
mtd_ooblayout_get_eccbytes(mtd,
(u8 *)ctx->req->oobbuf.out + offset,
ctx->oobwithstat + (step * STAT_BYTES),
step * ctx->parity_sz,
ctx->parity_sz);
}
return 0;
}
static int mxic_ecc_finish_io_req_external(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
int nents, step, ret;
if (req->mode == MTD_OPS_RAW)
return 0;
if (req->type == NAND_PAGE_WRITE) {
nand_ecc_restore_req(&ctx->req_ctx, req);
return 0;
}
/* Copy the OOB buffer and add room for the ECC engine status bytes */
mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in);
sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen);
sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
req->ooblen + (ctx->steps * STAT_BYTES));
nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
if (!nents)
return -EINVAL;
mutex_lock(&mxic->lock);
for (step = 0; step < ctx->steps; step++) {
writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz),
mxic->regs + SDMA_MAIN_ADDR);
writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)),
mxic->regs + SDMA_SPARE_ADDR);
ret = mxic_ecc_process_data(mxic, ctx->req->type);
if (ret)
break;
}
mutex_unlock(&mxic->lock);
dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
if (ret) {
nand_ecc_restore_req(&ctx->req_ctx, req);
return ret;
}
/* Extract the status bytes and reconstruct the buffer */
mxic_ecc_extract_status_bytes(ctx);
mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, ctx->oobwithstat);
nand_ecc_restore_req(&ctx->req_ctx, req);
return mxic_ecc_count_biterrs(mxic, nand);
}
/* Pipelined ECC engine helpers */
static int mxic_ecc_prepare_io_req_pipelined(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
int nents;
if (req->mode == MTD_OPS_RAW)
return 0;
nand_ecc_tweak_req(&ctx->req_ctx, req);
ctx->req = req;
/* Copy the OOB buffer and add room for the ECC engine status bytes */
mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in);
sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen);
sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
req->ooblen + (ctx->steps * STAT_BYTES));
nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
if (!nents)
return -EINVAL;
mutex_lock(&mxic->lock);
writel(sg_dma_address(&ctx->sg[0]), mxic->regs + SDMA_MAIN_ADDR);
writel(sg_dma_address(&ctx->sg[1]), mxic->regs + SDMA_SPARE_ADDR);
return 0;
}
static int mxic_ecc_finish_io_req_pipelined(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
int ret = 0;
if (req->mode == MTD_OPS_RAW)
return 0;
mutex_unlock(&mxic->lock);
dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
if (req->type == NAND_PAGE_READ) {
mxic_ecc_extract_status_bytes(ctx);
mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in,
ctx->oobwithstat);
ret = mxic_ecc_count_biterrs(mxic, nand);
}
nand_ecc_restore_req(&ctx->req_ctx, req);
return ret;
}
static struct nand_ecc_engine_ops mxic_ecc_engine_external_ops = {
.init_ctx = mxic_ecc_init_ctx_external,
.cleanup_ctx = mxic_ecc_cleanup_ctx,
.prepare_io_req = mxic_ecc_prepare_io_req_external,
.finish_io_req = mxic_ecc_finish_io_req_external,
};
static struct nand_ecc_engine_ops mxic_ecc_engine_pipelined_ops = {
.init_ctx = mxic_ecc_init_ctx_pipelined,
.cleanup_ctx = mxic_ecc_cleanup_ctx,
.prepare_io_req = mxic_ecc_prepare_io_req_pipelined,
.finish_io_req = mxic_ecc_finish_io_req_pipelined,
};
struct nand_ecc_engine_ops *mxic_ecc_get_pipelined_ops(void)
{
return &mxic_ecc_engine_pipelined_ops;
}
EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_ops);
static struct platform_device *
mxic_ecc_get_pdev(struct platform_device *spi_pdev)
{
struct platform_device *eng_pdev;
struct device_node *np;
/* Retrieve the nand-ecc-engine phandle */
np = of_parse_phandle(spi_pdev->dev.of_node, "nand-ecc-engine", 0);
if (!np)
return NULL;
/* Jump to the engine's device node */
eng_pdev = of_find_device_by_node(np);
of_node_put(np);
return eng_pdev;
}
void mxic_ecc_put_pipelined_engine(struct nand_ecc_engine *eng)
{
struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng);
platform_device_put(to_platform_device(mxic->dev));
}
EXPORT_SYMBOL_GPL(mxic_ecc_put_pipelined_engine);
struct nand_ecc_engine *
mxic_ecc_get_pipelined_engine(struct platform_device *spi_pdev)
{
struct platform_device *eng_pdev;
struct mxic_ecc_engine *mxic;
eng_pdev = mxic_ecc_get_pdev(spi_pdev);
if (!eng_pdev)
return ERR_PTR(-ENODEV);
mxic = platform_get_drvdata(eng_pdev);
if (!mxic) {
platform_device_put(eng_pdev);
return ERR_PTR(-EPROBE_DEFER);
}
return &mxic->pipelined_engine;
}
EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_engine);
/*
* Only the external ECC engine is exported as the pipelined is SoC specific, so
* it is registered directly by the drivers that wrap it.
*/
static int mxic_ecc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mxic_ecc_engine *mxic;
int ret;
mxic = devm_kzalloc(&pdev->dev, sizeof(*mxic), GFP_KERNEL);
if (!mxic)
return -ENOMEM;
mxic->dev = &pdev->dev;
/*
* Both memory regions for the ECC engine itself and the AXI slave
* address are mandatory.
*/
mxic->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mxic->regs)) {
dev_err(&pdev->dev, "Missing memory region\n");
return PTR_ERR(mxic->regs);
}
mxic_ecc_disable_engine(mxic);
mxic_ecc_disable_int(mxic);
/* IRQ is optional yet much more efficient */
mxic->irq = platform_get_irq_byname_optional(pdev, "ecc-engine");
if (mxic->irq > 0) {
ret = devm_request_irq(&pdev->dev, mxic->irq, mxic_ecc_isr, 0,
"mxic-ecc", mxic);
if (ret)
return ret;
} else {
dev_info(dev, "Invalid or missing IRQ, fallback to polling\n");
mxic->irq = 0;
}
mutex_init(&mxic->lock);
/*
* In external mode, the device is the ECC engine. In pipelined mode,
* the device is the host controller. The device is used to match the
* right ECC engine based on the DT properties.
*/
mxic->external_engine.dev = &pdev->dev;
mxic->external_engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL;
mxic->external_engine.ops = &mxic_ecc_engine_external_ops;
nand_ecc_register_on_host_hw_engine(&mxic->external_engine);
platform_set_drvdata(pdev, mxic);
return 0;
}
static void mxic_ecc_remove(struct platform_device *pdev)
{
struct mxic_ecc_engine *mxic = platform_get_drvdata(pdev);
nand_ecc_unregister_on_host_hw_engine(&mxic->external_engine);
}
static const struct of_device_id mxic_ecc_of_ids[] = {
{
.compatible = "mxicy,nand-ecc-engine-rev3",
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mxic_ecc_of_ids);
static struct platform_driver mxic_ecc_driver = {
.driver = {
.name = "mxic-nand-ecc-engine",
.of_match_table = mxic_ecc_of_ids,
},
.probe = mxic_ecc_probe,
.remove_new = mxic_ecc_remove,
};
module_platform_driver(mxic_ecc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
MODULE_DESCRIPTION("Macronix NAND hardware ECC controller");
|