summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/diskonchip.c
blob: e1b84cb90f0db6f4cd0a206f3080f3f80d5c078d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
/*
 * drivers/mtd/nand/diskonchip.c
 *
 * (C) 2003 Red Hat, Inc.
 * (C) 2004 Dan Brown <dan_brown@ieee.org>
 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
 *
 * Author: David Woodhouse <dwmw2@infradead.org>
 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
 *
 * Error correction code lifted from the old docecc code
 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
 * Copyright (C) 2000 Netgem S.A.
 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
 *
 * Interface to generic NAND code for M-Systems DiskOnChip devices
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/rslib.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <asm/io.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/doc2000.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/inftl.h>
#include <linux/module.h>

/* Where to look for the devices? */
#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
#endif

static unsigned long __initdata doc_locations[] = {
#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
#else /*  CONFIG_MTD_DOCPROBE_HIGH */
	0xc8000, 0xca000, 0xcc000, 0xce000,
	0xd0000, 0xd2000, 0xd4000, 0xd6000,
	0xd8000, 0xda000, 0xdc000, 0xde000,
	0xe0000, 0xe2000, 0xe4000, 0xe6000,
	0xe8000, 0xea000, 0xec000, 0xee000,
#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
#else
#warning Unknown architecture for DiskOnChip. No default probe locations defined
#endif
	0xffffffff };

static struct mtd_info *doclist = NULL;

struct doc_priv {
	void __iomem *virtadr;
	unsigned long physadr;
	u_char ChipID;
	u_char CDSNControl;
	int chips_per_floor;	/* The number of chips detected on each floor */
	int curfloor;
	int curchip;
	int mh0_page;
	int mh1_page;
	struct mtd_info *nextdoc;
};

/* This is the syndrome computed by the HW ecc generator upon reading an empty
   page, one with all 0xff for data and stored ecc code. */
static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };

/* This is the ecc value computed by the HW ecc generator upon writing an empty
   page, one with all 0xff for data. */
static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };

#define INFTL_BBT_RESERVED_BLOCKS 4

#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)

static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
			      unsigned int bitmask);
static void doc200x_select_chip(struct mtd_info *mtd, int chip);

static int debug = 0;
module_param(debug, int, 0);

static int try_dword = 1;
module_param(try_dword, int, 0);

static int no_ecc_failures = 0;
module_param(no_ecc_failures, int, 0);

static int no_autopart = 0;
module_param(no_autopart, int, 0);

static int show_firmware_partition = 0;
module_param(show_firmware_partition, int, 0);

#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
static int inftl_bbt_write = 1;
#else
static int inftl_bbt_write = 0;
#endif
module_param(inftl_bbt_write, int, 0);

static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
module_param(doc_config_location, ulong, 0);
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");

/* Sector size for HW ECC */
#define SECTOR_SIZE 512
/* The sector bytes are packed into NB_DATA 10 bit words */
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
/* Number of roots */
#define NROOTS 4
/* First consective root */
#define FCR 510
/* Number of symbols */
#define NN 1023

/* the Reed Solomon control structure */
static struct rs_control *rs_decoder;

/*
 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 * which we must convert to a standard syndrom usable by the generic
 * Reed-Solomon library code.
 *
 * Fabrice Bellard figured this out in the old docecc code. I added
 * some comments, improved a minor bit and converted it to make use
 * of the generic Reed-Solomon library. tglx
 */
static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
{
	int i, j, nerr, errpos[8];
	uint8_t parity;
	uint16_t ds[4], s[5], tmp, errval[8], syn[4];

	memset(syn, 0, sizeof(syn));
	/* Convert the ecc bytes into words */
	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
	parity = ecc[1];

	/* Initialize the syndrom buffer */
	for (i = 0; i < NROOTS; i++)
		s[i] = ds[0];
	/*
	 *  Evaluate
	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
	 *  where x = alpha^(FCR + i)
	 */
	for (j = 1; j < NROOTS; j++) {
		if (ds[j] == 0)
			continue;
		tmp = rs->index_of[ds[j]];
		for (i = 0; i < NROOTS; i++)
			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
	}

	/* Calc syn[i] = s[i] / alpha^(v + i) */
	for (i = 0; i < NROOTS; i++) {
		if (s[i])
			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
	}
	/* Call the decoder library */
	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);

	/* Incorrectable errors ? */
	if (nerr < 0)
		return nerr;

	/*
	 * Correct the errors. The bitpositions are a bit of magic,
	 * but they are given by the design of the de/encoder circuit
	 * in the DoC ASIC's.
	 */
	for (i = 0; i < nerr; i++) {
		int index, bitpos, pos = 1015 - errpos[i];
		uint8_t val;
		if (pos >= NB_DATA && pos < 1019)
			continue;
		if (pos < NB_DATA) {
			/* extract bit position (MSB first) */
			pos = 10 * (NB_DATA - 1 - pos) - 6;
			/* now correct the following 10 bits. At most two bytes
			   can be modified since pos is even */
			index = (pos >> 3) ^ 1;
			bitpos = pos & 7;
			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
				val = (uint8_t) (errval[i] >> (2 + bitpos));
				parity ^= val;
				if (index < SECTOR_SIZE)
					data[index] ^= val;
			}
			index = ((pos >> 3) + 1) ^ 1;
			bitpos = (bitpos + 10) & 7;
			if (bitpos == 0)
				bitpos = 8;
			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
				val = (uint8_t) (errval[i] << (8 - bitpos));
				parity ^= val;
				if (index < SECTOR_SIZE)
					data[index] ^= val;
			}
		}
	}
	/* If the parity is wrong, no rescue possible */
	return parity ? -EBADMSG : nerr;
}

static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
{
	volatile char dummy;
	int i;

	for (i = 0; i < cycles; i++) {
		if (DoC_is_Millennium(doc))
			dummy = ReadDOC(doc->virtadr, NOP);
		else if (DoC_is_MillenniumPlus(doc))
			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
		else
			dummy = ReadDOC(doc->virtadr, DOCStatus);
	}

