summaryrefslogtreecommitdiff
path: root/drivers/misc/habanalabs/common/habanalabs.h
blob: 893ebcba170b46b8136982043e1f192fc09f6ce5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
/* SPDX-License-Identifier: GPL-2.0
 *
 * Copyright 2016-2022 HabanaLabs, Ltd.
 * All Rights Reserved.
 *
 */

#ifndef HABANALABSP_H_
#define HABANALABSP_H_

#include "../include/common/cpucp_if.h"
#include "../include/common/qman_if.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <uapi/misc/habanalabs.h>

#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>
#include <linux/debugfs.h>
#include <linux/rwsem.h>
#include <linux/eventfd.h>
#include <linux/bitfield.h>
#include <linux/genalloc.h>
#include <linux/sched/signal.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/coresight.h>
#include <linux/dma-buf.h>

#define HL_NAME				"habanalabs"

struct hl_device;
struct hl_fpriv;

/* Use upper bits of mmap offset to store habana driver specific information.
 * bits[63:59] - Encode mmap type
 * bits[45:0]  - mmap offset value
 *
 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
 *  defines are w.r.t to PAGE_SIZE
 */
#define HL_MMAP_TYPE_SHIFT		(59 - PAGE_SHIFT)
#define HL_MMAP_TYPE_MASK		(0x1full << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_TS_BUFF		(0x10ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)

#define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)

#define HL_PENDING_RESET_PER_SEC		10
#define HL_PENDING_RESET_MAX_TRIALS		60 /* 10 minutes */
#define HL_PENDING_RESET_LONG_SEC		60
/*
 * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
 * This is needed to prevent situation of clearing resources while user processes are still alive.
 */
#define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI	600

#define HL_HARD_RESET_MAX_TIMEOUT	120
#define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)

#define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */

#define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */

#define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */

#define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
#define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
#define HL_CPUCP_MON_DUMP_TIMEOUT_USEC	10000000 /* 10s */
#define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */

#define HL_FW_STATUS_POLL_INTERVAL_USEC		10000 /* 10ms */
#define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC	1000000 /* 1s */

#define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */

#define HL_SIM_MAX_TIMEOUT_US		100000000 /* 100s */

#define HL_INVALID_QUEUE		UINT_MAX

#define HL_COMMON_USER_CQ_INTERRUPT_ID	0xFFF
#define HL_COMMON_DEC_INTERRUPT_ID	0xFFE

#define HL_STATE_DUMP_HIST_LEN		5

/* Default value for device reset trigger , an invalid value */
#define HL_RESET_TRIGGER_DEFAULT	0xFF

#define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
#define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */

/* Memory */
#define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */

/* MMU */
#define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */

/**
 * enum hl_mmu_page_table_location - mmu page table location
 * @MMU_DR_PGT: page-table is located on device DRAM.
 * @MMU_HR_PGT: page-table is located on host memory.
 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
 */
enum hl_mmu_page_table_location {
	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
	MMU_HR_PGT,		/* host resident MMU PGT */
	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
};

/**
 * enum hl_mmu_enablement - what mmu modules to enable
 * @MMU_EN_NONE: mmu disabled.
 * @MMU_EN_ALL: enable all.
 * @MMU_EN_PMMU_ONLY: Enable only the PMMU leaving the DMMU disabled.
 */
enum hl_mmu_enablement {
	MMU_EN_NONE = 0,
	MMU_EN_ALL = 1,
	MMU_EN_PMMU_ONLY = 3,	/* N/A for Goya/Gaudi */
};

/*
 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
 */
#define HL_RSVD_SOBS			2
#define HL_RSVD_MONS			1

/*
 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
 */
#define HL_COLLECTIVE_RSVD_MSTR_MONS	2

#define HL_MAX_SOB_VAL			(1 << 15)

#define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
#define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))

#define HL_PCI_NUM_BARS			6

/* Completion queue entry relates to completed job */
#define HL_COMPLETION_MODE_JOB		0
/* Completion queue entry relates to completed command submission */
#define HL_COMPLETION_MODE_CS		1

#define HL_MAX_DCORES			8

/* DMA alloc/free wrappers */
#define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
	hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)

#define hl_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle) \
	hl_cpu_accessible_dma_pool_alloc_caller(hdev, size, dma_handle, __func__)

#define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
	hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)

#define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
	hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)

#define hl_cpu_accessible_dma_pool_free(hdev, size, vaddr) \
	hl_cpu_accessible_dma_pool_free_caller(hdev, size, vaddr, __func__)

#define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
	hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)

/*
 * Reset Flags
 *
 * - HL_DRV_RESET_HARD
 *       If set do hard reset to all engines. If not set reset just
 *       compute/DMA engines.
 *
 * - HL_DRV_RESET_FROM_RESET_THR
 *       Set if the caller is the hard-reset thread
 *
 * - HL_DRV_RESET_HEARTBEAT
 *       Set if reset is due to heartbeat
 *
 * - HL_DRV_RESET_TDR
 *       Set if reset is due to TDR
 *
 * - HL_DRV_RESET_DEV_RELEASE
 *       Set if reset is due to device release
 *
 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
 *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
 *       only when running with secured f/w
 *
 * - HL_DRV_RESET_FW_FATAL_ERR
 *       Set if reset is due to a fatal error from FW
 *
 * - HL_DRV_RESET_DELAY
 *       Set if a delay should be added before the reset
 *
 * - HL_DRV_RESET_FROM_WD_THR
 *       Set if the caller is the device release watchdog thread
 */

#define HL_DRV_RESET_HARD		(1 << 0)
#define HL_DRV_RESET_FROM_RESET_THR	(1 << 1)
#define HL_DRV_RESET_HEARTBEAT		(1 << 2)
#define HL_DRV_RESET_TDR		(1 << 3)
#define HL_DRV_RESET_DEV_RELEASE	(1 << 4)
#define HL_DRV_RESET_BYPASS_REQ_TO_FW	(1 << 5)
#define HL_DRV_RESET_FW_FATAL_ERR	(1 << 6)
#define HL_DRV_RESET_DELAY		(1 << 7)
#define HL_DRV_RESET_FROM_WD_THR	(1 << 8)

/*
 * Security
 */

#define HL_PB_SHARED		1
#define HL_PB_NA		0
#define HL_PB_SINGLE_INSTANCE	1
#define HL_BLOCK_SIZE		0x1000
#define HL_BLOCK_GLBL_ERR_MASK	0xF40
#define HL_BLOCK_GLBL_ERR_ADDR	0xF44
#define HL_BLOCK_GLBL_ERR_CAUSE	0xF48
#define HL_BLOCK_GLBL_SEC_OFFS	0xF80
#define HL_BLOCK_GLBL_SEC_SIZE	(HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
#define HL_BLOCK_GLBL_SEC_LEN	(HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
#define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))

enum hl_protection_levels {
	SECURED_LVL,
	PRIVILEGED_LVL,
	NON_SECURED_LVL
};

/**
 * struct iterate_module_ctx - HW module iterator
 * @fn: function to apply to each HW module instance
 * @data: optional internal data to the function iterator
 * @rc: return code for optional use of iterator/iterator-caller
 */
struct iterate_module_ctx {
	/*
	 * callback for the HW module iterator
	 * @hdev: pointer to the habanalabs device structure
	 * @block: block (ASIC specific definition can be dcore/hdcore)
	 * @inst: HW module instance within the block
	 * @offset: current HW module instance offset from the 1-st HW module instance
	 *          in the 1-st block
	 * @ctx: the iterator context.
	 */
	void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
			struct iterate_module_ctx *ctx);
	void *data;
	int rc;
};

struct hl_block_glbl_sec {
	u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
};

#define HL_MAX_SOBS_PER_MONITOR	8

/**
 * struct hl_gen_wait_properties - properties for generating a wait CB
 * @data: command buffer
 * @q_idx: queue id is used to extract fence register address
 * @size: offset in command buffer
 * @sob_base: SOB base to use in this wait CB
 * @sob_val: SOB value to wait for
 * @mon_id: monitor to use in this wait CB
 * @sob_mask: each bit represents a SOB offset from sob_base to be used
 */
struct hl_gen_wait_properties {
	void	*data;
	u32	q_idx;
	u32	size;
	u16	sob_base;
	u16	sob_val;
	u16	mon_id;
	u8	sob_mask;
};

/**
 * struct pgt_info - MMU hop page info.
 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
 *        actual pgts for host resident MMU).
 * @phys_addr: physical address of the pgt.
 * @virt_addr: host virtual address of the pgt (see above device/host resident).
 * @shadow_addr: shadow hop in the host for device resident MMU.
 * @ctx: pointer to the owner ctx.
 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
 *               allocated HOPs (all HOPs but HOP0)
 *
 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
 * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
 *
 * When a new level (hop) is needed during mapping this structure will be used to describe
 * the newly allocated hop as well as to track number of PTEs in it.
 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
 * freed with its pgt_info structure.
 */
struct pgt_info {
	struct hlist_node	node;
	u64			phys_addr;
	u64			virt_addr;
	u64			shadow_addr;
	struct hl_ctx		*ctx;
	int			num_of_ptes;
};

/**
 * enum hl_pci_match_mode - pci match mode per region
 * @PCI_ADDRESS_MATCH_MODE: address match mode
 * @PCI_BAR_MATCH_MODE: bar match mode
 */
enum hl_pci_match_mode {
	PCI_ADDRESS_MATCH_MODE,
	PCI_BAR_MATCH_MODE
};

/**
 * enum hl_fw_component - F/W components to read version through registers.
 * @FW_COMP_BOOT_FIT: boot fit.
 * @FW_COMP_PREBOOT: preboot.
 * @FW_COMP_LINUX: linux.
 */
enum hl_fw_component {
	FW_COMP_BOOT_FIT,
	FW_COMP_PREBOOT,
	FW_COMP_LINUX,
};

/**
 * enum hl_fw_types - F/W types present in the system
 * @FW_TYPE_NONE: no FW component indication
 * @FW_TYPE_LINUX: Linux image for device CPU
 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
 *                       (preboot, ppboot etc...)
 * @FW_TYPE_ALL_TYPES: Mask for all types
 */
enum hl_fw_types {
	FW_TYPE_NONE = 0x0,
	FW_TYPE_LINUX = 0x1,
	FW_TYPE_BOOT_CPU = 0x2,
	FW_TYPE_PREBOOT_CPU = 0x4,
	FW_TYPE_ALL_TYPES =
		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
};

/**
 * enum hl_queue_type - Supported QUEUE types.
 * @QUEUE_TYPE_NA: queue is not available.
 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
 *                  host.
 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
 *			memories and/or operates the compute engines.
 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
 *                 notifications are sent by H/W.
 */
enum hl_queue_type {
	QUEUE_TYPE_NA,
	QUEUE_TYPE_EXT,
	QUEUE_TYPE_INT,
	QUEUE_TYPE_CPU,
	QUEUE_TYPE_HW
};

enum hl_cs_type {
	CS_TYPE_DEFAULT,
	CS_TYPE_SIGNAL,
	CS_TYPE_WAIT,
	CS_TYPE_COLLECTIVE_WAIT,
	CS_RESERVE_SIGNALS,
	CS_UNRESERVE_SIGNALS,
	CS_TYPE_ENGINE_CORE
};

/*
 * struct hl_inbound_pci_region - inbound region descriptor
 * @mode: pci match mode for this region
 * @addr: region target address
 * @size: region size in bytes
 * @offset_in_bar: offset within bar (address match mode)
 * @bar: bar id
 */
struct hl_inbound_pci_region {
	enum hl_pci_match_mode	mode;
	u64			addr;
	u64			size;
	u64			offset_in_bar;
	u8			bar;
};

/*
 * struct hl_outbound_pci_region - outbound region descriptor
 * @addr: region target address
 * @size: region size in bytes
 */
struct hl_outbound_pci_region {
	u64	addr;
	u64	size;
};

/*
 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
 * allocated by Kernel or by User
 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
 * @CB_ALLOC_USER: support only CBs that allocated by User
 */
enum queue_cb_alloc_flags {
	CB_ALLOC_KERNEL = 0x1,
	CB_ALLOC_USER   = 0x2
};

/*
 * struct hl_hw_sob - H/W SOB info.
 * @hdev: habanalabs device structure.
 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
 * @sob_id: id of this SOB.
 * @sob_addr: the sob offset from the base address.
 * @q_idx: the H/W queue that uses this SOB.
 * @need_reset: reset indication set when switching to the other sob.
 */
struct hl_hw_sob {
	struct hl_device	*hdev;
	struct kref		kref;
	u32			sob_id;
	u32			sob_addr;
	u32			q_idx;
	bool			need_reset;
};

enum hl_collective_mode {
	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
	HL_COLLECTIVE_MASTER = 0x1,
	HL_COLLECTIVE_SLAVE = 0x2
};

/**
 * struct hw_queue_properties - queue information.
 * @type: queue type.
 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
 *                  that allocated by the Kernel driver and therefore,
 *                  a CB handle can be provided for jobs on this queue.
 *                  Otherwise, a CB address must be provided.
 * @collective_mode: collective mode of current queue
 * @driver_only: true if only the driver is allowed to send a job to this queue,
 *               false otherwise.
 * @binned: True if the queue is binned out and should not be used
 * @supports_sync_stream: True if queue supports sync stream
 */
struct hw_queue_properties {
	enum hl_queue_type		type;
	enum queue_cb_alloc_flags	cb_alloc_flags;
	enum hl_collective_mode		collective_mode;
	u8				driver_only;
	u8				binned;
	u8				supports_sync_stream;
};

/**
 * enum vm_type - virtual memory mapping request information.
 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
 */
enum vm_type {
	VM_TYPE_USERPTR = 0x1,
	VM_TYPE_PHYS_PACK = 0x2
};

/**
 * enum mmu_op_flags - mmu operation relevant information.
 * @MMU_OP_USERPTR: operation on user memory (host resident).
 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
 */
enum mmu_op_flags {
	MMU_OP_USERPTR = 0x1,
	MMU_OP_PHYS_PACK = 0x2,
	MMU_OP_CLEAR_MEMCACHE = 0x4,
	MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
};


/**
 * enum hl_device_hw_state - H/W device state. use this to understand whether
 *                           to do reset before hw_init or not
 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
 *                            hw_init
 */
enum hl_device_hw_state {
	HL_DEVICE_HW_STATE_CLEAN = 0,
	HL_DEVICE_HW_STATE_DIRTY
};

#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0

/**
 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
 * @start_addr: virtual start address of the memory region.
 * @end_addr: virtual end address of the memory region.
 * @hop_shifts: array holds HOPs shifts.
 * @hop_masks: array holds HOPs masks.
 * @last_mask: mask to get the bit indicating this is the last hop.
 * @pgt_size: size for page tables.
 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
 *                        supporting multiple page size).
 * @page_size: default page size used to allocate memory.
 * @num_hops: The amount of hops supported by the translation table.
 * @hop_table_size: HOP table size.
 * @hop0_tables_total_size: total size for all HOP0 tables.
 * @host_resident: Should the MMU page table reside in host memory or in the
 *                 device DRAM.
 */
struct hl_mmu_properties {
	u64	start_addr;
	u64	end_addr;
	u64	hop_shifts[MMU_HOP_MAX];
	u64	hop_masks[MMU_HOP_MAX];
	u64	last_mask;
	u64	pgt_size;
	u64	supported_pages_mask;
	u32	page_size;
	u32	num_hops;
	u32	hop_table_size;
	u32	hop0_tables_total_size;
	u8	host_resident;
};

