1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include "../include/common/hl_boot_if.h"
#include <linux/firmware.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */
#define FW_CPU_STATUS_POLL_INTERVAL_USEC 10000
static char *extract_fw_ver_from_str(const char *fw_str)
{
char *str, *fw_ver, *whitespace;
fw_ver = kmalloc(16, GFP_KERNEL);
if (!fw_ver)
return NULL;
str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
if (!str)
goto free_fw_ver;
/* Skip the fw- part */
str += 3;
/* Copy until the next whitespace */
whitespace = strnstr(str, " ", 15);
if (!whitespace)
goto free_fw_ver;
strscpy(fw_ver, str, whitespace - str + 1);
return fw_ver;
free_fw_ver:
kfree(fw_ver);
return NULL;
}
static int hl_request_fw(struct hl_device *hdev,
const struct firmware **firmware_p,
const char *fw_name)
{
size_t fw_size;
int rc;
rc = request_firmware(firmware_p, fw_name, hdev->dev);
if (rc) {
dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
fw_name, rc);
goto out;
}
fw_size = (*firmware_p)->size;
if ((fw_size % 4) != 0) {
dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
fw_name, fw_size);
rc = -EINVAL;
goto release_fw;
}
dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
if (fw_size > FW_FILE_MAX_SIZE) {
dev_err(hdev->dev,
"FW file size %zu exceeds maximum of %u bytes\n",
fw_size, FW_FILE_MAX_SIZE);
rc = -EINVAL;
goto release_fw;
}
return 0;
release_fw:
release_firmware(*firmware_p);
out:
return rc;
}
/**
* hl_release_firmware() - release FW
*
* @fw: fw descriptor
*
* note: this inline function added to serve as a comprehensive mirror for the
* hl_request_fw function.
*/
static inline void hl_release_firmware(const struct firmware *fw)
{
release_firmware(fw);
}
/**
* hl_fw_copy_fw_to_device() - copy FW to device
*
* @hdev: pointer to hl_device structure.
* @fw: fw descriptor
* @dst: IO memory mapped address space to copy firmware to
* @src_offset: offset in src FW to copy from
* @size: amount of bytes to copy (0 to copy the whole binary)
*
* actual copy of FW binary data to device, shared by static and dynamic loaders
*/
static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
const struct firmware *fw, void __iomem *dst,
u32 src_offset, u32 size)
{
const void *fw_data;
/* size 0 indicates to copy the whole file */
if (!size)
size = fw->size;
if (src_offset + size > fw->size) {
dev_err(hdev->dev,
"size to copy(%u) and offset(%u) are invalid\n",
size, src_offset);
return -EINVAL;
}
fw_data = (const void *) fw->data;
memcpy_toio(dst, fw_data + src_offset, size);
return 0;
}
/**
* hl_fw_copy_msg_to_device() - copy message to device
*
* @hdev: pointer to hl_device structure.
* @msg: message
* @dst: IO memory mapped address space to copy firmware to
* @src_offset: offset in src message to copy from
* @size: amount of bytes to copy (0 to copy the whole binary)
*
* actual copy of message data to device.
*/
static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
struct lkd_msg_comms *msg, void __iomem *dst,
u32 src_offset, u32 size)
{
void *msg_data;
/* size 0 indicates to copy the whole file */
if (!size)
size = sizeof(struct lkd_msg_comms);
if (src_offset + size > sizeof(struct lkd_msg_comms)) {
dev_err(hdev->dev,
"size to copy(%u) and offset(%u) are invalid\n",
size, src_offset);
return -EINVAL;
}
msg_data = (void *) msg;
memcpy_toio(dst, msg_data + src_offset, size);
return 0;
}
/**
* hl_fw_load_fw_to_device() - Load F/W code to device's memory.
*
* @hdev: pointer to hl_device structure.
* @fw_name: the firmware image name
* @dst: IO memory mapped address space to copy firmware to
* @src_offset: offset in src FW to copy from
* @size: amount of bytes to copy (0 to copy the whole binary)
*
* Copy fw code from firmware file to device memory.
*
* Return: 0 on success, non-zero for failure.