}

#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)

/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(struct doc_priv *doc)
{
	void __iomem *docptr = doc->virtadr;
	unsigned long timeo = jiffies + (HZ * 10);

	if (debug)
		printk("_DoC_WaitReady...\n");
	/* Out-of-line routine to wait for chip response */
	if (DoC_is_MillenniumPlus(doc)) {
		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
			if (time_after(jiffies, timeo)) {
				printk("_DoC_WaitReady timed out.\n");
				return -EIO;
			}
			udelay(1);
			cond_resched();
		}
	} else {
		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
			if (time_after(jiffies, timeo)) {
				printk("_DoC_WaitReady timed out.\n");
				return -EIO;
			}
			udelay(1);
			cond_resched();
		}
	}

	return 0;
}

static inline int DoC_WaitReady(struct doc_priv *doc)
{
	void __iomem *docptr = doc->virtadr;
	int ret = 0;

	if (DoC_is_MillenniumPlus(doc)) {
		DoC_Delay(doc, 4);

		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
			/* Call the out-of-line routine to wait */
			ret = _DoC_WaitReady(doc);
	} else {
		DoC_Delay(doc, 4);

		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
			/* Call the out-of-line routine to wait */
			ret = _DoC_WaitReady(doc);
		DoC_Delay(doc, 2);
	}

	if (debug)
		printk("DoC_WaitReady OK\n");
	return ret;
}

static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	if (debug)
		printk("write_byte %02x\n", datum);
	WriteDOC(datum, docptr, CDSNSlowIO);
	WriteDOC(datum, docptr, 2k_CDSN_IO);
}

static u_char doc2000_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	u_char ret;

	ReadDOC(docptr, CDSNSlowIO);
	DoC_Delay(doc, 2);
	ret = ReadDOC(docptr, 2k_CDSN_IO);
	if (debug)
		printk("read_byte returns %02x\n", ret);
	return ret;
}

static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;
	if (debug)
		printk("writebuf of %d bytes: ", len);
	for (i = 0; i < len; i++) {
		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
		if (debug && i < 16)
			printk("%02x ", buf[i]);
	}
	if (debug)
		printk("\n");
}

static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	if (debug)
		printk("readbuf of %d bytes: ", len);

	for (i = 0; i < len; i++) {
		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
	}
}

static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	if (debug)
		printk("readbuf_dword of %d bytes: ", len);

	if (unlikely((((unsigned long)buf) | len) & 3)) {
		for (i = 0; i < len; i++) {
			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
		}
	} else {
		for (i = 0; i < len; i += 4) {
			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
		}
	}
}

static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	for (i = 0; i < len; i++)
		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
			return -EFAULT;
	return 0;
}

static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	uint16_t ret;

	doc200x_select_chip(mtd, nr);
	doc200x_hwcontrol(mtd, NAND_CMD_READID,
			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);

	/* We can't use dev_ready here, but at least we wait for the
	 * command to complete
	 */
	udelay(50);

	ret = this->read_byte(mtd) << 8;
	ret |= this->read_byte(mtd);

	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
		/* First chip probe. See if we get same results by 32-bit access */
		union {
			uint32_t dword;
			uint8_t byte[4];
		} ident;
		void __iomem *docptr = doc->virtadr;

		doc200x_hwcontrol(mtd, NAND_CMD_READID,
				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
				  NAND_NCE | NAND_CTRL_CHANGE);

		udelay(50);

		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
			this->read_buf = &doc2000_readbuf_dword;
		}
	}

	return ret;
}

static void __init doc2000_count_chips(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	uint16_t mfrid;
	int i;

	/* Max 4 chips per floor on DiskOnChip 2000 */
	doc->chips_per_floor = 4;

	/* Find out what the first chip is */
	mfrid = doc200x_ident_chip(mtd, 0);

	/* Find how many chips in each floor. */
	for (i = 1; i < 4; i++) {
		if (doc200x_ident_chip(mtd, i) != mfrid)
			break;
	}
	doc->chips_per_floor = i;
	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
}

static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
{
	struct doc_priv *doc = this->priv;

	int status;

	DoC_WaitReady(doc);
	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	DoC_WaitReady(doc);
	status = (int)this->read_byte(mtd);

	return status;
}

static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	WriteDOC(datum, docptr, CDSNSlowIO);
	WriteDOC(datum, docptr, Mil_CDSN_IO);
	WriteDOC(datum, docptr, WritePipeTerm);
}

static u_char doc2001_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	//ReadDOC(docptr, CDSNSlowIO);
	/* 11.4.5 -- delay twice to allow extended length cycle */
	DoC_Delay(doc, 2);
	ReadDOC(docptr, ReadPipeInit);
	//return ReadDOC(docptr, Mil_CDSN_IO);
	return ReadDOC(docptr, LastDataRead);
}

static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	for (i = 0; i < len; i++)
		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
	/* Terminate write pipeline */
	WriteDOC(0x00, docptr, WritePipeTerm);
}

static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	/* Start read pipeline */
	ReadDOC(docptr, ReadPipeInit);

	for (i = 0; i < len - 1; i++)
		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));