/**
 * struct hl_hints_range - hint addresses reserved va range.
 * @start_addr: start address of the va range.
 * @end_addr: end address of the va range.
 */
struct hl_hints_range {
	u64 start_addr;
	u64 end_addr;
};

/**
 * struct asic_fixed_properties - ASIC specific immutable properties.
 * @hw_queues_props: H/W queues properties.
 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
 *		available sensors.
 * @uboot_ver: F/W U-boot version.
 * @preboot_ver: F/W Preboot version.
 * @dmmu: DRAM MMU address translation properties.
 * @pmmu: PCI (host) MMU address translation properties.
 * @pmmu_huge: PCI (host) MMU address translation properties for memory
 *              allocated with huge pages.
 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
 * @hints_host_reserved_va_range: host hint addresses reserved range.
 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
 *                                      range.
 * @sram_base_address: SRAM physical start address.
 * @sram_end_address: SRAM physical end address.
 * @sram_user_base_address - SRAM physical start address for user access.
 * @dram_base_address: DRAM physical start address.
 * @dram_end_address: DRAM physical end address.
 * @dram_user_base_address: DRAM physical start address for user access.
 * @dram_size: DRAM total size.
 * @dram_pci_bar_size: size of PCI bar towards DRAM.
 * @max_power_default: max power of the device after reset.
 * @dc_power_default: power consumed by the device in mode idle.
 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
 *                                      fault.
 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
 * @mmu_dram_default_page_addr: DRAM default page physical address.
 * @tpc_enabled_mask: which TPCs are enabled.
 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
 * @dram_enabled_mask: which DRAMs are enabled.
 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
 *                  for hints validity check.
 * @cfg_base_address: config space base address.
 * @mmu_cache_mng_addr: address of the MMU cache.
 * @mmu_cache_mng_size: size of the MMU cache.
 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
 *                                     to enable the device to access them.
 * @host_base_address: host physical start address for host DMA from device
 * @host_end_address: host physical end address for host DMA from device
 * @max_freq_value: current max clk frequency.
 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
 *                 we display to the user
 * @mmu_pgt_size: MMU page tables total size.
 * @mmu_pte_size: PTE size in MMU page tables.
 * @mmu_hop_table_size: MMU hop table size.
 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
 * @dram_page_size: page size for MMU DRAM allocation.
 * @cfg_size: configuration space size on SRAM.
 * @sram_size: total size of SRAM.
 * @max_asid: maximum number of open contexts (ASIDs).
 * @num_of_events: number of possible internal H/W IRQs.
 * @psoc_pci_pll_nr: PCI PLL NR value.
 * @psoc_pci_pll_nf: PCI PLL NF value.
 * @psoc_pci_pll_od: PCI PLL OD value.
 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
 * @high_pll: high PLL frequency used by the device.
 * @cb_pool_cb_cnt: number of CBs in the CB pool.
 * @cb_pool_cb_size: size of each CB in the CB pool.
 * @decoder_enabled_mask: which decoders are enabled.
 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1
 *                        means binned (at most one binned decoder per dcore).
 * @edma_enabled_mask: which EDMAs are enabled.
 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
 *                     binned (at most one binned DMA).
 * @max_pending_cs: maximum of concurrent pending command submissions
 * @max_queues: maximum amount of queues in the system
 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
 *                                capabilities reported by FW, bit description
 *                                can be found in CPU_BOOT_DEV_STS0
 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
 *                                capabilities reported by FW, bit description
 *                                can be found in CPU_BOOT_DEV_STS1
 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
 *                                status reported by FW, bit description can be
 *                                found in CPU_BOOT_DEV_STS0
 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
 *                                status reported by FW, bit description can be
 *                                found in CPU_BOOT_DEV_STS1
 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
 *                            status reported by FW, bit description can be
 *                            found in CPU_BOOT_DEV_STS0
 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
 *                            status reported by FW, bit description can be
 *                            found in CPU_BOOT_DEV_STS1
 * @max_dec: maximum number of decoders
 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
 *                         1- enabled, 0- isolated.
 * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
 *                         1- faulty cluster, 0- good cluster.
 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
 *                          1- enabled, 0- isolated.
 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
 *                                      which the property supports_user_set_page_size is true
 *                                      (i.e. the DRAM supports multiple page sizes), otherwise
 *                                      it will shall  be equal to dram_page_size.
 * @num_engine_cores: number of engine cpu cores
 * @collective_first_sob: first sync object available for collective use
 * @collective_first_mon: first monitor available for collective use
 * @sync_stream_first_sob: first sync object available for sync stream use
 * @sync_stream_first_mon: first monitor available for sync stream use
 * @first_available_user_sob: first sob available for the user
 * @first_available_user_mon: first monitor available for the user
 * @first_available_user_interrupt: first available interrupt reserved for the user
 * @first_available_cq: first available CQ for the user.
 * @user_interrupt_count: number of user interrupts.
 * @user_dec_intr_count: number of decoder interrupts exposed to user.
 * @cache_line_size: device cache line size.
 * @server_type: Server type that the ASIC is currently installed in.
 *               The value is according to enum hl_server_type in uapi file.
 * @completion_queues_count: number of completion queues.
 * @completion_mode: 0 - job based completion, 1 - cs based completion
 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
 *                         in Master/Slave mode
 * @fw_security_enabled: true if security measures are enabled in firmware,
 *                       false otherwise
 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
 *                              BOOT_DEV_STS0
 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
 *                              BOOT_DEV_STS1
 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
 * @num_functional_hbms: number of functional HBMs in each DCORE.
 * @hints_range_reservation: device support hint addresses range reservation.
 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
 * @dynamic_fw_load: is dynamic FW load is supported.
 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
 *                         false otherwise.
 * @use_get_power_for_reset_history: To support backward compatibility for Goya
 *                                   and Gaudi
 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
 *                              initiated by user or TDR. This is only true
 *                              in inference ASICs, as there is no real-world
 *                              use-case of doing soft-reset in training (due
 *                              to the fact that training runs on multiple
 *                              devices)
 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
 * @supports_user_set_page_size: true if user can set the allocation page size.
 * @dma_mask: the dma mask to be set for this device
 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
 */
struct asic_fixed_properties {
	struct hw_queue_properties	*hw_queues_props;
	struct cpucp_info		cpucp_info;
	char				uboot_ver[VERSION_MAX_LEN];
	char				preboot_ver[VERSION_MAX_LEN];
	struct hl_mmu_properties	dmmu;
	struct hl_mmu_properties	pmmu;
	struct hl_mmu_properties	pmmu_huge;
	struct hl_hints_range		hints_dram_reserved_va_range;
	struct hl_hints_range		hints_host_reserved_va_range;
	struct hl_hints_range		hints_host_hpage_reserved_va_range;
	u64				sram_base_address;
	u64				sram_end_address;
	u64				sram_user_base_address;
	u64				dram_base_address;
	u64				dram_end_address;
	u64				dram_user_base_address;
	u64				dram_size;
	u64				dram_pci_bar_size;
	u64				max_power_default;
	u64				dc_power_default;
	u64				dram_size_for_default_page_mapping;
	u64				pcie_dbi_base_address;
	u64				pcie_aux_dbi_reg_addr;
	u64				mmu_pgt_addr;
	u64				mmu_dram_default_page_addr;
	u64				tpc_enabled_mask;
	u64				tpc_binning_mask;
	u64				dram_enabled_mask;
	u64				dram_binning_mask;
	u64				dram_hints_align_mask;
	u64				cfg_base_address;
	u64				mmu_cache_mng_addr;
	u64				mmu_cache_mng_size;
	u64				device_dma_offset_for_host_access;
	u64				host_base_address;
	u64				host_end_address;
	u64				max_freq_value;
	u32				clk_pll_index;
	u32				mmu_pgt_size;
	u32				mmu_pte_size;
	u32				mmu_hop_table_size;
	u32				mmu_hop0_tables_total_size;
	u32				dram_page_size;
	u32				cfg_size;
	u32				sram_size;
	u32				max_asid;
	u32				num_of_events;
	u32				psoc_pci_pll_nr;
	u32				psoc_pci_pll_nf;
	u32				psoc_pci_pll_od;
	u32				psoc_pci_pll_div_factor;
	u32				psoc_timestamp_frequency;
	u32				high_pll;
	u32				cb_pool_cb_cnt;
	u32				cb_pool_cb_size;
	u32				decoder_enabled_mask;
	u32				decoder_binning_mask;
	u32				edma_enabled_mask;
	u32				edma_binning_mask;
	u32				max_pending_cs;
	u32				max_queues;
	u32				fw_preboot_cpu_boot_dev_sts0;
	u32				fw_preboot_cpu_boot_dev_sts1;
	u32				fw_bootfit_cpu_boot_dev_sts0;
	u32				fw_bootfit_cpu_boot_dev_sts1;
	u32				fw_app_cpu_boot_dev_sts0;
	u32				fw_app_cpu_boot_dev_sts1;
	u32				max_dec;
	u32				hmmu_hif_enabled_mask;
	u32				faulty_dram_cluster_map;
	u32				xbar_edge_enabled_mask;
	u32				device_mem_alloc_default_page_size;
	u32				num_engine_cores;
	u16				collective_first_sob;
	u16				collective_first_mon;
	u16				sync_stream_first_sob;
	u16				sync_stream_first_mon;
	u16				first_available_user_sob[HL_MAX_DCORES];
	u16				first_available_user_mon[HL_MAX_DCORES];
	u16				first_available_user_interrupt;
	u16				first_available_cq[HL_MAX_DCORES];
	u16				user_interrupt_count;
	u16				user_dec_intr_count;
	u16				cache_line_size;
	u16				server_type;
	u8				completion_queues_count;
	u8				completion_mode;
	u8				mme_master_slave_mode;
	u8				fw_security_enabled;
	u8				fw_cpu_boot_dev_sts0_valid;
	u8				fw_cpu_boot_dev_sts1_valid;
	u8				dram_supports_virtual_memory;
	u8				hard_reset_done_by_fw;
	u8				num_functional_hbms;
	u8				hints_range_reservation;
	u8				iatu_done_by_fw;
	u8				dynamic_fw_load;
	u8				gic_interrupts_enable;
	u8				use_get_power_for_reset_history;
	u8				supports_compute_reset;
	u8				allow_inference_soft_reset;
	u8				configurable_stop_on_err;
	u8				set_max_power_on_device_init;
	u8				supports_user_set_page_size;
	u8				dma_mask;
	u8				supports_advanced_cpucp_rc;
};

/**
 * struct hl_fence - software synchronization primitive
 * @completion: fence is implemented using completion
 * @refcount: refcount for this fence
 * @cs_sequence: sequence of the corresponding command submission
 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
 *                         masters QIDs that multi cs is waiting on
 * @error: mark this fence with error
 * @timestamp: timestamp upon completion
 * @mcs_handling_done: indicates that corresponding command submission has
 *                     finished msc handling, this does not mean it was part
 *                     of the mcs
 */
struct hl_fence {
	struct completion	completion;
	struct kref		refcount;
	u64			cs_sequence;
	u32			stream_master_qid_map;
	int			error;
	ktime_t			timestamp;
	u8			mcs_handling_done;
};

/**
 * struct hl_cs_compl - command submission completion object.
 * @base_fence: hl fence object.
 * @lock: spinlock to protect fence.
 * @hdev: habanalabs device structure.
 * @hw_sob: the H/W SOB used in this signal/wait CS.
 * @encaps_sig_hdl: encaps signals handler.
 * @cs_seq: command submission sequence number.
 * @type: type of the CS - signal/wait.
 * @sob_val: the SOB value that is used in this signal/wait CS.
 * @sob_group: the SOB group that is used in this collective wait CS.
 * @encaps_signals: indication whether it's a completion object of cs with
 * encaps signals or not.
 */
struct hl_cs_compl {
	struct hl_fence		base_fence;
	spinlock_t		lock;
	struct hl_device	*hdev;
	struct hl_hw_sob	*hw_sob;
	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
	u64			cs_seq;
	enum hl_cs_type		type;
	u16			sob_val;
	u16			sob_group;
	bool			encaps_signals;
};

/*
 * Command Buffers
 */

/**
 * struct hl_ts_buff - describes a timestamp buffer.
 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
 * @user_buff_address: Holds the user buffer's kernel virtual address.
 * @kernel_buff_size: Holds the internal kernel buffer size.
 */
struct hl_ts_buff {
	void			*kernel_buff_address;
	void			*user_buff_address;
	u32			kernel_buff_size;
};

struct hl_mmap_mem_buf;

/**
 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
 * @dev: back pointer to the owning device
 * @lock: protects handles
 * @handles: an idr holding all active handles to the memory buffers in the system.
 * @is_kernel_mem_mgr: indicate whether the memory manager is the per-device kernel memory manager
 */
struct hl_mem_mgr {
	struct device *dev;
	spinlock_t lock;
	struct idr handles;
	u8 is_kernel_mem_mgr;
};

/**
 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
 * @topic: string identifier used for logging
 * @mem_id: memory type identifier, embedded in the handle and used to identify
 *          the memory type by handle.
 * @alloc: callback executed on buffer allocation, shall allocate the memory,
 *         set it under buffer private, and set mappable size.
 * @mmap: callback executed on mmap, must map the buffer to vma
 * @release: callback executed on release, must free the resources used by the buffer
 */
struct hl_mmap_mem_buf_behavior {
	const char *topic;
	u64 mem_id;

	int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
	int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
	void (*release)(struct hl_mmap_mem_buf *buf);
};

/**
 * struct hl_mmap_mem_buf - describes a single unified memory buffer
 * @behavior: buffer behavior
 * @mmg: back pointer to the unified memory manager
 * @refcount: reference counter for buffer users
 * @private: pointer to buffer behavior private data
 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
 *                   may change at runtime.
 * @mappable_size: the original mappable size of the buffer, does not change after
 *                 the allocation.
 * @handle: the buffer id in mmg handles store
 */
struct hl_mmap_mem_buf {
	struct hl_mmap_mem_buf_behavior *behavior;
	struct hl_mem_mgr *mmg;
	struct kref refcount;
	void *private;
	atomic_t mmap;
	u64 real_mapped_size;
	u64 mappable_size;
	u64 handle;
};

/**
 * struct hl_cb - describes a Command Buffer.
 * @hdev: pointer to device this CB belongs to.
 * @ctx: pointer to the CB owner's context.
 * @buf: back pointer to the parent mappable memory buffer
 * @debugfs_list: node in debugfs list of command buffers.
 * @pool_list: node in pool list of command buffers.
 * @kernel_address: Holds the CB's kernel virtual address.
 * @virtual_addr: Holds the CB's virtual address.
 * @bus_address: Holds the CB's DMA address.
 * @size: holds the CB's size.
 * @roundup_size: holds the cb size after roundup to page size.
 * @cs_cnt: holds number of CS that this CB participates in.
 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
 * @is_pool: true if CB was acquired from the pool, false otherwise.
 * @is_internal: internally allocated
 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
 */
struct hl_cb {
	struct hl_device	*hdev;
	struct hl_ctx		*ctx;
	struct hl_mmap_mem_buf	*buf;
	struct list_head	debugfs_list;
	struct list_head	pool_list;
	void			*kernel_address;
	u64			virtual_addr;
	dma_addr_t		bus_address;
	u32			size;
	u32			roundup_size;
	atomic_t		cs_cnt;
	atomic_t		is_handle_destroyed;
	u8			is_pool;
	u8			is_internal;
	u8			is_mmu_mapped;
};


/*
 * QUEUES
 */

struct hl_cs_job;

/* Queue length of external and HW queues */
#define HL_QUEUE_LENGTH			4096
#define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)

#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
#endif

/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
#define HL_CQ_LENGTH			HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)

/* Must be power of 2 */
#define HL_EQ_LENGTH			64
#define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)

/* Host <-> CPU-CP shared memory size */
#define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M

/**
 * struct hl_sync_stream_properties -
 *     describes a H/W queue sync stream properties
 * @hw_sob: array of the used H/W SOBs by this H/W queue.
 * @next_sob_val: the next value to use for the currently used SOB.
 * @base_sob_id: the base SOB id of the SOBs used by this queue.
 * @base_mon_id: the base MON id of the MONs used by this queue.
 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
 *                          in order to sync with all slave queues.
 * @collective_slave_mon_id: the MON id used by this slave queue in order to
 *                           sync with its master queue.
 * @collective_sob_id: current SOB id used by this collective slave queue
 *                     to signal its collective master queue upon completion.
 * @curr_sob_offset: the id offset to the currently used SOB from the
 *                   HL_RSVD_SOBS that are being used by this queue.
 */
struct hl_sync_stream_properties {
	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
	u16		next_sob_val;
	u16		base_sob_id;
	u16		base_mon_id;
	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
	u16		collective_slave_mon_id;
	u16		collective_sob_id;
	u8		curr_sob_offset;
};

/**
 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
 * handlers manager
 * @lock: protects handles.
 * @handles: an idr to hold all encapsulated signals handles.
 */
struct hl_encaps_signals_mgr {
	spinlock_t		lock;
	struct idr		handles;
};

/**
 * struct hl_hw_queue - describes a H/W transport queue.
 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
 * @sync_stream_prop: sync stream queue properties
 * @queue_type: type of queue.
 * @collective_mode: collective mode of current queue
 * @kernel_address: holds the queue's kernel virtual address.
 * @bus_address: holds the queue's DMA address.
 * @pi: holds the queue's pi value.
 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
 * @hw_queue_id: the id of the H/W queue.
 * @cq_id: the id for the corresponding CQ for this H/W queue.
 * @msi_vec: the IRQ number of the H/W queue.
 * @int_queue_len: length of internal queue (number of entries).
 * @valid: is the queue valid (we have array of 32 queues, not all of them
 *         exist).
 * @supports_sync_stream: True if queue supports sync stream
 */
struct hl_hw_queue {
	struct hl_cs_job			**shadow_queue;
	struct hl_sync_stream_properties	sync_stream_prop;
	enum hl_queue_type			queue_type;
	enum hl_collective_mode			collective_mode;
	void					*kernel_address;
	dma_addr_t				bus_address;
	u32					pi;
	atomic_t				ci;
	u32					hw_queue_id;
	u32					cq_id;
	u32					msi_vec;
	u16					int_queue_len;
	u8					valid;
	u8					supports_sync_stream;
};

/**
 * struct hl_cq - describes a completion queue
 * @hdev: pointer to the device structure
 * @kernel_address: holds the queue's kernel virtual address
 * @bus_address: holds the queue's DMA address
 * @cq_idx: completion queue index in array
 * @hw_queue_id: the id of the matching H/W queue
 * @ci: ci inside the queue
 * @pi: pi inside the queue
 * @free_slots_cnt: counter of free slots in queue
 */
struct hl_cq {
	struct hl_device	*hdev;
	void			*kernel_address;
	dma_addr_t		bus_address;
	u32			cq_idx;
	u32			hw_queue_id;
	u32			ci;
	u32			pi;
	atomic_t		free_slots_cnt;
};

/**
 * struct hl_user_interrupt - holds user interrupt information
 * @hdev: pointer to the device structure
 * @wait_list_head: head to the list of user threads pending on this interrupt
 * @wait_list_lock: protects wait_list_head
 * @interrupt_id: msix interrupt id
 * @is_decoder: whether this entry represents a decoder interrupt
 */
struct hl_user_interrupt {
	struct hl_device	*hdev;
	struct list_head	wait_list_head;
	spinlock_t		wait_list_lock;
	u32			interrupt_id;
	bool			is_decoder;
};

/**
 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
 * @free_objects_node: node in the list free_obj_jobs
 * @cq_cb: pointer to cq command buffer to be freed
 * @buf: pointer to timestamp buffer to be freed
 */
struct timestamp_reg_free_node {
	struct list_head	free_objects_node;
	struct hl_cb		*cq_cb;
	struct hl_mmap_mem_buf	*buf;
};

/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
 * the job will be to pass over the free_obj_jobs list and put refcount to objects
 * in each node of the list
 * @free_obj: workqueue object to free timestamp registration node objects
 * @hdev: pointer to the device structure
 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
 */
struct timestamp_reg_work_obj {
	struct work_struct	free_obj;
	struct hl_device	*hdev;
	struct list_head	*free_obj_head;
};

/* struct timestamp_reg_info - holds the timestamp registration related data.
 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
 *       relevant only when doing timestamps records registration.
 * @cq_cb: pointer to CQ counter CB.
 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
 *                         relevant only when doing timestamps records
 *                         registration.
 * @in_use: indicates if the node already in use. relevant only when doing
 *          timestamps records registration, since in this case the driver
 *          will have it's own buffer which serve as a records pool instead of
 *          allocating records dynamically.
 */
struct timestamp_reg_info {
	struct hl_mmap_mem_buf	*buf;
	struct hl_cb		*cq_cb;
	u64			*timestamp_kernel_addr;
	u8			in_use;
};

/**
 * struct hl_user_pending_interrupt - holds a context to a user thread
 *                                    pending on an interrupt
 * @ts_reg_info: holds the timestamps registration nodes info
 * @wait_list_node: node in the list of user threads pending on an interrupt
 * @fence: hl fence object for interrupt completion
 * @cq_target_value: CQ target value
 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
 *                  handler for target value comparison
 */
struct hl_user_pending_interrupt {
	struct timestamp_reg_info	ts_reg_info;
	struct list_head		wait_list_node;
	struct hl_fence			fence;
	u64				cq_target_value;
	u64				*cq_kernel_addr;
};

/**
 * struct hl_eq - describes the event queue (single one per device)
 * @hdev: pointer to the device structure
 * @kernel_address: holds the queue's kernel virtual address
 * @bus_address: holds the queue's DMA address
 * @ci: ci inside the queue
 * @prev_eqe_index: the index of the previous event queue entry. The index of
 *                  the current entry's index must be +1 of the previous one.
 * @check_eqe_index: do we need to check the index of the current entry vs. the
 *                   previous one. This is for backward compatibility with older
 *                   firmwares
 */
struct hl_eq {
	struct hl_device	*hdev;
	void			*kernel_address;
	dma_addr_t		bus_address;
	u32			ci;
	u32			prev_eqe_index;
	bool			check_eqe_index;
};

/**
 * struct hl_dec - describes a decoder sw instance.
 * @hdev: pointer to the device structure.
 * @completion_abnrm_work: workqueue object to run when decoder generates an error interrupt
 * @core_id: ID of the decoder.
 * @base_addr: base address of the decoder.
 */
struct hl_dec {
	struct hl_device		*hdev;
	struct work_struct		completion_abnrm_work;
	u32				core_id;
	u32				base_addr;
};

/**
 * enum hl_asic_type - supported ASIC types.
 * @ASIC_INVALID: Invalid ASIC type.
 * @ASIC_GOYA: Goya device (HL-1000).
 * @ASIC_GAUDI: Gaudi device (HL-2000).
 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
 * @ASIC_GAUDI2: Gaudi2 device.
 * @ASIC_GAUDI2B: Gaudi2B device.
 */
enum hl_asic_type {
	ASIC_INVALID,
	ASIC_GOYA,
	ASIC_GAUDI,
	ASIC_GAUDI_SEC,
	ASIC_GAUDI2,
	ASIC_GAUDI2B,
};

struct hl_cs_parser;

/**
 * enum hl_pm_mng_profile - power management profile.
 * @PM_AUTO: internal clock is set by the Linux driver.
 * @PM_MANUAL: internal clock is set by the user.
 * @PM_LAST: last power management type.
 */
enum hl_pm_mng_profile {
	PM_AUTO = 1,
	PM_MANUAL,
	PM_LAST
};

/**
 * enum hl_pll_frequency - PLL frequency.
 * @PLL_HIGH: high frequency.
 * @PLL_LOW: low frequency.
 * @PLL_LAST: last frequency values that were configured by the user.
 */
enum hl_pll_frequency {
	PLL_HIGH = 1,
	PLL_LOW,
	PLL_LAST
};

#define PLL_REF_CLK 50

enum div_select_defs {
	DIV_SEL_REF_CLK = 0,
	DIV_SEL_PLL_CLK = 1,
	DIV_SEL_DIVIDED_REF = 2,
	DIV_SEL_DIVIDED_PLL = 3,
};

enum debugfs_access_type {
	DEBUGFS_READ8,
	DEBUGFS_WRITE8,
	DEBUGFS_READ32,
	DEBUGFS_WRITE32,
	DEBUGFS_READ64,
	DEBUGFS_WRITE64,
};

enum pci_region {
	PCI_REGION_CFG,
	PCI_REGION_SRAM,
	PCI_REGION_DRAM,
	PCI_REGION_SP_SRAM,
	PCI_REGION_NUMBER,
};

/**
 * struct pci_mem_region - describe memory region in a PCI bar
 * @region_base: region base address
 * @region_size: region size
 * @bar_size: size of the BAR
 * @offset_in_bar: region offset into the bar
 * @bar_id: bar ID of the region
 * @used: if used 1, otherwise 0
 */
struct pci_mem_region {
	u64 region_base;
	u64 region_size;
	u64 bar_size;
	u64 offset_in_bar;
	u8 bar_id;
	u8 used;
};

/**
 * struct static_fw_load_mgr - static FW load manager
 * @preboot_version_max_off: max offset to preboot version
 * @boot_fit_version_max_off: max offset to boot fit version
 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
 * @cpu_boot_status_reg: boot status register
 * @cpu_boot_dev_status0_reg: boot device status register 0
 * @cpu_boot_dev_status1_reg: boot device status register 1
 * @boot_err0_reg: boot error register 0
 * @boot_err1_reg: boot error register 1
 * @preboot_version_offset_reg: SRAM offset to preboot version register
 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
 * @sram_offset_mask: mask for getting offset into the SRAM
 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
 */
struct static_fw_load_mgr {
	u64 preboot_version_max_off;
	u64 boot_fit_version_max_off;
	u32 kmd_msg_to_cpu_reg;
	u32 cpu_cmd_status_to_host_reg;
	u32 cpu_boot_status_reg;
	u32 cpu_boot_dev_status0_reg;
	u32 cpu_boot_dev_status1_reg;
	u32 boot_err0_reg;
	u32 boot_err1_reg;
	u32 preboot_version_offset_reg;
	u32 boot_fit_version_offset_reg;
	u32 sram_offset_mask;
	u32 cpu_reset_wait_msec;
};

/**
 * struct fw_response - FW response to LKD command
 * @ram_offset: descriptor offset into the RAM
 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
 * @status: command status
 */
struct fw_response {
	u32 ram_offset;
	u8 ram_type;
	u8 status;
};

/**
 * struct dynamic_fw_load_mgr - dynamic FW load manager
 * @response: FW to LKD response
 * @comm_desc: the communication descriptor with FW
 * @image_region: region to copy the FW image to
 * @fw_image_size: size of FW image to load
 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
 */
struct dynamic_fw_load_mgr {
	struct fw_response response;
	struct lkd_fw_comms_desc comm_desc;
	struct pci_mem_region *image_region;
	size_t fw_image_size;
	u32 wait_for_bl_timeout;
	bool fw_desc_valid;
};

/**
 * struct pre_fw_load_props - needed properties for pre-FW load
 * @cpu_boot_status_reg: cpu_boot_status register address
 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
 * @boot_err0_reg: boot_err0 register address
 * @boot_err1_reg: boot_err1 register address
 * @wait_for_preboot_timeout: timeout to poll for preboot ready
 */
struct pre_fw_load_props {
	u32 cpu_boot_status_reg;
	u32 sts_boot_dev_sts0_reg;
	u32 sts_boot_dev_sts1_reg;
	u32 boot_err0_reg;
	u32 boot_err1_reg;
	u32 wait_for_preboot_timeout;
};

/**
 * struct fw_image_props - properties of FW image
 * @image_name: name of the image
 * @src_off: offset in src FW to copy from
 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
 */
struct fw_image_props {
	char *image_name;
	u32 src_off;
	u32 copy_size;
};

/**
 * struct fw_load_mgr - manager FW loading process
 * @dynamic_loader: specific structure for dynamic load
 * @static_loader: specific structure for static load
 * @pre_fw_load_props: parameter for pre FW load
 * @boot_fit_img: boot fit image properties
 * @linux_img: linux image properties
 * @cpu_timeout: CPU response timeout in usec
 * @boot_fit_timeout: Boot fit load timeout in usec
 * @skip_bmc: should BMC be skipped
 * @sram_bar_id: SRAM bar ID
 * @dram_bar_id: DRAM bar ID
 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
 *                  component. values are set according to enum hl_fw_types.
 */
struct fw_load_mgr {
	union {
		struct dynamic_fw_load_mgr dynamic_loader;
		struct static_fw_load_mgr static_loader;
	};
	struct pre_fw_load_props pre_fw_load;
	struct fw_image_props boot_fit_img;
	struct fw_image_props linux_img;
	u32 cpu_timeout;
	u32 boot_fit_timeout;
	u8 skip_bmc;
	u8 sram_bar_id;
	u8 dram_bar_id;
	u8 fw_comp_loaded;
};

struct hl_cs;

/**
 * struct engines_data - asic engines data
 * @buf: buffer for engines data in ascii
 * @actual_size: actual size of data that was written by the driver to the allocated buffer
 * @allocated_buf_size: total size of allocated buffer
 */
struct engines_data {
	char *buf;
	int actual_size;
	u32 allocated_buf_size;
};