	/* Terminate read pipeline */
	buf[i] = ReadDOC(docptr, LastDataRead);
}

static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	/* Start read pipeline */
	ReadDOC(docptr, ReadPipeInit);

	for (i = 0; i < len - 1; i++)
		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
			ReadDOC(docptr, LastDataRead);
			return i;
		}
	if (buf[i] != ReadDOC(docptr, LastDataRead))
		return i;
	return 0;
}

static u_char doc2001plus_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	u_char ret;

	ReadDOC(docptr, Mplus_ReadPipeInit);
	ReadDOC(docptr, Mplus_ReadPipeInit);
	ret = ReadDOC(docptr, Mplus_LastDataRead);
	if (debug)
		printk("read_byte returns %02x\n", ret);
	return ret;
}

static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	if (debug)
		printk("writebuf of %d bytes: ", len);
	for (i = 0; i < len; i++) {
		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
		if (debug && i < 16)
			printk("%02x ", buf[i]);
	}
	if (debug)
		printk("\n");
}

static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	if (debug)
		printk("readbuf of %d bytes: ", len);

	/* Start read pipeline */
	ReadDOC(docptr, Mplus_ReadPipeInit);
	ReadDOC(docptr, Mplus_ReadPipeInit);

	for (i = 0; i < len - 2; i++) {
		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
		if (debug && i < 16)
			printk("%02x ", buf[i]);
	}

	/* Terminate read pipeline */
	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
	if (debug && i < 16)
		printk("%02x ", buf[len - 2]);
	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
	if (debug && i < 16)
		printk("%02x ", buf[len - 1]);
	if (debug)
		printk("\n");
}

static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;

	if (debug)
		printk("verifybuf of %d bytes: ", len);

	/* Start read pipeline */
	ReadDOC(docptr, Mplus_ReadPipeInit);
	ReadDOC(docptr, Mplus_ReadPipeInit);

	for (i = 0; i < len - 2; i++)
		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
			ReadDOC(docptr, Mplus_LastDataRead);
			ReadDOC(docptr, Mplus_LastDataRead);
			return i;
		}
	if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
		return len - 2;
	if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
		return len - 1;
	return 0;
}

static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int floor = 0;

	if (debug)
		printk("select chip (%d)\n", chip);

	if (chip == -1) {
		/* Disable flash internally */
		WriteDOC(0, docptr, Mplus_FlashSelect);
		return;
	}

	floor = chip / doc->chips_per_floor;
	chip -= (floor * doc->chips_per_floor);

	/* Assert ChipEnable and deassert WriteProtect */
	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

	doc->curchip = chip;
	doc->curfloor = floor;
}

static void doc200x_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int floor = 0;

	if (debug)
		printk("select chip (%d)\n", chip);

	if (chip == -1)
		return;

	floor = chip / doc->chips_per_floor;
	chip -= (floor * doc->chips_per_floor);

	/* 11.4.4 -- deassert CE before changing chip */
	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);

	WriteDOC(floor, docptr, FloorSelect);
	WriteDOC(chip, docptr, CDSNDeviceSelect);

	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);

	doc->curchip = chip;
	doc->curfloor = floor;
}

#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)

static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
			      unsigned int ctrl)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	if (ctrl & NAND_CTRL_CHANGE) {
		doc->CDSNControl &= ~CDSN_CTRL_MSK;
		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
		if (debug)
			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
		/* 11.4.3 -- 4 NOPs after CSDNControl write */
		DoC_Delay(doc, 4);
	}
	if (cmd != NAND_CMD_NONE) {
		if (DoC_is_2000(doc))
			doc2000_write_byte(mtd, cmd);
		else
			doc2001_write_byte(mtd, cmd);
	}
}

static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	/*
	 * Must terminate write pipeline before sending any commands
	 * to the device.
	 */
	if (command == NAND_CMD_PAGEPROG) {
		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
	}

	/*
	 * Write out the command to the device.
	 */
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

		if (column >= mtd->writesize) {
			/* OOB area */
			column -= mtd->writesize;
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
	}
	WriteDOC(command, docptr, Mplus_FlashCmd);
	WriteDOC(0, docptr, Mplus_WritePipeTerm);
	WriteDOC(0, docptr, Mplus_WritePipeTerm);

	if (column != -1 || page_addr != -1) {
		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
			if (this->options & NAND_BUSWIDTH_16)
				column >>= 1;
			WriteDOC(column, docptr, Mplus_FlashAddress);
		}
		if (page_addr != -1) {
			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
			/* One more address cycle for higher density devices */
			if (this->chipsize & 0x0c000000) {
				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
				printk("high density\n");
			}
		}
		WriteDOC(0, docptr, Mplus_WritePipeTerm);
		WriteDOC(0, docptr, Mplus_WritePipeTerm);
		/* deassert ALE */
		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
			WriteDOC(0, docptr, Mplus_FlashControl);
	}

	/*
	 * program and erase have their own busy handlers
	 * status and sequential in needs no delay
	 */
	switch (command) {

	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
		if (this->dev_ready)
			break;
		udelay(this->chip_delay);
		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
		WriteDOC(0, docptr, Mplus_WritePipeTerm);
		WriteDOC(0, docptr, Mplus_WritePipeTerm);
		while (!(this->read_byte(mtd) & 0x40)) ;
		return;