/**
 * struct hl_asic_funcs - ASIC specific functions that are can be called from
 *                        common code.
 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
 * @early_fini: tears down what was done in early_init.
 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
 * @sw_init: sets up driver state, does not configure H/W.
 * @sw_fini: tears down driver state, does not configure H/W.
 * @hw_init: sets up the H/W state.
 * @hw_fini: tears down the H/W state.
 * @halt_engines: halt engines, needed for reset sequence. This also disables
 *                interrupts from the device. Should be called before
 *                hw_fini and before CS rollback.
 * @suspend: handles IP specific H/W or SW changes for suspend.
 * @resume: handles IP specific H/W or SW changes for resume.
 * @mmap: maps a memory.
 * @ring_doorbell: increment PI on a given QMAN.
 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
 *             function because the PQs are located in different memory areas
 *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
 *             writing the PQE must match the destination memory area
 *             properties.
 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
 *                           dma_alloc_coherent(). This is ASIC function because
 *                           its implementation is not trivial when the driver
 *                           is loaded in simulation mode (not upstreamed).
 * @asic_dma_free_coherent:  Free coherent DMA memory by calling
 *                           dma_free_coherent(). This is ASIC function because
 *                           its implementation is not trivial when the driver
 *                           is loaded in simulation mode (not upstreamed).
 * @scrub_device_mem: Scrub the entire SRAM and DRAM.
 * @scrub_device_dram: Scrub the dram memory of the device.
 * @get_int_queue_base: get the internal queue base address.
 * @test_queues: run simple test on all queues for sanity check.
 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
 *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
 * @asic_dma_pool_free: free small DMA allocation from pool.
 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
 * @asic_dma_unmap_single: unmap a single DMA buffer
 * @asic_dma_map_single: map a single buffer to a DMA
 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
 * @cs_parser: parse Command Submission.
 * @asic_dma_map_sgtable: DMA map scatter-gather table.
 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
 * @update_eq_ci: update event queue CI.
 * @context_switch: called upon ASID context switch.
 * @restore_phase_topology: clear all SOBs amd MONs.
 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
 *                    internal memory via DMA engine.
 * @add_device_attr: add ASIC specific device attributes.
 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
 * @get_events_stat: retrieve event queue entries histogram.
 * @read_pte: read MMU page table entry from DRAM.
 * @write_pte: write MMU page table entry to DRAM.
 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
 *                        (L1 only) or hard (L0 & L1) flush.
 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
 * @debug_coresight: perform certain actions on Coresight for debugging.
 * @is_device_idle: return true if device is idle, false otherwise.
 * @compute_reset_late_init: perform certain actions needed after a compute reset
 * @hw_queues_lock: acquire H/W queues lock.
 * @hw_queues_unlock: release H/W queues lock.
 * @get_pci_id: retrieve PCI ID.
 * @get_eeprom_data: retrieve EEPROM data from F/W.
 * @get_monitor_dump: retrieve monitor registers dump from F/W.
 * @send_cpu_message: send message to F/W. If the message is timedout, the
 *                    driver will eventually reset the device. The timeout can
 *                    be determined by the calling function or it can be 0 and
 *                    then the timeout is the default timeout for the specific
 *                    ASIC
 * @get_hw_state: retrieve the H/W state
 * @pci_bars_map: Map PCI BARs.
 * @init_iatu: Initialize the iATU unit inside the PCI controller.
 * @rreg: Read a register. Needed for simulator support.
 * @wreg: Write a register. Needed for simulator support.
 * @halt_coresight: stop the ETF and ETR traces.
 * @ctx_init: context dependent initialization.
 * @ctx_fini: context dependent cleanup.
 * @pre_schedule_cs: Perform pre-CS-scheduling operations.
 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
 * @load_firmware_to_device: load the firmware to the device's memory
 * @load_boot_fit_to_device: load boot fit to device's memory
 * @get_signal_cb_size: Get signal CB size.
 * @get_wait_cb_size: Get wait CB size.
 * @gen_signal_cb: Generate a signal CB.
 * @gen_wait_cb: Generate a wait CB.
 * @reset_sob: Reset a SOB.
 * @reset_sob_group: Reset SOB group
 * @get_device_time: Get the device time.
 * @pb_print_security_errors: print security errors according block and cause
 * @collective_wait_init_cs: Generate collective master/slave packets
 *                           and place them in the relevant cs jobs
 * @collective_wait_create_jobs: allocate collective wait cs jobs
 * @get_dec_base_addr: get the base address of a given decoder.
 * @scramble_addr: Routine to scramble the address prior of mapping it
 *                 in the MMU.
 * @descramble_addr: Routine to de-scramble the address prior of
 *                   showing it to users.
 * @ack_protection_bits_errors: ack and dump all security violations
 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
 *                   also returns the size of the block if caller supplies
 *                   a valid pointer for it
 * @hw_block_mmap: mmap a HW block with a given id.
 * @enable_events_from_fw: send interrupt to firmware to notify them the
 *                         driver is ready to receive asynchronous events. This
 *                         function should be called during the first init and
 *                         after every hard-reset of the device
 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
 *                         generic f/w compatible PLL Indexes
 * @init_firmware_preload_params: initialize pre FW-load parameters.
 * @init_firmware_loader: initialize data for FW loader.
 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
 * @state_dump_init: initialize constants required for state dump
 * @get_sob_addr: get SOB base address offset.
 * @set_pci_memory_regions: setting properties of PCI memory regions
 * @get_stream_master_qid_arr: get pointer to stream masters QID array
 * @check_if_razwi_happened: check if there was a razwi due to RR violation.
 * @access_dev_mem: access device memory
 * @set_dram_bar_base: set the base of the DRAM BAR
 * @set_engine_cores: set a config command to enigne cores
 * @send_device_activity: indication to FW about device availability
 */
struct hl_asic_funcs {
	int (*early_init)(struct hl_device *hdev);
	int (*early_fini)(struct hl_device *hdev);
	int (*late_init)(struct hl_device *hdev);
	void (*late_fini)(struct hl_device *hdev);
	int (*sw_init)(struct hl_device *hdev);
	int (*sw_fini)(struct hl_device *hdev);
	int (*hw_init)(struct hl_device *hdev);
	void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
	int (*suspend)(struct hl_device *hdev);
	int (*resume)(struct hl_device *hdev);
	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
			void *cpu_addr, dma_addr_t dma_addr, size_t size);
	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
			struct hl_bd *bd);
	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
					dma_addr_t *dma_handle, gfp_t flag);
	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
					void *cpu_addr, dma_addr_t dma_handle);
	int (*scrub_device_mem)(struct hl_device *hdev);
	int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
				dma_addr_t *dma_handle, u16 *queue_len);
	int (*test_queues)(struct hl_device *hdev);
	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
				gfp_t mem_flags, dma_addr_t *dma_handle);
	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
				dma_addr_t dma_addr);
	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
				size_t size, dma_addr_t *dma_handle);
	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
				size_t size, void *vaddr);
	void (*asic_dma_unmap_single)(struct hl_device *hdev,
				dma_addr_t dma_addr, int len,
				enum dma_data_direction dir);
	dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
				void *addr, int len,
				enum dma_data_direction dir);
	void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
				struct sg_table *sgt,
				enum dma_data_direction dir);
	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
	int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
				enum dma_data_direction dir);
	void (*add_end_of_cb_packets)(struct hl_device *hdev,
					void *kernel_address, u32 len,
					u32 original_len,
					u64 cq_addr, u32 cq_val, u32 msix_num,
					bool eb);
	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
	int (*context_switch)(struct hl_device *hdev, u32 asid);
	void (*restore_phase_topology)(struct hl_device *hdev);
	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
				void *blob_addr);
	void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
				struct attribute_group *dev_vrm_attr_grp);
	void (*handle_eqe)(struct hl_device *hdev,
				struct hl_eq_entry *eq_entry);
	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
				u32 *size);
	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
					u32 flags);
	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
				u32 flags, u32 asid, u64 va, u64 size);
	int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
	int (*send_heartbeat)(struct hl_device *hdev);
	int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
				struct engines_data *e);
	int (*compute_reset_late_init)(struct hl_device *hdev);
	void (*hw_queues_lock)(struct hl_device *hdev);
	void (*hw_queues_unlock)(struct hl_device *hdev);
	u32 (*get_pci_id)(struct hl_device *hdev);
	int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
	int (*get_monitor_dump)(struct hl_device *hdev, void *data);
	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
				u16 len, u32 timeout, u64 *result);
	int (*pci_bars_map)(struct hl_device *hdev);
	int (*init_iatu)(struct hl_device *hdev);
	u32 (*rreg)(struct hl_device *hdev, u32 reg);
	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
	void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
	int (*ctx_init)(struct hl_ctx *ctx);
	void (*ctx_fini)(struct hl_ctx *ctx);
	int (*pre_schedule_cs)(struct hl_cs *cs);
	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
	int (*load_firmware_to_device)(struct hl_device *hdev);
	int (*load_boot_fit_to_device)(struct hl_device *hdev);
	u32 (*get_signal_cb_size)(struct hl_device *hdev);
	u32 (*get_wait_cb_size)(struct hl_device *hdev);
	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
			u32 size, bool eb);
	u32 (*gen_wait_cb)(struct hl_device *hdev,
			struct hl_gen_wait_properties *prop);
	void (*reset_sob)(struct hl_device *hdev, void *data);
	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
	u64 (*get_device_time)(struct hl_device *hdev);
	void (*pb_print_security_errors)(struct hl_device *hdev,
			u32 block_addr, u32 cause, u32 offended_addr);
	int (*collective_wait_init_cs)(struct hl_cs *cs);
	int (*collective_wait_create_jobs)(struct hl_device *hdev,
			struct hl_ctx *ctx, struct hl_cs *cs,
			u32 wait_queue_id, u32 collective_engine_id,
			u32 encaps_signal_offset);
	u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
	void (*ack_protection_bits_errors)(struct hl_device *hdev);
	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
				u32 *block_size, u32 *block_id);
	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
			u32 block_id, u32 block_size);
	void (*enable_events_from_fw)(struct hl_device *hdev);
	int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
	void (*get_msi_info)(__le32 *table);
	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
	void (*init_firmware_preload_params)(struct hl_device *hdev);
	void (*init_firmware_loader)(struct hl_device *hdev);
	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
	void (*state_dump_init)(struct hl_device *hdev);
	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
	void (*set_pci_memory_regions)(struct hl_device *hdev);
	u32* (*get_stream_master_qid_arr)(void);
	void (*check_if_razwi_happened)(struct hl_device *hdev);
	int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
					u32 page_size, u32 *real_page_size, bool is_dram_addr);
	int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
				u64 addr, u64 *val, enum debugfs_access_type acc_type);
	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
	int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
					u32 num_cores, u32 core_command);
	int (*send_device_activity)(struct hl_device *hdev, bool open);
	int (*set_dram_properties)(struct hl_device *hdev);
};


/*
 * CONTEXTS
 */

#define HL_KERNEL_ASID_ID	0

/**
 * enum hl_va_range_type - virtual address range type.
 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
 */
enum hl_va_range_type {
	HL_VA_RANGE_TYPE_HOST,
	HL_VA_RANGE_TYPE_HOST_HUGE,
	HL_VA_RANGE_TYPE_DRAM,
	HL_VA_RANGE_TYPE_MAX
};

/**
 * struct hl_va_range - virtual addresses range.
 * @lock: protects the virtual addresses list.
 * @list: list of virtual addresses blocks available for mappings.
 * @start_addr: range start address.
 * @end_addr: range end address.
 * @page_size: page size of this va range.
 */
struct hl_va_range {
	struct mutex		lock;
	struct list_head	list;
	u64			start_addr;
	u64			end_addr;
	u32			page_size;
};

/**
 * struct hl_cs_counters_atomic - command submission counters
 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
 * @parsing_drop_cnt: dropped due to error in packet parsing
 * @queue_full_drop_cnt: dropped due to queue full
 * @device_in_reset_drop_cnt: dropped due to device in reset
 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
 * @validation_drop_cnt: dropped due to error in validation
 */
struct hl_cs_counters_atomic {
	atomic64_t out_of_mem_drop_cnt;
	atomic64_t parsing_drop_cnt;
	atomic64_t queue_full_drop_cnt;
	atomic64_t device_in_reset_drop_cnt;
	atomic64_t max_cs_in_flight_drop_cnt;
	atomic64_t validation_drop_cnt;
};

/**
 * struct hl_dmabuf_priv - a dma-buf private object.
 * @dmabuf: pointer to dma-buf object.
 * @ctx: pointer to the dma-buf owner's context.
 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for
 *                memory allocation handle.
 * @device_address: physical address of the device's memory. Relevant only
 *                  if phys_pg_pack is NULL (dma-buf was exported from address).
 *                  The total size can be taken from the dmabuf object.
 */
struct hl_dmabuf_priv {
	struct dma_buf			*dmabuf;
	struct hl_ctx			*ctx;
	struct hl_vm_phys_pg_pack	*phys_pg_pack;
	uint64_t			device_address;
};

#define HL_CS_OUTCOME_HISTORY_LEN 256

/**
 * struct hl_cs_outcome - represents a single completed CS outcome
 * @list_link: link to either container's used list or free list
 * @map_link: list to the container hash map
 * @ts: completion ts
 * @seq: the original cs sequence
 * @error: error code cs completed with, if any
 */
struct hl_cs_outcome {
	struct list_head list_link;
	struct hlist_node map_link;
	ktime_t ts;
	u64 seq;
	int error;
};

/**
 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
 * @outcome_map: index of completed CS searchable by sequence number
 * @used_list: list of outcome objects currently in use
 * @free_list: list of outcome objects currently not in use
 * @nodes_pool: a static pool of pre-allocated outcome objects
 * @db_lock: any operation on the store must take this lock
 */
struct hl_cs_outcome_store {
	DECLARE_HASHTABLE(outcome_map, 8);
	struct list_head used_list;
	struct list_head free_list;
	struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
	spinlock_t db_lock;
};

/**
 * struct hl_ctx - user/kernel context.
 * @mem_hash: holds mapping from virtual address to virtual memory area
 *		descriptor (hl_vm_phys_pg_list or hl_userptr).
 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
 *                    MMU-hop-page physical address to its host-resident
 *                    pgt_info structure.
 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
 * @hdev: pointer to the device structure.
 * @refcount: reference counter for the context. Context is released only when
 *		this hits 0l. It is incremented on CS and CS_WAIT.
 * @cs_pending: array of hl fence objects representing pending CS.
 * @outcome_store: storage data structure used to remember outcomes of completed
 *                 command submissions for a long time after CS id wraparound.
 * @va_range: holds available virtual addresses for host and dram mappings.
 * @mem_hash_lock: protects the mem_hash.
 * @hw_block_list_lock: protects the HW block memory list.
 * @debugfs_list: node in debugfs list of contexts.
 * @hw_block_mem_list: list of HW block virtual mapped addresses.
 * @cs_counters: context command submission counters.
 * @cb_va_pool: device VA pool for command buffers which are mapped to the
 *              device's MMU.
 * @sig_mgr: encaps signals handle manager.
 * @cb_va_pool_base: the base address for the device VA pool
 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
 *			to user so user could inquire about CS. It is used as
 *			index to cs_pending array.
 * @dram_default_hops: array that holds all hops addresses needed for default
 *                     DRAM mapping.
 * @cs_lock: spinlock to protect cs_sequence.
 * @dram_phys_mem: amount of used physical DRAM memory by this context.
 * @thread_ctx_switch_token: token to prevent multiple threads of the same
 *				context	from running the context switch phase.
 *				Only a single thread should run it.
 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
 *				the context switch phase from moving to their
 *				execution phase before the context switch phase
 *				has finished.
 * @asid: context's unique address space ID in the device's MMU.
 * @handle: context's opaque handle for user
 */
struct hl_ctx {
	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
	DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
	struct hl_fpriv			*hpriv;
	struct hl_device		*hdev;
	struct kref			refcount;
	struct hl_fence			**cs_pending;
	struct hl_cs_outcome_store	outcome_store;
	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
	struct mutex			mem_hash_lock;
	struct mutex			hw_block_list_lock;
	struct list_head		debugfs_list;
	struct list_head		hw_block_mem_list;
	struct hl_cs_counters_atomic	cs_counters;
	struct gen_pool			*cb_va_pool;
	struct hl_encaps_signals_mgr	sig_mgr;
	u64				cb_va_pool_base;
	u64				cs_sequence;
	u64				*dram_default_hops;
	spinlock_t			cs_lock;
	atomic64_t			dram_phys_mem;
	atomic_t			thread_ctx_switch_token;
	u32				thread_ctx_switch_wait_token;
	u32				asid;
	u32				handle;
};

/**
 * struct hl_ctx_mgr - for handling multiple contexts.
 * @lock: protects ctx_handles.
 * @handles: idr to hold all ctx handles.
 */
struct hl_ctx_mgr {
	struct mutex	lock;
	struct idr	handles;
};


/*
 * COMMAND SUBMISSIONS
 */

/**
 * struct hl_userptr - memory mapping chunk information
 * @vm_type: type of the VM.
 * @job_node: linked-list node for hanging the object on the Job's list.
 * @pages: pointer to struct page array
 * @npages: size of @pages array
 * @sgt: pointer to the scatter-gather table that holds the pages.
 * @dir: for DMA unmapping, the direction must be supplied, so save it.
 * @debugfs_list: node in debugfs list of command submissions.
 * @pid: the pid of the user process owning the memory
 * @addr: user-space virtual address of the start of the memory area.
 * @size: size of the memory area to pin & map.
 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
 */
struct hl_userptr {
	enum vm_type		vm_type; /* must be first */
	struct list_head	job_node;
	struct page		**pages;
	unsigned int		npages;
	struct sg_table		*sgt;
	enum dma_data_direction dir;
	struct list_head	debugfs_list;
	pid_t			pid;
	u64			addr;
	u64			size;
	u8			dma_mapped;
};

/**
 * struct hl_cs - command submission.
 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
 * @ctx: the context this CS belongs to.
 * @job_list: list of the CS's jobs in the various queues.
 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
 * @refcount: reference counter for usage of the CS.
 * @fence: pointer to the fence object of this CS.
 * @signal_fence: pointer to the fence object of the signal CS (used by wait
 *                CS only).
 * @finish_work: workqueue object to run when CS is completed by H/W.
 * @work_tdr: delayed work node for TDR.
 * @mirror_node : node in device mirror list of command submissions.
 * @staged_cs_node: node in the staged cs list.
 * @debugfs_list: node in debugfs list of command submissions.
 * @encaps_sig_hdl: holds the encaps signals handle.
 * @sequence: the sequence number of this CS.
 * @staged_sequence: the sequence of the staged submission this CS is part of,
 *                   relevant only if staged_cs is set.
 * @timeout_jiffies: cs timeout in jiffies.
 * @submission_time_jiffies: submission time of the cs
 * @type: CS_TYPE_*.
 * @jobs_cnt: counter of submitted jobs on all queues.
 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
 * @sob_addr_offset: sob offset from the configuration base address.
 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
 *                     cs with encaps signals.
 * @submitted: true if CS was submitted to H/W.
 * @completed: true if CS was completed by device.
 * @timedout : true if CS was timedout.
 * @tdr_active: true if TDR was activated for this CS (to prevent
 *		double TDR activation).
 * @aborted: true if CS was aborted due to some device error.
 * @timestamp: true if a timestamp must be captured upon completion.
 * @staged_last: true if this is the last staged CS and needs completion.
 * @staged_first: true if this is the first staged CS and we need to receive
 *                timeout for this CS.
 * @staged_cs: true if this CS is part of a staged submission.
 * @skip_reset_on_timeout: true if we shall not reset the device in case
 *                         timeout occurs (debug scenario).
 * @encaps_signals: true if this CS has encaps reserved signals.
 */
struct hl_cs {
	u16			*jobs_in_queue_cnt;
	struct hl_ctx		*ctx;
	struct list_head	job_list;
	spinlock_t		job_lock;
	struct kref		refcount;
	struct hl_fence		*fence;
	struct hl_fence		*signal_fence;
	struct work_struct	finish_work;
	struct delayed_work	work_tdr;
	struct list_head	mirror_node;
	struct list_head	staged_cs_node;
	struct list_head	debugfs_list;
	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
	u64			sequence;
	u64			staged_sequence;
	u64			timeout_jiffies;
	u64			submission_time_jiffies;
	enum hl_cs_type		type;
	u32			jobs_cnt;
	u32			encaps_sig_hdl_id;
	u32			sob_addr_offset;
	u16			initial_sob_count;
	u8			submitted;
	u8			completed;
	u8			timedout;
	u8			tdr_active;
	u8			aborted;
	u8			timestamp;
	u8			staged_last;
	u8			staged_first;
	u8			staged_cs;
	u8			skip_reset_on_timeout;
	u8			encaps_signals;
};

/**
 * struct hl_cs_job - command submission job.
 * @cs_node: the node to hang on the CS jobs list.
 * @cs: the CS this job belongs to.
 * @user_cb: the CB we got from the user.
 * @patched_cb: in case of patching, this is internal CB which is submitted on
 *		the queue instead of the CB we got from the IOCTL.
 * @finish_work: workqueue object to run when job is completed.
 * @userptr_list: linked-list of userptr mappings that belong to this job and
 *			wait for completion.
 * @debugfs_list: node in debugfs list of command submission jobs.
 * @refcount: reference counter for usage of the CS job.
 * @queue_type: the type of the H/W queue this job is submitted to.
 * @id: the id of this job inside a CS.
 * @hw_queue_id: the id of the H/W queue this job is submitted to.
 * @user_cb_size: the actual size of the CB we got from the user.
 * @job_cb_size: the actual size of the CB that we put on the queue.
 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
 *                          to wait on part of the reserved signals.
 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
 *                          handle to a kernel-allocated CB object, false
 *                          otherwise (SRAM/DRAM/host address).
 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
 *                    info is needed later, when adding the 2xMSG_PROT at the
 *                    end of the JOB, to know which barriers to put in the
 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
 *                    have streams so the engine can't be busy by another
 *                    stream.
 */
struct hl_cs_job {
	struct list_head	cs_node;
	struct hl_cs		*cs;
	struct hl_cb		*user_cb;
	struct hl_cb		*patched_cb;
	struct work_struct	finish_work;
	struct list_head	userptr_list;
	struct list_head	debugfs_list;
	struct kref		refcount;
	enum hl_queue_type	queue_type;
	u32			id;
	u32			hw_queue_id;
	u32			user_cb_size;
	u32			job_cb_size;
	u32			encaps_sig_wait_offset;
	u8			is_kernel_allocated_cb;
	u8			contains_dma_pkt;
};

/**
 * struct hl_cs_parser - command submission parser properties.
 * @user_cb: the CB we got from the user.
 * @patched_cb: in case of patching, this is internal CB which is submitted on
 *		the queue instead of the CB we got from the IOCTL.
 * @job_userptr_list: linked-list of userptr mappings that belong to the related
 *			job and wait for completion.
 * @cs_sequence: the sequence number of the related CS.
 * @queue_type: the type of the H/W queue this job is submitted to.
 * @ctx_id: the ID of the context the related CS belongs to.
 * @hw_queue_id: the id of the H/W queue this job is submitted to.
 * @user_cb_size: the actual size of the CB we got from the user.
 * @patched_cb_size: the size of the CB after parsing.
 * @job_id: the id of the related job inside the related CS.
 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
 *                          handle to a kernel-allocated CB object, false
 *                          otherwise (SRAM/DRAM/host address).
 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
 *                    info is needed later, when adding the 2xMSG_PROT at the
 *                    end of the JOB, to know which barriers to put in the
 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
 *                    have streams so the engine can't be busy by another
 *                    stream.
 * @completion: true if we need completion for this CS.
 */
struct hl_cs_parser {
	struct hl_cb		*user_cb;
	struct hl_cb		*patched_cb;
	struct list_head	*job_userptr_list;
	u64			cs_sequence;
	enum hl_queue_type	queue_type;
	u32			ctx_id;
	u32			hw_queue_id;
	u32			user_cb_size;
	u32			patched_cb_size;
	u8			job_id;
	u8			is_kernel_allocated_cb;
	u8			contains_dma_pkt;
	u8			completion;
};

/*
 * MEMORY STRUCTURE
 */

/**
 * struct hl_vm_hash_node - hash element from virtual address to virtual
 *				memory area descriptor (hl_vm_phys_pg_list or
 *				hl_userptr).
 * @node: node to hang on the hash table in context object.
 * @vaddr: key virtual address.
 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
 */
struct hl_vm_hash_node {
	struct hlist_node	node;
	u64			vaddr;
	void			*ptr;
};

/**
 * struct hl_vm_hw_block_list_node - list element from user virtual address to
 *				HW block id.
 * @node: node to hang on the list in context object.
 * @ctx: the context this node belongs to.
 * @vaddr: virtual address of the HW block.
 * @block_size: size of the block.
 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
 * @id: HW block id (handle).
 */
struct hl_vm_hw_block_list_node {
	struct list_head	node;
	struct hl_ctx		*ctx;
	unsigned long		vaddr;
	u32			block_size;
	u32			mapped_size;
	u32			id;
};

/**
 * struct hl_vm_phys_pg_pack - physical page pack.
 * @vm_type: describes the type of the virtual area descriptor.
 * @pages: the physical page array.
 * @npages: num physical pages in the pack.
 * @total_size: total size of all the pages in this list.
 * @node: used to attach to deletion list that is used when all the allocations are cleared
 *        at the teardown of the context.
 * @mapping_cnt: number of shared mappings.
 * @exporting_cnt: number of dma-buf exporting.
 * @asid: the context related to this list.
 * @page_size: size of each page in the pack.
 * @flags: HL_MEM_* flags related to this list.
 * @handle: the provided handle related to this list.
 * @offset: offset from the first page.
 * @contiguous: is contiguous physical memory.
 * @created_from_userptr: is product of host virtual address.
 */
struct hl_vm_phys_pg_pack {
	enum vm_type		vm_type; /* must be first */
	u64			*pages;
	u64			npages;
	u64			total_size;
	struct list_head	node;
	atomic_t		mapping_cnt;
	u32			exporting_cnt;
	u32			asid;
	u32			page_size;
	u32			flags;
	u32			handle;
	u32			offset;
	u8			contiguous;
	u8			created_from_userptr;
};

/**
 * struct hl_vm_va_block - virtual range block information.
 * @node: node to hang on the virtual range list in context object.
 * @start: virtual range start address.
 * @end: virtual range end address.
 * @size: virtual range size.
 */
struct hl_vm_va_block {
	struct list_head	node;
	u64			start;
	u64			end;
	u64			size;
};

/**
 * struct hl_vm - virtual memory manager for MMU.
 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
 * @dram_pg_pool_refcount: reference counter for the pool usage.
 * @idr_lock: protects the phys_pg_list_handles.
 * @phys_pg_pack_handles: idr to hold all device allocations handles.
 * @init_done: whether initialization was done. We need this because VM
 *		initialization might be skipped during device initialization.
 */
struct hl_vm {
	struct gen_pool		*dram_pg_pool;
	struct kref		dram_pg_pool_refcount;
	spinlock_t		idr_lock;
	struct idr		phys_pg_pack_handles;
	u8			init_done;
};


/*
 * DEBUG, PROFILING STRUCTURE
 */

/**
 * struct hl_debug_params - Coresight debug parameters.
 * @input: pointer to component specific input parameters.
 * @output: pointer to component specific output parameters.
 * @output_size: size of output buffer.
 * @reg_idx: relevant register ID.
 * @op: component operation to execute.
 * @enable: true if to enable component debugging, false otherwise.
 */
struct hl_debug_params {
	void *input;
	void *output;
	u32 output_size;
	u32 reg_idx;
	u32 op;
	bool enable;
};

/**
 * struct hl_notifier_event - holds the notifier data structure
 * @eventfd: the event file descriptor to raise the notifications
 * @lock: mutex lock to protect the notifier data flows
 * @events_mask: indicates the bitmap events
 */
struct hl_notifier_event {
	struct eventfd_ctx	*eventfd;
	struct mutex		lock;
	u64			events_mask;
};

/*
 * FILE PRIVATE STRUCTURE
 */

/**
 * struct hl_fpriv - process information stored in FD private data.
 * @hdev: habanalabs device structure.
 * @filp: pointer to the given file structure.
 * @taskpid: current process ID.
 * @ctx: current executing context. TODO: remove for multiple ctx per process
 * @ctx_mgr: context manager to handle multiple context for this FD.
 * @mem_mgr: manager descriptor for memory exportable via mmap
 * @notifier_event: notifier eventfd towards user process
 * @debugfs_list: list of relevant ASIC debugfs.
 * @dev_node: node in the device list of file private data
 * @refcount: number of related contexts.
 * @restore_phase_mutex: lock for context switch and restore phase.
 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
 *            ctx per process.
 */
struct hl_fpriv {
	struct hl_device		*hdev;
	struct file			*filp;
	struct pid			*taskpid;
	struct hl_ctx			*ctx;
	struct hl_ctx_mgr		ctx_mgr;
	struct hl_mem_mgr		mem_mgr;
	struct hl_notifier_event	notifier_event;
	struct list_head		debugfs_list;
	struct list_head		dev_node;
	struct kref			refcount;
	struct mutex			restore_phase_mutex;
	struct mutex			ctx_lock;
};


/*
 * DebugFS
 */

/**
 * struct hl_info_list - debugfs file ops.
 * @name: file name.
 * @show: function to output information.
 * @write: function to write to the file.
 */
struct hl_info_list {
	const char	*name;
	int		(*show)(struct seq_file *s, void *data);
	ssize_t		(*write)(struct file *file, const char __user *buf,
				size_t count, loff_t *f_pos);
};

/**
 * struct hl_debugfs_entry - debugfs dentry wrapper.
 * @info_ent: dentry related ops.
 * @dev_entry: ASIC specific debugfs manager.
 */
struct hl_debugfs_entry {
	const struct hl_info_list	*info_ent;
	struct hl_dbg_device_entry	*dev_entry;
};

/**
 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
 * @root: root dentry.
 * @hdev: habanalabs device structure.
 * @entry_arr: array of available hl_debugfs_entry.
 * @file_list: list of available debugfs files.
 * @file_mutex: protects file_list.
 * @cb_list: list of available CBs.
 * @cb_spinlock: protects cb_list.
 * @cs_list: list of available CSs.
 * @cs_spinlock: protects cs_list.
 * @cs_job_list: list of available CB jobs.
 * @cs_job_spinlock: protects cs_job_list.
 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
 * @userptr_spinlock: protects userptr_list.
 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
 * @ctx_mem_hash_spinlock: protects cb_list.
 * @data_dma_blob_desc: data DMA descriptor of blob.
 * @mon_dump_blob_desc: monitor dump descriptor of blob.
 * @state_dump: data of the system states in case of a bad cs.
 * @state_dump_sem: protects state_dump.
 * @addr: next address to read/write from/to in read/write32.
 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
 * @userptr_lookup: the target user ptr to look up for on demand.
 * @mmu_asid: ASID to use while translating in mmu_show.
 * @state_dump_head: index of the latest state dump
 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
 */
struct hl_dbg_device_entry {
	struct dentry			*root;
	struct hl_device		*hdev;
	struct hl_debugfs_entry		*entry_arr;
	struct list_head		file_list;
	struct mutex			file_mutex;
	struct list_head		cb_list;
	spinlock_t			cb_spinlock;
	struct list_head		cs_list;
	spinlock_t			cs_spinlock;
	struct list_head		cs_job_list;
	spinlock_t			cs_job_spinlock;
	struct list_head		userptr_list;
	spinlock_t			userptr_spinlock;
	struct list_head		ctx_mem_hash_list;
	spinlock_t			ctx_mem_hash_spinlock;
	struct debugfs_blob_wrapper	data_dma_blob_desc;
	struct debugfs_blob_wrapper	mon_dump_blob_desc;
	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
	struct rw_semaphore		state_dump_sem;
	u64				addr;
	u64				mmu_addr;
	u64				mmu_cap_mask;
	u64				userptr_lookup;
	u32				mmu_asid;
	u32				state_dump_head;
	u8				i2c_bus;
	u8				i2c_addr;
	u8				i2c_reg;
	u8				i2c_len;
};