		/* This applies to read commands */
	default:
		/*
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
		 */
		if (!this->dev_ready) {
			udelay(this->chip_delay);
			return;
		}
	}

	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay(100);
	/* wait until command is processed */
	while (!this->dev_ready(mtd)) ;
}

static int doc200x_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	if (DoC_is_MillenniumPlus(doc)) {
		/* 11.4.2 -- must NOP four times before checking FR/B# */
		DoC_Delay(doc, 4);
		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
			if (debug)
				printk("not ready\n");
			return 0;
		}
		if (debug)
			printk("was ready\n");
		return 1;
	} else {
		/* 11.4.2 -- must NOP four times before checking FR/B# */
		DoC_Delay(doc, 4);
		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
			if (debug)
				printk("not ready\n");
			return 0;
		}
		/* 11.4.2 -- Must NOP twice if it's ready */
		DoC_Delay(doc, 2);
		if (debug)
			printk("was ready\n");
		return 1;
	}
}

static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	/* This is our last resort if we couldn't find or create a BBT.  Just
	   pretend all blocks are good. */
	return 0;
}

static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	/* Prime the ECC engine */
	switch (mode) {
	case NAND_ECC_READ:
		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
		break;
	case NAND_ECC_WRITE:
		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
		break;
	}
}

static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;

	/* Prime the ECC engine */
	switch (mode) {
	case NAND_ECC_READ:
		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
		break;
	case NAND_ECC_WRITE:
		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
		break;
	}
}

/* This code is only called on write */
static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	int i;
	int emptymatch = 1;

	/* flush the pipeline */
	if (DoC_is_2000(doc)) {
		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
		WriteDOC(0, docptr, 2k_CDSN_IO);
		WriteDOC(0, docptr, 2k_CDSN_IO);
		WriteDOC(0, docptr, 2k_CDSN_IO);
		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
	} else if (DoC_is_MillenniumPlus(doc)) {
		WriteDOC(0, docptr, Mplus_NOP);
		WriteDOC(0, docptr, Mplus_NOP);
		WriteDOC(0, docptr, Mplus_NOP);
	} else {
		WriteDOC(0, docptr, NOP);
		WriteDOC(0, docptr, NOP);
		WriteDOC(0, docptr, NOP);
	}

	for (i = 0; i < 6; i++) {
		if (DoC_is_MillenniumPlus(doc))
			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
		else
			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
		if (ecc_code[i] != empty_write_ecc[i])
			emptymatch = 0;
	}
	if (DoC_is_MillenniumPlus(doc))
		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
	else
		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
#if 0
	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
	if (emptymatch) {
		/* Note: this somewhat expensive test should not be triggered
		   often.  It could be optimized away by examining the data in
		   the writebuf routine, and remembering the result. */
		for (i = 0; i < 512; i++) {
			if (dat[i] == 0xff)
				continue;
			emptymatch = 0;
			break;
		}
	}
	/* If emptymatch still =1, we do have an all-0xff data buffer.
	   Return all-0xff ecc value instead of the computed one, so
	   it'll look just like a freshly-erased page. */
	if (emptymatch)
		memset(ecc_code, 0xff, 6);
#endif
	return 0;
}

static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
				u_char *read_ecc, u_char *isnull)
{
	int i, ret = 0;
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	void __iomem *docptr = doc->virtadr;
	uint8_t calc_ecc[6];
	volatile u_char dummy;
	int emptymatch = 1;

	/* flush the pipeline */
	if (DoC_is_2000(doc)) {
		dummy = ReadDOC(docptr, 2k_ECCStatus);
		dummy = ReadDOC(docptr, 2k_ECCStatus);
		dummy = ReadDOC(docptr, 2k_ECCStatus);
	} else if (DoC_is_MillenniumPlus(doc)) {
		dummy = ReadDOC(docptr, Mplus_ECCConf);
		dummy = ReadDOC(docptr, Mplus_ECCConf);
		dummy = ReadDOC(docptr, Mplus_ECCConf);
	} else {
		dummy = ReadDOC(docptr, ECCConf);
		dummy = ReadDOC(docptr, ECCConf);
		dummy = ReadDOC(docptr, ECCConf);
	}

	/* Error occurred ? */
	if (dummy & 0x80) {
		for (i = 0; i < 6; i++) {
			if (DoC_is_MillenniumPlus(doc))
				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
			else
				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
			if (calc_ecc[i] != empty_read_syndrome[i])
				emptymatch = 0;
		}
		/* If emptymatch=1, the read syndrome is consistent with an
		   all-0xff data and stored ecc block.  Check the stored ecc. */
		if (emptymatch) {
			for (i = 0; i < 6; i++) {
				if (read_ecc[i] == 0xff)
					continue;
				emptymatch = 0;
				break;
			}
		}
		/* If emptymatch still =1, check the data block. */
		if (emptymatch) {
			/* Note: this somewhat expensive test should not be triggered
			   often.  It could be optimized away by examining the data in
			   the readbuf routine, and remembering the result. */
			for (i = 0; i < 512; i++) {
				if (dat[i] == 0xff)
					continue;
				emptymatch = 0;
				break;
			}
		}
		/* If emptymatch still =1, this is almost certainly a freshly-
		   erased block, in which case the ECC will not come out right.
		   We'll suppress the error and tell the caller everything's
		   OK.  Because it is. */
		if (!emptymatch)
			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
		if (ret > 0)
			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
	}
	if (DoC_is_MillenniumPlus(doc))
		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
	else
		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
	if (no_ecc_failures && (ret == -EBADMSG)) {
		printk(KERN_ERR "suppressing ECC failure\n");
		ret = 0;
	}
	return ret;
}