/**
 * struct hl_hw_obj_name_entry - single hw object name, member of
 * hl_state_dump_specs
 * @node: link to the containing hash table
 * @name: hw object name
 * @id: object identifier
 */
struct hl_hw_obj_name_entry {
	struct hlist_node	node;
	const char		*name;
	u32			id;
};

enum hl_state_dump_specs_props {
	SP_SYNC_OBJ_BASE_ADDR,
	SP_NEXT_SYNC_OBJ_ADDR,
	SP_SYNC_OBJ_AMOUNT,
	SP_MON_OBJ_WR_ADDR_LOW,
	SP_MON_OBJ_WR_ADDR_HIGH,
	SP_MON_OBJ_WR_DATA,
	SP_MON_OBJ_ARM_DATA,
	SP_MON_OBJ_STATUS,
	SP_MONITORS_AMOUNT,
	SP_TPC0_CMDQ,
	SP_TPC0_CFG_SO,
	SP_NEXT_TPC,
	SP_MME_CMDQ,
	SP_MME_CFG_SO,
	SP_NEXT_MME,
	SP_DMA_CMDQ,
	SP_DMA_CFG_SO,
	SP_DMA_QUEUES_OFFSET,
	SP_NUM_OF_MME_ENGINES,
	SP_SUB_MME_ENG_NUM,
	SP_NUM_OF_DMA_ENGINES,
	SP_NUM_OF_TPC_ENGINES,
	SP_ENGINE_NUM_OF_QUEUES,
	SP_ENGINE_NUM_OF_STREAMS,
	SP_ENGINE_NUM_OF_FENCES,
	SP_FENCE0_CNT_OFFSET,
	SP_FENCE0_RDATA_OFFSET,
	SP_CP_STS_OFFSET,
	SP_NUM_CORES,

	SP_MAX
};

enum hl_sync_engine_type {
	ENGINE_TPC,
	ENGINE_DMA,
	ENGINE_MME,
};

/**
 * struct hl_mon_state_dump - represents a state dump of a single monitor
 * @id: monitor id
 * @wr_addr_low: address monitor will write to, low bits
 * @wr_addr_high: address monitor will write to, high bits
 * @wr_data: data monitor will write
 * @arm_data: register value containing monitor configuration
 * @status: monitor status
 */
struct hl_mon_state_dump {
	u32		id;
	u32		wr_addr_low;
	u32		wr_addr_high;
	u32		wr_data;
	u32		arm_data;
	u32		status;
};

/**
 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
 * @engine_type: type of the engine
 * @engine_id: id of the engine
 * @sync_id: id of the sync object
 */
struct hl_sync_to_engine_map_entry {
	struct hlist_node		node;
	enum hl_sync_engine_type	engine_type;
	u32				engine_id;
	u32				sync_id;
};

/**
 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
 * @tb: hash table containing the mapping, each element is of type
 *      struct hl_sync_to_engine_map_entry
 */
struct hl_sync_to_engine_map {
	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
};

/**
 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
 * @print_single_monitor: format monitor data as string
 * @monitor_valid: return true if given monitor dump is valid
 * @print_fences_single_engine: format fences data as string
 */
struct hl_state_dump_specs_funcs {
	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
				struct hl_sync_to_engine_map *map);
	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
				    struct hl_device *hdev,
				    struct hl_mon_state_dump *mon);
	int (*monitor_valid)(struct hl_mon_state_dump *mon);
	int (*print_fences_single_engine)(struct hl_device *hdev,
					u64 base_offset,
					u64 status_base_offset,
					enum hl_sync_engine_type engine_type,
					u32 engine_id, char **buf,
					size_t *size, size_t *offset);
};

/**
 * struct hl_state_dump_specs - defines ASIC known hw objects names
 * @so_id_to_str_tb: sync objects names index table
 * @monitor_id_to_str_tb: monitors names index table
 * @funcs: virtual functions used for state dump
 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
 * @props: pointer to a per asic const props array required for state dump
 */
struct hl_state_dump_specs {
	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
	struct hl_state_dump_specs_funcs	funcs;
	const char * const			*sync_namager_names;
	s64					*props;
};


/*
 * DEVICES
 */

#define HL_STR_MAX	32

#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)

/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
 */
#define HL_MAX_MINORS	256

/*
 * Registers read & write functions.
 */

u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);

#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
			hdev->asic_funcs->rreg(hdev, (reg)))

#define WREG32_P(reg, val, mask)				\
	do {							\
		u32 tmp_ = RREG32(reg);				\
		tmp_ &= (mask);					\
		tmp_ |= ((val) & ~(mask));			\
		WREG32(reg, tmp_);				\
	} while (0)
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))

#define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))

#define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)

#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))

#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
#define WREG32_FIELD(reg, offset, field, val)	\
	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
				~REG_FIELD_MASK(reg, field)) | \
				(val) << REG_FIELD_SHIFT(reg, field))

/* Timeout should be longer when working with simulator but cap the
 * increased timeout to some maximum
 */
#define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
({ \
	ktime_t __timeout; \
	u32 __elbi_read; \
	int __rc = 0; \
	if (hdev->pdev) \
		__timeout = ktime_add_us(ktime_get(), timeout_us); \
	else \
		__timeout = ktime_add_us(ktime_get(),\
				min((u64)(timeout_us * 10), \
					(u64) HL_SIM_MAX_TIMEOUT_US)); \
	might_sleep_if(sleep_us); \
	for (;;) { \
		if (elbi) { \
			__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
			if (__rc) \
				break; \
			(val) = __elbi_read; \
		} else {\
			(val) = RREG32(lower_32_bits(addr)); \
		} \
		if (cond) \
			break; \
		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
			if (elbi) { \
				__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
				if (__rc) \
					break; \
				(val) = __elbi_read; \
			} else {\
				(val) = RREG32(lower_32_bits(addr)); \
			} \
			break; \
		} \
		if (sleep_us) \
			usleep_range((sleep_us >> 2) + 1, sleep_us); \
	} \
	__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
})

#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)

#define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)

/*
 * poll array of register addresses.
 * condition is satisfied if all registers values match the expected value.
 * once some register in the array satisfies the condition it will not be polled again,
 * this is done both for efficiency and due to some registers are "clear on read".
 * TODO: use read from PCI bar in other places in the code (SW-91406)
 */
#define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
						timeout_us, elbi) \
({ \
	ktime_t __timeout; \
	u64 __elem_bitmask; \
	u32 __read_val;	\
	u8 __arr_idx;	\
	int __rc = 0; \
	\
	if (hdev->pdev) \
		__timeout = ktime_add_us(ktime_get(), timeout_us); \
	else \
		__timeout = ktime_add_us(ktime_get(),\
				min(((u64)timeout_us * 10), \
					(u64) HL_SIM_MAX_TIMEOUT_US)); \
	\
	might_sleep_if(sleep_us); \
	if (arr_size >= 64) \
		__rc = -EINVAL; \
	else \
		__elem_bitmask = BIT_ULL(arr_size) - 1; \
	for (;;) { \
		if (__rc) \
			break; \
		for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) {	\
			if (!(__elem_bitmask & BIT_ULL(__arr_idx)))	\
				continue;	\
			if (elbi) { \
				__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
				if (__rc) \
					break; \
			} else { \
				__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
			} \
			if (__read_val == (expected_val))	\
				__elem_bitmask &= ~BIT_ULL(__arr_idx);	\
		}	\
		if (__rc || (__elem_bitmask == 0)) \
			break; \
		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
			break; \
		if (sleep_us) \
			usleep_range((sleep_us >> 2) + 1, sleep_us); \
	} \
	__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
})

#define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
					timeout_us) \
	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
						timeout_us, false)

#define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
					timeout_us) \
	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
						timeout_us, true)

/*
 * address in this macro points always to a memory location in the
 * host's (server's) memory. That location is updated asynchronously
 * either by the direct access of the device or by another core.
 *
 * To work both in LE and BE architectures, we need to distinguish between the
 * two states (device or another core updates the memory location). Therefore,
 * if mem_written_by_device is true, the host memory being polled will be
 * updated directly by the device. If false, the host memory being polled will
 * be updated by host CPU. Required so host knows whether or not the memory
 * might need to be byte-swapped before returning value to caller.
 */
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
				mem_written_by_device) \
({ \
	ktime_t __timeout; \
	if (hdev->pdev) \
		__timeout = ktime_add_us(ktime_get(), timeout_us); \
	else \
		__timeout = ktime_add_us(ktime_get(),\
				min((u64)(timeout_us * 100), \
					(u64) HL_SIM_MAX_TIMEOUT_US)); \
	might_sleep_if(sleep_us); \
	for (;;) { \
		/* Verify we read updates done by other cores or by device */ \
		mb(); \
		(val) = *((u32 *)(addr)); \
		if (mem_written_by_device) \
			(val) = le32_to_cpu(*(__le32 *) &(val)); \
		if (cond) \
			break; \
		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
			(val) = *((u32 *)(addr)); \
			if (mem_written_by_device) \
				(val) = le32_to_cpu(*(__le32 *) &(val)); \
			break; \
		} \
		if (sleep_us) \
			usleep_range((sleep_us >> 2) + 1, sleep_us); \
	} \
	(cond) ? 0 : -ETIMEDOUT; \
})

#define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
({ \
	struct user_mapped_block *p = blk; \
\
	p->address = base; \
	p->size = sz; \
})

#define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, decoder) \
({ \
	usr_intr.hdev = hdev; \
	usr_intr.interrupt_id = intr_id; \
	usr_intr.is_decoder = decoder; \
	INIT_LIST_HEAD(&usr_intr.wait_list_head); \
	spin_lock_init(&usr_intr.wait_list_lock); \
})

struct hwmon_chip_info;

/**
 * struct hl_device_reset_work - reset work wrapper.
 * @reset_work: reset work to be done.
 * @hdev: habanalabs device structure.
 * @flags: reset flags.
 */
struct hl_device_reset_work {
	struct delayed_work	reset_work;
	struct hl_device	*hdev;
	u32			flags;
};

/**
 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
 * page-table internal information.
 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
 *                allocating hops.
 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
 */
struct hl_mmu_hr_priv {
	struct gen_pool	*mmu_pgt_pool;
	struct pgt_info	*mmu_asid_hop0;
};

/**
 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
 * page-table internal information.
 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
 * @mmu_shadow_hop0: shadow array of hop0 tables.
 */
struct hl_mmu_dr_priv {
	struct gen_pool *mmu_pgt_pool;
	void *mmu_shadow_hop0;
};

/**
 * struct hl_mmu_priv - used for holding per-device mmu internal information.
 * @dr: information on the device-resident MMU, when exists.
 * @hr: information on the host-resident MMU, when exists.
 */
struct hl_mmu_priv {
	struct hl_mmu_dr_priv dr;
	struct hl_mmu_hr_priv hr;
};

/**
 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
 *                that was created in order to translate a virtual address to a
 *                physical one.
 * @hop_addr: The address of the hop.
 * @hop_pte_addr: The address of the hop entry.
 * @hop_pte_val: The value in the hop entry.
 */
struct hl_mmu_per_hop_info {
	u64 hop_addr;
	u64 hop_pte_addr;
	u64 hop_pte_val;
};

/**
 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
 * hop-entries that were created in order to translate a virtual address to a
 * physical one.
 * @scrambled_vaddr: The value of the virtual address after scrambling. This
 *                   address replaces the original virtual-address when mapped
 *                   in the MMU tables.
 * @unscrambled_paddr: The un-scrambled physical address.
 * @hop_info: Array holding the per-hop information used for the translation.
 * @used_hops: The number of hops used for the translation.
 * @range_type: virtual address range type.
 */
struct hl_mmu_hop_info {
	u64 scrambled_vaddr;
	u64 unscrambled_paddr;
	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
	u32 used_hops;
	enum hl_va_range_type range_type;
};

/**
 * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
 * @get_hop0_pgt_info: get page table info structure for HOP0.
 * @get_pgt_info: get page table info structure for HOP other than HOP0.
 * @add_pgt_info: add page table info structure to hash.
 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
 */
struct hl_hr_mmu_funcs {
	struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
	struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
	void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
	int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
								struct hl_mmu_hop_info *hops,
								u64 virt_addr, bool *is_huge);
};

/**
 * struct hl_mmu_funcs - Device related MMU functions.
 * @init: initialize the MMU module.
 * @fini: release the MMU module.
 * @ctx_init: Initialize a context for using the MMU module.
 * @ctx_fini: disable a ctx from using the mmu module.
 * @map: maps a virtual address to physical address for a context.
 * @unmap: unmap a virtual address of a context.
 * @flush: flush all writes from all cores to reach device MMU.
 * @swap_out: marks all mapping of the given context as swapped out.
 * @swap_in: marks all mapping of the given context as swapped in.
 * @get_tlb_info: returns the list of hops and hop-entries used that were
 *                created in order to translate the giver virtual address to a
 *                physical one.
 * @hr_funcs: functions specific to host resident MMU.
 */
struct hl_mmu_funcs {
	int (*init)(struct hl_device *hdev);
	void (*fini)(struct hl_device *hdev);
	int (*ctx_init)(struct hl_ctx *ctx);
	void (*ctx_fini)(struct hl_ctx *ctx);
	int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
				bool is_dram_addr);
	int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
	void (*flush)(struct hl_ctx *ctx);
	void (*swap_out)(struct hl_ctx *ctx);
	void (*swap_in)(struct hl_ctx *ctx);
	int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
	struct hl_hr_mmu_funcs hr_funcs;
};

/**
 * struct hl_prefetch_work - prefetch work structure handler
 * @prefetch_work: actual work struct.
 * @ctx: compute context.
 * @va: virtual address to pre-fetch.
 * @size: pre-fetch size.
 * @flags: operation flags.
 * @asid: ASID for maintenance operation.
 */
struct hl_prefetch_work {
	struct work_struct	prefetch_work;
	struct hl_ctx		*ctx;
	u64			va;
	u64			size;
	u32			flags;
	u32			asid;
};

/*
 * number of user contexts allowed to call wait_for_multi_cs ioctl in
 * parallel
 */
#define MULTI_CS_MAX_USER_CTX	2

/**
 * struct multi_cs_completion - multi CS wait completion.
 * @completion: completion of any of the CS in the list
 * @lock: spinlock for the completion structure
 * @timestamp: timestamp for the multi-CS completion
 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
 *                        is waiting
 * @used: 1 if in use, otherwise 0
 */
struct multi_cs_completion {
	struct completion	completion;
	spinlock_t		lock;
	s64			timestamp;
	u32			stream_master_qid_map;
	u8			used;
};

/**
 * struct multi_cs_data - internal data for multi CS call
 * @ctx: pointer to the context structure
 * @fence_arr: array of fences of all CSs
 * @seq_arr: array of CS sequence numbers
 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
 * @timestamp: timestamp of first completed CS
 * @wait_status: wait for CS status
 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
 * @arr_len: fence_arr and seq_arr array length
 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
 */
struct multi_cs_data {
	struct hl_ctx	*ctx;
	struct hl_fence	**fence_arr;
	u64		*seq_arr;
	s64		timeout_jiffies;
	s64		timestamp;
	long		wait_status;
	u32		completion_bitmap;
	u8		arr_len;
	u8		gone_cs;
	u8		update_ts;
};

/**
 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
 * @start: timestamp taken when 'start' event is received in driver
 * @end: timestamp taken when 'end' event is received in driver
 */
struct hl_clk_throttle_timestamp {
	ktime_t		start;
	ktime_t		end;
};

/**
 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
 *             index 1 refers to THERMAL
 * @lock: protects this structure as it can be accessed from both event queue
 *        context and info_ioctl context
 * @current_reason: bitmask represents the current clk throttling reasons
 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
 */
struct hl_clk_throttle {
	struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
	struct mutex	lock;
	u32		current_reason;
	u32		aggregated_reason;
};

/**
 * struct user_mapped_block - describes a hw block allowed to be mmapped by user
 * @address: physical HW block address
 * @size: allowed size for mmap
 */
struct user_mapped_block {
	u32 address;
	u32 size;
};

/**
 * struct cs_timeout_info - info of last CS timeout occurred.
 * @timestamp: CS timeout timestamp.
 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
 *                so the first (root cause) CS timeout will not be overwritten.
 * @seq: CS timeout sequence number.
 */
struct cs_timeout_info {
	ktime_t		timestamp;
	atomic_t	write_enable;
	u64		seq;
};

#define MAX_QMAN_STREAMS_INFO		4
#define OPCODE_INFO_MAX_ADDR_SIZE	8
/**
 * struct undefined_opcode_info - info about last undefined opcode error
 * @timestamp: timestamp of the undefined opcode error
 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
 *                   entries. In case all streams array entries are
 *                   filled with values, it means the execution was in Lower-CP.
 * @cq_addr: the address of the current handled command buffer
 * @cq_size: the size of the current handled command buffer
 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
 *                       should be equal to 1 incase of undefined opcode
 *                       in Upper-CP (specific stream) and equal to 4 incase
 *                       of undefined opcode in Lower-CP.
 * @engine_id: engine-id that the error occurred on
 * @stream_id: the stream id the error occurred on. In case the stream equals to
 *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
 * @write_enable: if set, writing to undefined opcode parameters in the structure
 *                 is enable so the first (root cause) undefined opcode will not be
 *                 overwritten.
 */
struct undefined_opcode_info {
	ktime_t timestamp;
	u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
	u64 cq_addr;
	u32 cq_size;
	u32 cb_addr_streams_len;
	u32 engine_id;
	u32 stream_id;
	bool write_enable;
};

/**
 * struct page_fault_info - info about page fault
 * @pgf_info: page fault information.
 * @user_mappings: buffer containing user mappings.
 * @num_of_user_mappings: number of user mappings.
 */
struct page_fault_info {
	struct hl_page_fault_info	pgf;
	struct hl_user_mapping		*user_mappings;
	u64				num_of_user_mappings;
};

/**
 * struct hl_error_info - holds information collected during an error.
 * @cs_timeout: CS timeout error information.
 * @razwi: razwi information.
 * @razwi_info_recorded: if set writing to razwi information is enabled.
 *                       otherwise - disabled, so the first (root cause) razwi will not be
 *                       overwritten.
 * @undef_opcode: undefined opcode information
 * @pgf_info: page fault information.
 * @pgf_info_recorded: if set writing to page fault information is enabled.
 *                     otherwise - disabled, so the first (root cause) page fault will not be
 *                     overwritten.
 */
struct hl_error_info {
	struct cs_timeout_info		cs_timeout;
	struct hl_info_razwi_event	razwi;
	atomic_t			razwi_info_recorded;
	struct undefined_opcode_info	undef_opcode;
	struct page_fault_info		pgf_info;
	atomic_t			pgf_info_recorded;
};

/**
 * struct hl_reset_info - holds current device reset information.
 * @lock: lock to protect critical reset flows.
 * @compute_reset_cnt: number of compute resets since the driver was loaded.
 * @hard_reset_cnt: number of hard resets since the driver was loaded.
 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
 *                             here we hold the hard reset flags.
 * @in_reset: is device in reset flow.
 * @in_compute_reset: Device is currently in reset but not in hard-reset.
 * @needs_reset: true if reset_on_lockup is false and device should be reset
 *               due to lockup.
 * @hard_reset_pending: is there a hard reset work pending.
 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
 *                    triggered, and cleared after it is shared with preboot.
 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
 *                      with a new value on next reset
 * @reset_trigger_repeated: set if device reset is triggered more than once with
 *                          same cause.
 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
 *                         complete instead.
 * @watchdog_active: true if a device release watchdog work is scheduled.
 */
struct hl_reset_info {
	spinlock_t	lock;
	u32		compute_reset_cnt;
	u32		hard_reset_cnt;
	u32		hard_reset_schedule_flags;
	u8		in_reset;
	u8		in_compute_reset;
	u8		needs_reset;
	u8		hard_reset_pending;
	u8		curr_reset_cause;
	u8		prev_reset_trigger;
	u8		reset_trigger_repeated;
	u8		skip_reset_on_timeout;
	u8		watchdog_active;
};

/**
 * struct hl_device - habanalabs device structure.
 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
 * @pcie_bar_phys: array of available PCIe bars physical addresses.
 *		   (required only for PCI address match mode)
 * @pcie_bar: array of available PCIe bars virtual addresses.
 * @rmmio: configuration area address on SRAM.
 * @cdev: related char device.
 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
 * @dev: related kernel basic device structure.
 * @dev_ctrl: related kernel device structure for the control device
 * @work_heartbeat: delayed work for CPU-CP is-alive check.
 * @device_reset_work: delayed work which performs hard reset
 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
 *                                device upon certain error cases.
 * @asic_name: ASIC specific name.
 * @asic_type: ASIC specific type.
 * @completion_queue: array of hl_cq.
 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
 *                  interrupt, driver will monitor the list of fences
 *                  registered to this interrupt.
 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
 *                         upon any user CQ interrupt, driver will monitor the
 *                         list of fences registered to this common structure.
 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
 *                   outstanding command submissions.
 * @cq_wq: work queues of completion queues for executing work in process
 *         context.
 * @eq_wq: work queue of event queue for executing work in process context.
 * @cs_cmplt_wq: work queue of CS completions for executing work in process
 *               context.
 * @ts_free_obj_wq: work queue for timestamp registration objects release.
 * @prefetch_wq: work queue for MMU pre-fetch operations.
 * @reset_wq: work queue for device reset procedure.
 * @kernel_ctx: Kernel driver context structure.
 * @kernel_queues: array of hl_hw_queue.
 * @cs_mirror_list: CS mirror list for TDR.
 * @cs_mirror_lock: protects cs_mirror_list.
 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
 * @event_queue: event queue for IRQ from CPU-CP.
 * @dma_pool: DMA pool for small allocations.
 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
 * @asid_bitmap: holds used/available ASIDs.
 * @asid_mutex: protects asid_bitmap.
 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
 * @debug_lock: protects critical section of setting debug mode for device
 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
 *            page tables are per context, the invalidation h/w is per MMU.
 *            Therefore, we can't allow multiple contexts (we only have two,
 *            user and kernel) to access the invalidation h/w at the same time.
 *            In addition, any change to the PGT, modifying the MMU hash or
 *            walking the PGT requires talking this lock.
 * @asic_prop: ASIC specific immutable properties.
 * @asic_funcs: ASIC specific functions.
 * @asic_specific: ASIC specific information to use only from ASIC files.
 * @vm: virtual memory manager for MMU.
 * @hwmon_dev: H/W monitor device.
 * @hl_chip_info: ASIC's sensors information.
 * @device_status_description: device status description.
 * @hl_debugfs: device's debugfs manager.
 * @cb_pool: list of pre allocated CBs.
 * @cb_pool_lock: protects the CB pool.
 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
 * @internal_cb_pool: internal command buffer memory pool.
 * @internal_cb_va_base: internal cb pool mmu virtual address base
 * @fpriv_list: list of file private data structures. Each structure is created
 *              when a user opens the device
 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
 *              when a user opens the control device
 * @fpriv_list_lock: protects the fpriv_list
 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
 * @aggregated_cs_counters: aggregated cs counters among all contexts
 * @mmu_priv: device-specific MMU data.
 * @mmu_func: device-related MMU functions.
 * @dec: list of decoder sw instance
 * @fw_loader: FW loader manager.
 * @pci_mem_region: array of memory regions in the PCI
 * @state_dump_specs: constants and dictionaries needed to dump system state.
 * @multi_cs_completion: array of multi-CS completion.
 * @clk_throttling: holds information about current/previous clock throttling events
 * @captured_err_info: holds information about errors.
 * @reset_info: holds current device reset information.
 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
 * @fw_major_version: major version of current loaded preboot.
 * @fw_minor_version: minor version of current loaded preboot.
 * @dram_used_mem: current DRAM memory consumption.
 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
 * @timeout_jiffies: device CS timeout value.
 * @max_power: the max power of the device, as configured by the sysadmin. This
 *             value is saved so in case of hard-reset, the driver will restore
 *             this value and update the F/W after the re-initialization
 * @boot_error_status_mask: contains a mask of the device boot error status.
 *                          Each bit represents a different error, according to
 *                          the defines in hl_boot_if.h. If the bit is cleared,
 *                          the error will be ignored by the driver during
 *                          device initialization. Mainly used to debug and
 *                          workaround firmware bugs
 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
 * @last_successful_open_jif: timestamp (jiffies) of the last successful
 *                            device open.
 * @last_open_session_duration_jif: duration (jiffies) of the last device open
 *                                  session.
 * @open_counter: number of successful device open operations.
 * @fw_poll_interval_usec: FW status poll interval in usec.
 *                         used for CPU boot status
 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
 *                                  used for COMMs protocols cmds(COMMS_STS_*)
 * @dram_binning: contains mask of drams that is received from the f/w which indicates which
 *                drams are binned-out
 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
 *               tpc engines are binned-out
 * @card_type: Various ASICs have several card types. This indicates the card
 *             type of the current device.
 * @major: habanalabs kernel driver major.
 * @high_pll: high PLL profile frequency.
 * @decoder_binning: contains mask of decoder engines that is received from the f/w which
 *                   indicates which decoder engines are binned-out
 * @edma_binning: contains mask of edma engines that is received from the f/w which
 *                   indicates which edma engines are binned-out
 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
 * @rotator_binning: contains mask of rotators engines that is received from the f/w
 *			which indicates which rotator engines are binned-out(Gaudi3 and above).
 * @id: device minor.
 * @id_control: minor of the control device.
 * @cdev_idx: char device index. Used for setting its name.
 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
 *                    addresses.
 * @is_in_dram_scrub: true if dram scrub operation is on going.
 * @disabled: is device disabled.
 * @late_init_done: is late init stage was done during initialization.
 * @hwmon_initialized: is H/W monitor sensors was initialized.
 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
 *                   otherwise.
 * @dram_default_page_mapping: is DRAM default page mapping enabled.
 * @memory_scrub: true to perform device memory scrub in various locations,
 *                such as context-switch, context close, page free, etc.
 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
 *                   huge pages.
 * @init_done: is the initialization of the device done.
 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
 *            can be used. This indication is needed because in some ASICs we need to do
 *            specific operations to enable that infrastructure.
 * @cdev_sysfs_created: were char devices and sysfs nodes created.
 * @stop_on_err: true if engines should stop on error.
 * @supports_sync_stream: is sync stream supported.
 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
 * @collective_mon_idx: helper index for collective initialization
 * @supports_coresight: is CoreSight supported.
 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
 * @process_kill_trial_cnt: number of trials reset thread tried killing
 *                          user processes
 * @device_fini_pending: true if device_fini was called and might be
 *                       waiting for the reset thread to finish
 * @supports_staged_submission: true if staged submissions are supported
 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
 *                        halted. We can't halt it again because the COMMS
 *                        protocol will throw an error. Relevant only for
 *                        cases where Linux was not loaded to device CPU
 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
 * @is_compute_ctx_active: Whether there is an active compute context executing.
 * @compute_ctx_in_release: true if the current compute context is being released.
 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
 *                             device.
 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
 *                 stages and sometimes we want to stop at a certain stage. Used only for testing.
 * @mmu_enable: Whether to enable or disable the device MMU(s). Used only for testing.
 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
 * @pldm: Whether we are running in Palladium environment. Used only for testing.
 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
 *                           the f/w. Used only for testing.
 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
 *                         Used only for testing.
 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
 *             that the f/w is always alive. Used only for testing.
 * @supports_ctx_switch: true if a ctx switch is required upon first submission.
 * @support_preboot_binning: true if we support read binning info from preboot.
 */
struct hl_device {
	struct pci_dev			*pdev;
	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
	void __iomem			*rmmio;
	struct cdev			cdev;
	struct cdev			cdev_ctrl;
	struct device			*dev;
	struct device			*dev_ctrl;
	struct delayed_work		work_heartbeat;
	struct hl_device_reset_work	device_reset_work;
	struct hl_device_reset_work	device_release_watchdog_work;
	char				asic_name[HL_STR_MAX];
	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
	enum hl_asic_type		asic_type;
	struct hl_cq			*completion_queue;
	struct hl_user_interrupt	*user_interrupt;
	struct hl_user_interrupt	common_user_cq_interrupt;
	struct hl_user_interrupt	common_decoder_interrupt;
	struct hl_cs			**shadow_cs_queue;
	struct workqueue_struct		**cq_wq;
	struct workqueue_struct		*eq_wq;
	struct workqueue_struct		*cs_cmplt_wq;
	struct workqueue_struct		*ts_free_obj_wq;
	struct workqueue_struct		*prefetch_wq;
	struct workqueue_struct		*reset_wq;
	struct hl_ctx			*kernel_ctx;
	struct hl_hw_queue		*kernel_queues;
	struct list_head		cs_mirror_list;
	spinlock_t			cs_mirror_lock;
	struct hl_mem_mgr		kernel_mem_mgr;
	struct hl_eq			event_queue;
	struct dma_pool			*dma_pool;
	void				*cpu_accessible_dma_mem;
	dma_addr_t			cpu_accessible_dma_address;
	struct gen_pool			*cpu_accessible_dma_pool;
	unsigned long			*asid_bitmap;
	struct mutex			asid_mutex;
	struct mutex			send_cpu_message_lock;
	struct mutex			debug_lock;
	struct mutex			mmu_lock;
	struct asic_fixed_properties	asic_prop;
	const struct hl_asic_funcs	*asic_funcs;
	void				*asic_specific;
	struct hl_vm			vm;
	struct device			*hwmon_dev;
	struct hwmon_chip_info		*hl_chip_info;

	struct hl_dbg_device_entry	hl_debugfs;

	struct list_head		cb_pool;
	spinlock_t			cb_pool_lock;

	void				*internal_cb_pool_virt_addr;
	dma_addr_t			internal_cb_pool_dma_addr;
	struct gen_pool			*internal_cb_pool;
	u64				internal_cb_va_base;

	struct list_head		fpriv_list;
	struct list_head		fpriv_ctrl_list;
	struct mutex			fpriv_list_lock;
	struct mutex			fpriv_ctrl_list_lock;

	struct hl_cs_counters_atomic	aggregated_cs_counters;

	struct hl_mmu_priv		mmu_priv;
	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];

	struct hl_dec			*dec;

	struct fw_load_mgr		fw_loader;