//u_char mydatabuf[528];

/* The strange out-of-order .oobfree list below is a (possibly unneeded)
 * attempt to retain compatibility.  It used to read:
 * 	.oobfree = { {8, 8} }
 * Since that leaves two bytes unusable, it was changed.  But the following
 * scheme might affect existing jffs2 installs by moving the cleanmarker:
 * 	.oobfree = { {6, 10} }
 * jffs2 seems to handle the above gracefully, but the current scheme seems
 * safer.  The only problem with it is that any code that parses oobfree must
 * be able to handle out-of-order segments.
 */
static struct nand_ecclayout doc200x_oobinfo = {
	.eccbytes = 6,
	.eccpos = {0, 1, 2, 3, 4, 5},
	.oobfree = {{8, 8}, {6, 2}}
};

/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
   On successful return, buf will contain a copy of the media header for
   further processing.  id is the string to scan for, and will presumably be
   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
   header.  The page #s of the found media headers are placed in mh0_page and
   mh1_page in the DOC private structure. */
static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	unsigned offs;
	int ret;
	size_t retlen;

	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
		ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
		if (retlen != mtd->writesize)
			continue;
		if (ret) {
			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
		}
		if (memcmp(buf, id, 6))
			continue;
		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
		if (doc->mh0_page == -1) {
			doc->mh0_page = offs >> this->page_shift;
			if (!findmirror)
				return 1;
			continue;
		}
		doc->mh1_page = offs >> this->page_shift;
		return 2;
	}
	if (doc->mh0_page == -1) {
		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
		return 0;
	}
	/* Only one mediaheader was found.  We want buf to contain a
	   mediaheader on return, so we'll have to re-read the one we found. */
	offs = doc->mh0_page << this->page_shift;
	ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
	if (retlen != mtd->writesize) {
		/* Insanity.  Give up. */
		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
		return 0;
	}
	return 1;
}

static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	int ret = 0;
	u_char *buf;
	struct NFTLMediaHeader *mh;
	const unsigned psize = 1 << this->page_shift;
	int numparts = 0;
	unsigned blocks, maxblocks;
	int offs, numheaders;

	buf = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!buf) {
		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
		return 0;
	}
	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
		goto out;
	mh = (struct NFTLMediaHeader *)buf;

	le16_to_cpus(&mh->NumEraseUnits);
	le16_to_cpus(&mh->FirstPhysicalEUN);
	le32_to_cpus(&mh->FormattedSize);

	printk(KERN_INFO "    DataOrgID        = %s\n"
			 "    NumEraseUnits    = %d\n"
			 "    FirstPhysicalEUN = %d\n"
			 "    FormattedSize    = %d\n"
			 "    UnitSizeFactor   = %d\n",
		mh->DataOrgID, mh->NumEraseUnits,
		mh->FirstPhysicalEUN, mh->FormattedSize,
		mh->UnitSizeFactor);

	blocks = mtd->size >> this->phys_erase_shift;
	maxblocks = min(32768U, mtd->erasesize - psize);

	if (mh->UnitSizeFactor == 0x00) {
		/* Auto-determine UnitSizeFactor.  The constraints are:
		   - There can be at most 32768 virtual blocks.
		   - There can be at most (virtual block size - page size)
		   virtual blocks (because MediaHeader+BBT must fit in 1).
		 */
		mh->UnitSizeFactor = 0xff;
		while (blocks > maxblocks) {
			blocks >>= 1;
			maxblocks = min(32768U, (maxblocks << 1) + psize);
			mh->UnitSizeFactor--;
		}
		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
	}

	/* NOTE: The lines below modify internal variables of the NAND and MTD
	   layers; variables with have already been configured by nand_scan.
	   Unfortunately, we didn't know before this point what these values
	   should be.  Thus, this code is somewhat dependent on the exact
	   implementation of the NAND layer.  */
	if (mh->UnitSizeFactor != 0xff) {
		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
		blocks = mtd->size >> this->bbt_erase_shift;
		maxblocks = min(32768U, mtd->erasesize - psize);
	}

	if (blocks > maxblocks) {
		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
		goto out;
	}

	/* Skip past the media headers. */
	offs = max(doc->mh0_page, doc->mh1_page);
	offs <<= this->page_shift;
	offs += mtd->erasesize;

	if (show_firmware_partition == 1) {
		parts[0].name = " DiskOnChip Firmware / Media Header partition";
		parts[0].offset = 0;
		parts[0].size = offs;
		numparts = 1;
	}

	parts[numparts].name = " DiskOnChip BDTL partition";
	parts[numparts].offset = offs;
	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;

	offs += parts[numparts].size;
	numparts++;

	if (offs < mtd->size) {
		parts[numparts].name = " DiskOnChip Remainder partition";
		parts[numparts].offset = offs;
		parts[numparts].size = mtd->size - offs;
		numparts++;
	}

	ret = numparts;
 out:
	kfree(buf);
	return ret;
}

/* This is a stripped-down copy of the code in inftlmount.c */
static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	int ret = 0;
	u_char *buf;
	struct INFTLMediaHeader *mh;
	struct INFTLPartition *ip;
	int numparts = 0;
	int blocks;
	int vshift, lastvunit = 0;
	int i;
	int end = mtd->size;

	if (inftl_bbt_write)
		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);