	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];

	struct hl_state_dump_specs	state_dump_specs;

	struct multi_cs_completion	multi_cs_completion[
							MULTI_CS_MAX_USER_CTX];
	struct hl_clk_throttle		clk_throttling;
	struct hl_error_info		captured_err_info;

	struct hl_reset_info		reset_info;

	u32				*stream_master_qid_arr;
	u32				fw_major_version;
	u32				fw_minor_version;
	atomic64_t			dram_used_mem;
	u64				memory_scrub_val;
	u64				timeout_jiffies;
	u64				max_power;
	u64				boot_error_status_mask;
	u64				dram_pci_bar_start;
	u64				last_successful_open_jif;
	u64				last_open_session_duration_jif;
	u64				open_counter;
	u64				fw_poll_interval_usec;
	ktime_t				last_successful_open_ktime;
	u64				fw_comms_poll_interval_usec;
	u64				dram_binning;
	u64				tpc_binning;

	enum cpucp_card_types		card_type;
	u32				major;
	u32				high_pll;
	u32				decoder_binning;
	u32				edma_binning;
	u32				device_release_watchdog_timeout_sec;
	u32				rotator_binning;
	u16				id;
	u16				id_control;
	u16				cdev_idx;
	u16				cpu_pci_msb_addr;
	u8				is_in_dram_scrub;
	u8				disabled;
	u8				late_init_done;
	u8				hwmon_initialized;
	u8				reset_on_lockup;
	u8				dram_default_page_mapping;
	u8				memory_scrub;
	u8				pmmu_huge_range;
	u8				init_done;
	u8				device_cpu_disabled;
	u8				in_debug;
	u8				cdev_sysfs_created;
	u8				stop_on_err;
	u8				supports_sync_stream;
	u8				sync_stream_queue_idx;
	u8				collective_mon_idx;
	u8				supports_coresight;
	u8				supports_cb_mapping;
	u8				process_kill_trial_cnt;
	u8				device_fini_pending;
	u8				supports_staged_submission;
	u8				device_cpu_is_halted;
	u8				supports_wait_for_multi_cs;
	u8				stream_master_qid_arr_size;
	u8				is_compute_ctx_active;
	u8				compute_ctx_in_release;
	u8				supports_mmu_prefetch;
	u8				reset_upon_device_release;
	u8				supports_ctx_switch;
	u8				support_preboot_binning;

	/* Parameters for bring-up */
	u64				nic_ports_mask;
	u64				fw_components;
	u8				mmu_enable;
	u8				cpu_queues_enable;
	u8				pldm;
	u8				hard_reset_on_fw_events;
	u8				bmc_enable;
	u8				reset_on_preboot_fail;
	u8				heartbeat;
};


/**
 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
 * @refcount: refcount used to protect removing this id when several
 *            wait cs are used to wait of the reserved encaps signals.
 * @hdev: pointer to habanalabs device structure.
 * @hw_sob: pointer to  H/W SOB used in the reservation.
 * @ctx: pointer to the user's context data structure
 * @cs_seq: staged cs sequence which contains encapsulated signals
 * @id: idr handler id to be used to fetch the handler info
 * @q_idx: stream queue index
 * @pre_sob_val: current SOB value before reservation
 * @count: signals number
 */
struct hl_cs_encaps_sig_handle {
	struct kref refcount;
	struct hl_device *hdev;
	struct hl_hw_sob *hw_sob;
	struct hl_ctx *ctx;
	u64  cs_seq;
	u32  id;
	u32  q_idx;
	u32  pre_sob_val;
	u32  count;
};

/*
 * IOCTLs
 */

/**
 * typedef hl_ioctl_t - typedef for ioctl function in the driver
 * @hpriv: pointer to the FD's private data, which contains state of
 *		user process
 * @data: pointer to the input/output arguments structure of the IOCTL
 *
 * Return: 0 for success, negative value for error
 */
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);

/**
 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
 * @cmd: the IOCTL code as created by the kernel macros.
 * @func: pointer to the driver's function that should be called for this IOCTL.
 */
struct hl_ioctl_desc {
	unsigned int cmd;
	hl_ioctl_t *func;
};


/*
 * Kernel module functions that can be accessed by entire module
 */

/**
 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
 * @sg: the SG list.
 * @dma_addr: pointer to DMA address to return.
 *
 * Calculate the number of consecutive pages described by the SG list. Take the
 * offset of the address in the first page, add to it the length and round it up
 * to the number of needed pages.
 */
static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
{
	*dma_addr = sg_dma_address(sg);

	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
}

/**
 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
 * @address: The start address of the area we want to validate.
 * @size: The size in bytes of the area we want to validate.
 * @range_start_address: The start address of the valid range.
 * @range_end_address: The end address of the valid range.
 *
 * Return: true if the area is inside the valid range, false otherwise.
 */
static inline bool hl_mem_area_inside_range(u64 address, u64 size,
				u64 range_start_address, u64 range_end_address)
{
	u64 end_address = address + size;

	if ((address >= range_start_address) &&
			(end_address <= range_end_address) &&
			(end_address > address))
		return true;

	return false;
}

/**
 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
 * @address: The start address of the area we want to validate.
 * @size: The size in bytes of the area we want to validate.
 * @range_start_address: The start address of the valid range.
 * @range_end_address: The end address of the valid range.
 *
 * Return: true if the area overlaps part or all of the valid range,
 *		false otherwise.
 */
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
				u64 range_start_address, u64 range_end_address)
{
	u64 end_address = address + size - 1;

	return ((address <= range_end_address) && (range_start_address <= end_address));
}

uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
					gfp_t flag, const char *caller);
void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
					dma_addr_t dma_handle, const char *caller);
void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle, const char *caller);
void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
						const char *caller);
void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
					dma_addr_t *dma_handle, const char *caller);
void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
					const char *caller);
int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
				enum dma_data_direction dir);
int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
	enum debugfs_access_type acc_type);
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
			u64 addr, u64 *val, enum debugfs_access_type acc_type);
int hl_device_open(struct inode *inode, struct file *filp);
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
bool hl_device_operational(struct hl_device *hdev,
		enum hl_device_status *status);
bool hl_ctrl_device_operational(struct hl_device *hdev,
		enum hl_device_status *status);
enum hl_device_status hl_device_status(struct hl_device *hdev);
int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
		u32 cb_size, u64 cb_ptr);
void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
		u32 ctl, u32 len, u64 ptr);
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
void hl_hw_queue_update_ci(struct hl_cs *cs);
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);

#define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))

int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
irqreturn_t hl_irq_handler_default(int irq, void *arg);
u32 hl_cq_inc_ptr(u32 ptr);

int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
void hl_asid_free(struct hl_device *hdev, unsigned long asid);

int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
void hl_ctx_do_release(struct kref *ref);
void hl_ctx_get(struct hl_ctx *ctx);
int hl_ctx_put(struct hl_ctx *ctx);
struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
				struct hl_fence **fence, u32 arr_len);
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);

int hl_device_init(struct hl_device *hdev, struct class *hclass);
void hl_device_fini(struct hl_device *hdev);
int hl_device_suspend(struct hl_device *hdev);
int hl_device_resume(struct hl_device *hdev);
int hl_device_reset(struct hl_device *hdev, u32 flags);
int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
void hl_hpriv_get(struct hl_fpriv *hpriv);
int hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_utilization(struct hl_device *hdev, u32 *utilization);

int hl_build_hwmon_channel_info(struct hl_device *hdev,
		struct cpucp_sensor *sensors_arr);

void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);

int hl_sysfs_init(struct hl_device *hdev);
void hl_sysfs_fini(struct hl_device *hdev);

int hl_hwmon_init(struct hl_device *hdev);
void hl_hwmon_fini(struct hl_device *hdev);
void hl_hwmon_release_resources(struct hl_device *hdev);

int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
			bool map_cb, u64 *handle);
int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
void hl_cb_put(struct hl_cb *cb);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
					bool internal_cb);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);
int hl_cb_va_pool_init(struct hl_ctx *ctx);
void hl_cb_va_pool_fini(struct hl_ctx *ctx);

void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
void hl_sob_reset_error(struct kref *ref);
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
void hl_fence_put(struct hl_fence *fence);
void hl_fences_put(struct hl_fence **fence, int len);
void hl_fence_get(struct hl_fence *fence);
void cs_get(struct hl_cs *cs);
bool cs_needs_completion(struct hl_cs *cs);
bool cs_needs_timeout(struct hl_cs *cs);
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
void hl_multi_cs_completion_init(struct hl_device *hdev);

void goya_set_asic_funcs(struct hl_device *hdev);
void gaudi_set_asic_funcs(struct hl_device *hdev);
void gaudi2_set_asic_funcs(struct hl_device *hdev);

int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);

int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);

void hl_hw_block_mem_init(struct hl_ctx *ctx);
void hl_hw_block_mem_fini(struct hl_ctx *ctx);

u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
		enum hl_va_range_type type, u64 size, u32 alignment);
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
		u64 start_addr, u64 size);
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
			struct hl_userptr *userptr);
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_userptr_delete_list(struct hl_device *hdev,
				struct list_head *userptr_list);
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
				struct list_head *userptr_list,
				struct hl_userptr **userptr);

int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
int hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
		u32 page_size, bool flush_pte);
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
				u32 page_size, u32 *real_page_size, bool is_dram_addr);
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
		bool flush_pte);
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
					u64 phys_addr, u32 size);
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
					u32 flags, u32 asid, u64 va, u64 size);
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
					u8 hop_idx, u64 hop_addr, u64 virt_addr);
void hl_mmu_hr_flush(struct hl_ctx *ctx);
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
			u64 pgt_size);
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
				u32 hop_table_size);
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
							u32 hop_table_size);
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
							u64 val, u32 hop_table_size);
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
							u32 hop_table_size);
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
							u32 hop_table_size);
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
							struct hl_hr_mmu_funcs *hr_func,
							u64 curr_pte);
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
							struct hl_hr_mmu_funcs *hr_func,
							struct hl_mmu_properties *mmu_prop);
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
							struct hl_mmu_hr_priv *hr_priv,
							struct hl_hr_mmu_funcs *hr_func,
							struct hl_mmu_properties *mmu_prop,
							u64 curr_pte, bool *is_new_hop);
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
							struct hl_hr_mmu_funcs *hr_func);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
int hl_mmu_if_set_funcs(struct hl_device *hdev);
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
			struct hl_mmu_hop_info *hops);
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);

int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
				void __iomem *dst, u32 src_offset, u32 size);
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
				u16 len, u32 timeout, u64 *result);
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
		size_t irq_arr_size);
int hl_fw_test_cpu_queue(struct hl_device *hdev);
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle);
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
					void *vaddr);
int hl_fw_send_heartbeat(struct hl_device *hdev);
int hl_fw_cpucp_info_get(struct hl_device *hdev,
				u32 sts_boot_dev_sts0_reg,
				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
				u32 boot_err1_reg);
int hl_fw_cpucp_handshake(struct hl_device *hdev,
				u32 sts_boot_dev_sts0_reg,
				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
				u32 boot_err1_reg);
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
		struct hl_info_pci_counters *counters);
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
			u64 *total_energy);
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
						enum pll_index *pll_index);
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
		u16 *pll_freq_arr);
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
int hl_fw_init_cpu(struct hl_device *hdev);
int hl_fw_read_preboot_status(struct hl_device *hdev);
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
				struct fw_load_mgr *fw_loader,
				enum comms_cmd cmd, unsigned int size,
				bool wait_ok, u32 timeout);
int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
				struct cpucp_hbm_row_info *info);
int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
			bool is_wc[3]);
int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
		struct hl_inbound_pci_region *pci_region);
int hl_pci_set_outbound_region(struct hl_device *hdev,
		struct hl_outbound_pci_region *pci_region);
enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
int hl_pci_init(struct hl_device *hdev);
void hl_pci_fini(struct hl_device *hdev);

long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
long hl_fw_get_max_power(struct hl_device *hdev);
void hl_fw_set_max_power(struct hl_device *hdev);
int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
				u32 nonce);
int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
void hl_fw_set_pll_profile(struct hl_device *hdev);
void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);

void hw_sob_get(struct hl_hw_sob *hw_sob);
void hw_sob_put(struct hl_hw_sob *hw_sob);
void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
			struct hl_cs *cs, struct hl_cs_job *job,
			struct hl_cs_compl *cs_cmpl);

int hl_dec_init(struct hl_device *hdev);
void hl_dec_fini(struct hl_device *hdev);
void hl_dec_ctx_fini(struct hl_ctx *ctx);

void hl_release_pending_user_interrupts(struct hl_device *hdev);
void hl_abort_waitings_for_completion(struct hl_device *hdev);
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);

int hl_state_dump(struct hl_device *hdev);
const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
					struct hl_mon_state_dump *mon);
void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
					const char *format, ...);
char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);

void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg, u8 is_kernel_mem_mgr);
void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
		    void *args);
struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
						   u64 handle);
int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
struct hl_mmap_mem_buf *
hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
		      struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
		      void *args);
__printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
			u8 flags);
void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
			u8 flags, u64 *event_mask);
void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
				u64 *event_mask);

#ifdef CONFIG_DEBUG_FS

void hl_debugfs_init(void);
void hl_debugfs_fini(void);
void hl_debugfs_add_device(struct hl_device *hdev);
void hl_debugfs_remove_device(struct hl_device *hdev);
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
void hl_debugfs_add_cb(struct hl_cb *cb);
void hl_debugfs_remove_cb(struct hl_cb *cb);
void hl_debugfs_add_cs(struct hl_cs *cs);
void hl_debugfs_remove_cs(struct hl_cs *cs);
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_debugfs_remove_userptr(struct hl_device *hdev,
				struct hl_userptr *userptr);
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
					unsigned long length);

#else

static inline void __init hl_debugfs_init(void)
{
}

static inline void hl_debugfs_fini(void)
{
}

static inline void hl_debugfs_add_device(struct hl_device *hdev)
{
}

static inline void hl_debugfs_remove_device(struct hl_device *hdev)
{
}

static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
}

static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
}

static inline void hl_debugfs_add_cb(struct hl_cb *cb)
{
}

static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
{
}

static inline void hl_debugfs_add_cs(struct hl_cs *cs)
{
}

static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
{
}

static inline void hl_debugfs_add_job(struct hl_device *hdev,
					struct hl_cs_job *job)
{
}

static inline void hl_debugfs_remove_job(struct hl_device *hdev,
					struct hl_cs_job *job)
{
}

static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
					struct hl_userptr *userptr)
{
}

static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
					struct hl_userptr *userptr)
{
}

static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
					struct hl_ctx *ctx)
{
}

static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
					struct hl_ctx *ctx)
{
}

static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
					char *data, unsigned long length)
{
}

#endif

/* Security */
int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
		const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
		int array_size);
int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
		int mm_array_size, int offset, const u32 pb_blocks[],
		struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
		struct hl_block_glbl_sec sgs_array[], u32 block_offset,
		int array_size);
void hl_secure_block(struct hl_device *hdev,
		struct hl_block_glbl_sec sgs_array[], int array_size);
int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
		u32 dcore_offset, u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size,
		const u32 *regs_array, u32 regs_array_size, u64 mask);
int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
		u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size,
		const u32 *regs_array, u32 regs_array_size);
int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
		u32 dcore_offset, u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size,
		const struct range *regs_range_array, u32 regs_range_array_size,
		u64 mask);
int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
		u32 dcore_offset, u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size,
		const struct range *regs_range_array,
		u32 regs_range_array_size);
int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
		u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size,
		const u32 *regs_array, u32 regs_array_size);
int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
		u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size,
		const struct range *regs_range_array,
		u32 regs_range_array_size);
void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
		u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size);
void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
		u32 dcore_offset, u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
		u32 num_instances, u32 instance_offset,
		const u32 pb_blocks[], u32 blocks_array_size);

/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);

#endif /* HABANALABSP_H_ */