	buf = kmalloc(mtd->writesize, GFP_KERNEL);
	if (!buf) {
		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
		return 0;
	}

	if (!find_media_headers(mtd, buf, "BNAND", 0))
		goto out;
	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
	mh = (struct INFTLMediaHeader *)buf;

	le32_to_cpus(&mh->NoOfBootImageBlocks);
	le32_to_cpus(&mh->NoOfBinaryPartitions);
	le32_to_cpus(&mh->NoOfBDTLPartitions);
	le32_to_cpus(&mh->BlockMultiplierBits);
	le32_to_cpus(&mh->FormatFlags);
	le32_to_cpus(&mh->PercentUsed);

	printk(KERN_INFO "    bootRecordID          = %s\n"
			 "    NoOfBootImageBlocks   = %d\n"
			 "    NoOfBinaryPartitions  = %d\n"
			 "    NoOfBDTLPartitions    = %d\n"
			 "    BlockMultiplerBits    = %d\n"
			 "    FormatFlgs            = %d\n"
			 "    OsakVersion           = %d.%d.%d.%d\n"
			 "    PercentUsed           = %d\n",
		mh->bootRecordID, mh->NoOfBootImageBlocks,
		mh->NoOfBinaryPartitions,
		mh->NoOfBDTLPartitions,
		mh->BlockMultiplierBits, mh->FormatFlags,
		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
		mh->PercentUsed);

	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;

	blocks = mtd->size >> vshift;
	if (blocks > 32768) {
		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
		goto out;
	}

	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
		goto out;
	}

	/* Scan the partitions */
	for (i = 0; (i < 4); i++) {
		ip = &(mh->Partitions[i]);
		le32_to_cpus(&ip->virtualUnits);
		le32_to_cpus(&ip->firstUnit);
		le32_to_cpus(&ip->lastUnit);
		le32_to_cpus(&ip->flags);
		le32_to_cpus(&ip->spareUnits);
		le32_to_cpus(&ip->Reserved0);

		printk(KERN_INFO	"    PARTITION[%d] ->\n"
			"        virtualUnits    = %d\n"
			"        firstUnit       = %d\n"
			"        lastUnit        = %d\n"
			"        flags           = 0x%x\n"
			"        spareUnits      = %d\n",
			i, ip->virtualUnits, ip->firstUnit,
			ip->lastUnit, ip->flags,
			ip->spareUnits);

		if ((show_firmware_partition == 1) &&
		    (i == 0) && (ip->firstUnit > 0)) {
			parts[0].name = " DiskOnChip IPL / Media Header partition";
			parts[0].offset = 0;
			parts[0].size = mtd->erasesize * ip->firstUnit;
			numparts = 1;
		}

		if (ip->flags & INFTL_BINARY)
			parts[numparts].name = " DiskOnChip BDK partition";
		else
			parts[numparts].name = " DiskOnChip BDTL partition";
		parts[numparts].offset = ip->firstUnit << vshift;
		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
		numparts++;
		if (ip->lastUnit > lastvunit)
			lastvunit = ip->lastUnit;
		if (ip->flags & INFTL_LAST)
			break;
	}
	lastvunit++;
	if ((lastvunit << vshift) < end) {
		parts[numparts].name = " DiskOnChip Remainder partition";
		parts[numparts].offset = lastvunit << vshift;
		parts[numparts].size = end - parts[numparts].offset;
		numparts++;
	}
	ret = numparts;
 out:
	kfree(buf);
	return ret;
}

static int __init nftl_scan_bbt(struct mtd_info *mtd)
{
	int ret, numparts;
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	struct mtd_partition parts[2];

	memset((char *)parts, 0, sizeof(parts));
	/* On NFTL, we have to find the media headers before we can read the
	   BBTs, since they're stored in the media header eraseblocks. */
	numparts = nftl_partscan(mtd, parts);
	if (!numparts)
		return -EIO;
	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
				NAND_BBT_VERSION;
	this->bbt_td->veroffs = 7;
	this->bbt_td->pages[0] = doc->mh0_page + 1;
	if (doc->mh1_page != -1) {
		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
					NAND_BBT_VERSION;
		this->bbt_md->veroffs = 7;
		this->bbt_md->pages[0] = doc->mh1_page + 1;
	} else {
		this->bbt_md = NULL;
	}

	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
	   At least as nand_bbt.c is currently written. */
	if ((ret = nand_scan_bbt(mtd, NULL)))
		return ret;
	mtd_device_register(mtd, NULL, 0);
	if (!no_autopart)
		mtd_device_register(mtd, parts, numparts);
	return 0;
}

static int __init inftl_scan_bbt(struct mtd_info *mtd)
{
	int ret, numparts;
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;
	struct mtd_partition parts[5];

	if (this->numchips > doc->chips_per_floor) {
		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
		return -EIO;
	}

	if (DoC_is_MillenniumPlus(doc)) {
		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
		if (inftl_bbt_write)
			this->bbt_td->options |= NAND_BBT_WRITE;
		this->bbt_td->pages[0] = 2;
		this->bbt_md = NULL;
	} else {
		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
		if (inftl_bbt_write)
			this->bbt_td->options |= NAND_BBT_WRITE;
		this->bbt_td->offs = 8;
		this->bbt_td->len = 8;
		this->bbt_td->veroffs = 7;
		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
		this->bbt_td->reserved_block_code = 0x01;
		this->bbt_td->pattern = "MSYS_BBT";

		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
		if (inftl_bbt_write)
			this->bbt_md->options |= NAND_BBT_WRITE;
		this->bbt_md->offs = 8;
		this->bbt_md->len = 8;
		this->bbt_md->veroffs = 7;
		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
		this->bbt_md->reserved_block_code = 0x01;
		this->bbt_md->pattern = "TBB_SYSM";
	}

	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
	   At least as nand_bbt.c is currently written. */
	if ((ret = nand_scan_bbt(mtd, NULL)))
		return ret;
	memset((char *)parts, 0, sizeof(parts));
	numparts = inftl_partscan(mtd, parts);
	/* At least for now, require the INFTL Media Header.  We could probably
	   do without it for non-INFTL use, since all it gives us is
	   autopartitioning, but I want to give it more thought. */
	if (!numparts)
		return -EIO;
	mtd_device_register(mtd, NULL, 0);
	if (!no_autopart)
		mtd_device_register(mtd, parts, numparts);
	return 0;
}

static inline int __init doc2000_init(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;

	this->read_byte = doc2000_read_byte;
	this->write_buf = doc2000_writebuf;
	this->read_buf = doc2000_readbuf;
	this->verify_buf = doc2000_verifybuf;
	this->scan_bbt = nftl_scan_bbt;

	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
	doc2000_count_chips(mtd);
	mtd->name = "DiskOnChip 2000 (NFTL Model)";
	return (4 * doc->chips_per_floor);
}

static inline int __init doc2001_init(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;

	this->read_byte = doc2001_read_byte;
	this->write_buf = doc2001_writebuf;
	this->read_buf = doc2001_readbuf;
	this->verify_buf = doc2001_verifybuf;

	ReadDOC(doc->virtadr, ChipID);
	ReadDOC(doc->virtadr, ChipID);
	ReadDOC(doc->virtadr, ChipID);
	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
		/* It's not a Millennium; it's one of the newer
		   DiskOnChip 2000 units with a similar ASIC.
		   Treat it like a Millennium, except that it
		   can have multiple chips. */
		doc2000_count_chips(mtd);
		mtd->name = "DiskOnChip 2000 (INFTL Model)";
		this->scan_bbt = inftl_scan_bbt;
		return (4 * doc->chips_per_floor);
	} else {
		/* Bog-standard Millennium */
		doc->chips_per_floor = 1;
		mtd->name = "DiskOnChip Millennium";
		this->scan_bbt = nftl_scan_bbt;
		return 1;
	}
}

static inline int __init doc2001plus_init(struct mtd_info *mtd)
{
	struct nand_chip *this = mtd->priv;
	struct doc_priv *doc = this->priv;

	this->read_byte = doc2001plus_read_byte;
	this->write_buf = doc2001plus_writebuf;
	this->read_buf = doc2001plus_readbuf;
	this->verify_buf = doc2001plus_verifybuf;
	this->scan_bbt = inftl_scan_bbt;
	this->cmd_ctrl = NULL;
	this->select_chip = doc2001plus_select_chip;
	this->cmdfunc = doc2001plus_command;
	this->ecc.hwctl = doc2001plus_enable_hwecc;

	doc->chips_per_floor = 1;
	mtd->name = "DiskOnChip Millennium Plus";

	return 1;
}

static int __init doc_probe(unsigned long physadr)
{
	unsigned char ChipID;
	struct mtd_info *mtd;
	struct nand_chip *nand;
	struct doc_priv *doc;
	void __iomem *virtadr;
	unsigned char save_control;
	unsigned char tmp, tmpb, tmpc;
	int reg, len, numchips;
	int ret = 0;

	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
	if (!virtadr) {
		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
		return -EIO;
	}

	/* It's not possible to cleanly detect the DiskOnChip - the
	 * bootup procedure will put the device into reset mode, and
	 * it's not possible to talk to it without actually writing
	 * to the DOCControl register. So we store the current contents
	 * of the DOCControl register's location, in case we later decide
	 * that it's not a DiskOnChip, and want to put it back how we
	 * found it.
	 */
	save_control = ReadDOC(virtadr, DOCControl);

	/* Reset the DiskOnChip ASIC */
	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);

	/* Enable the DiskOnChip ASIC */
	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);

	ChipID = ReadDOC(virtadr, ChipID);

	switch (ChipID) {
	case DOC_ChipID_Doc2k:
		reg = DoC_2k_ECCStatus;
		break;
	case DOC_ChipID_DocMil:
		reg = DoC_ECCConf;
		break;
	case DOC_ChipID_DocMilPlus16:
	case DOC_ChipID_DocMilPlus32:
	case 0:
		/* Possible Millennium Plus, need to do more checks */
		/* Possibly release from power down mode */
		for (tmp = 0; (tmp < 4); tmp++)
			ReadDOC(virtadr, Mplus_Power);

		/* Reset the Millennium Plus ASIC */
		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
		WriteDOC(tmp, virtadr, Mplus_DOCControl);
		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);

		mdelay(1);
		/* Enable the Millennium Plus ASIC */
		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
		WriteDOC(tmp, virtadr, Mplus_DOCControl);
		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
		mdelay(1);

		ChipID = ReadDOC(virtadr, ChipID);

		switch (ChipID) {
		case DOC_ChipID_DocMilPlus16:
			reg = DoC_Mplus_Toggle;
			break;
		case DOC_ChipID_DocMilPlus32:
			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
		default:
			ret = -ENODEV;
			goto notfound;
		}
		break;

	default:
		ret = -ENODEV;
		goto notfound;
	}
	/* Check the TOGGLE bit in the ECC register */
	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
	if ((tmp == tmpb) || (tmp != tmpc)) {
		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
		ret = -ENODEV;
		goto notfound;
	}

	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
		unsigned char oldval;
		unsigned char newval;
		nand = mtd->priv;
		doc = nand->priv;
		/* Use the alias resolution register to determine if this is
		   in fact the same DOC aliased to a new address.  If writes
		   to one chip's alias resolution register change the value on
		   the other chip, they're the same chip. */
		if (ChipID == DOC_ChipID_DocMilPlus16) {
			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
			newval = ReadDOC(virtadr, Mplus_AliasResolution);
		} else {
			oldval = ReadDOC(doc->virtadr, AliasResolution);
			newval = ReadDOC(virtadr, AliasResolution);
		}
		if (oldval != newval)
			continue;
		if (ChipID == DOC_ChipID_DocMilPlus16) {
			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
		} else {
			WriteDOC(~newval, virtadr, AliasResolution);
			oldval = ReadDOC(doc->virtadr, AliasResolution);
			WriteDOC(newval, virtadr, AliasResolution);	// restore it
		}
		newval = ~newval;
		if (oldval == newval) {
			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
			goto notfound;
		}
	}

	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);

	len = sizeof(struct mtd_info) +
	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
	mtd = kzalloc(len, GFP_KERNEL);
	if (!mtd) {
		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
		ret = -ENOMEM;
		goto fail;
	}

	nand			= (struct nand_chip *) (mtd + 1);
	doc			= (struct doc_priv *) (nand + 1);
	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
	nand->bbt_md		= nand->bbt_td + 1;

	mtd->priv		= nand;
	mtd->owner		= THIS_MODULE;

	nand->priv		= doc;
	nand->select_chip	= doc200x_select_chip;
	nand->cmd_ctrl		= doc200x_hwcontrol;
	nand->dev_ready		= doc200x_dev_ready;
	nand->waitfunc		= doc200x_wait;
	nand->block_bad		= doc200x_block_bad;
	nand->ecc.hwctl		= doc200x_enable_hwecc;
	nand->ecc.calculate	= doc200x_calculate_ecc;
	nand->ecc.correct	= doc200x_correct_data;

	nand->ecc.layout	= &doc200x_oobinfo;
	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
	nand->ecc.size		= 512;
	nand->ecc.bytes		= 6;
	nand->options		= NAND_USE_FLASH_BBT;

	doc->physadr		= physadr;
	doc->virtadr		= virtadr;
	doc->ChipID		= ChipID;
	doc->curfloor		= -1;
	doc->curchip		= -1;
	doc->mh0_page		= -1;
	doc->mh1_page		= -1;
	doc->nextdoc		= doclist;

	if (ChipID == DOC_ChipID_Doc2k)
		numchips = doc2000_init(mtd);
	else if (ChipID == DOC_ChipID_DocMilPlus16)
		numchips = doc2001plus_init(mtd);
	else
		numchips = doc2001_init(mtd);

	if ((ret = nand_scan(mtd, numchips))) {
		/* DBB note: i believe nand_release is necessary here, as
		   buffers may have been allocated in nand_base.  Check with
		   Thomas. FIX ME! */
		/* nand_release will call mtd_device_unregister, but we
		   haven't yet added it.  This is handled without incident by
		   mtd_device_unregister, as far as I can tell. */
		nand_release(mtd);
		kfree(mtd);
		goto fail;
	}

	/* Success! */
	doclist = mtd;
	return 0;

 notfound:
	/* Put back the contents of the DOCControl register, in case it's not
	   actually a DiskOnChip.  */
	WriteDOC(save_control, virtadr, DOCControl);
 fail:
	iounmap(virtadr);
	return ret;
}

static void release_nanddoc(void)
{
	struct mtd_info *mtd, *nextmtd;
	struct nand_chip *nand;
	struct doc_priv *doc;

	for (mtd = doclist; mtd; mtd = nextmtd) {
		nand = mtd->priv;
		doc = nand->priv;

		nextmtd = doc->nextdoc;
		nand_release(mtd);
		iounmap(doc->virtadr);
		kfree(mtd);
	}
}

static int __init init_nanddoc(void)
{
	int i, ret = 0;

	/* We could create the decoder on demand, if memory is a concern.
	 * This way we have it handy, if an error happens
	 *
	 * Symbolsize is 10 (bits)
	 * Primitve polynomial is x^10+x^3+1
	 * first consecutive root is 510
	 * primitve element to generate roots = 1
	 * generator polinomial degree = 4
	 */
	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
	if (!rs_decoder) {
		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
		return -ENOMEM;
	}

	if (doc_config_location) {
		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
		ret = doc_probe(doc_config_location);
		if (ret < 0)
			goto outerr;
	} else {
		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
			doc_probe(doc_locations[i]);
		}
	}
	/* No banner message any more. Print a message if no DiskOnChip
	   found, so the user knows we at least tried. */
	if (!doclist) {
		printk(KERN_INFO "No valid DiskOnChip devices found\n");
		ret = -ENODEV;
		goto outerr;
	}
	return 0;
 outerr:
	free_rs(rs_decoder);
	return ret;
}

static void __exit cleanup_nanddoc(void)
{
	/* Cleanup the nand/DoC resources */
	release_nanddoc();

	/* Free the reed solomon resources */
	if (rs_decoder) {
		free_rs(rs_decoder);
	}
}

module_init(init_nanddoc);
module_exit(cleanup_nanddoc);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");