*/
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst, u32 src_offset, u32 size)
{
const struct firmware *fw;
int rc;
rc = hl_request_fw(hdev, &fw, fw_name);
if (rc)
return rc;
rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
hl_release_firmware(fw);
return rc;
}
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode)
{
struct cpucp_packet pkt = {};
pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt,
sizeof(pkt), 0, NULL);
}
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, u64 *result)
{
struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct cpucp_packet *pkt;
dma_addr_t pkt_dma_addr;
u32 tmp, expected_ack_val;
int rc = 0;
pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len,
&pkt_dma_addr);
if (!pkt) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for packet to CPU\n");
return -ENOMEM;
}
memcpy(pkt, msg, len);
mutex_lock(&hdev->send_cpu_message_lock);
if (hdev->disabled)
goto out;
if (hdev->device_cpu_disabled) {
rc = -EIO;
goto out;
}
/* set fence to a non valid value */
pkt->fence = cpu_to_le32(UINT_MAX);
rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, len, pkt_dma_addr);
if (rc) {
dev_err(hdev->dev, "Failed to send CB on CPU PQ (%d)\n", rc);
goto out;
}
if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
expected_ack_val = queue->pi;
else
expected_ack_val = CPUCP_PACKET_FENCE_VAL;
rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
(tmp == expected_ack_val), 1000,
timeout, true);
hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
hdev->device_cpu_disabled = true;
goto out;
}
tmp = le32_to_cpu(pkt->ctl);
rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
if (rc) {
dev_err(hdev->dev, "F/W ERROR %d for CPU packet %d\n",
rc,
(tmp & CPUCP_PKT_CTL_OPCODE_MASK)
>> CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = -EIO;
} else if (result) {
*result = le64_to_cpu(pkt->result);
}
out:
mutex_unlock(&hdev->send_cpu_message_lock);
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt);
return rc;
}
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(event_type);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, &result);
if (rc)
dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
return rc;
}
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
size_t irq_arr_size)
{
struct cpucp_unmask_irq_arr_packet *pkt;
size_t total_pkt_size;
u64 result;
int rc;
total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
irq_arr_size;
/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
/* total_pkt_size is casted to u16 later on */
if (total_pkt_size > USHRT_MAX) {
dev_err(hdev->dev, "too many elements in IRQ array\n");
return -EINVAL;
}
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
if (!pkt)
return -ENOMEM;
pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
memcpy(&pkt->irqs, irq_arr, irq_arr_size);
pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
total_pkt_size, 0, &result);
if (rc)
dev_err(hdev->dev, "failed to unmask IRQ array\n");
kfree(pkt);
return rc;
}
int hl_fw_test_cpu_queue(struct hl_device *hdev)
{
struct cpucp_packet test_pkt = {};
u64 result;
int rc;
test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
sizeof(test_pkt), 0, &result);
if (!rc) {
if (result != CPUCP_PACKET_FENCE_VAL)
dev_err(hdev->dev,
"CPU queue test failed (%#08llx)\n", result);
} else {
dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
}
return rc;
}
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle)
{
u64 kernel_addr;
kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
*dma_handle = hdev->cpu_accessible_dma_address +
(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
return (void *) (uintptr_t) kernel_addr;
}
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr)
{
gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
size);
}
int hl_fw_send_heartbeat(struct hl_device *hdev)
{
struct cpucp_packet hb_pkt;
u64 result;
int rc;
memset(&hb_pkt, 0, sizeof(hb_pkt));
hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
sizeof(hb_pkt), 0, &result);
if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
return -EIO;
if (le32_to_cpu(hb_pkt.status_mask) &
CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
rc = -EIO;
}
return rc;
}
static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val,
u32 sts_val)
{
bool err_exists = false;
if (!(err_val & CPU_BOOT_ERR0_ENABLED))
return false;
if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) {
dev_err(hdev->dev,
"Device boot error - DRAM initialization failed\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) {
dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) {
dev_err(hdev->dev,
"Device boot error - Thermal Sensor initialization failed\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) {
dev_warn(hdev->dev,
"Device boot warning - Skipped DRAM initialization\n");
/* This is a warning so we don't want it to disable the
* device
*/
err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED;
}
if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
if (hdev->bmc_enable) {
dev_err(hdev->dev,
"Device boot error - Skipped waiting for BMC\n");
err_exists = true;
} else {
dev_info(hdev->dev,
"Device boot message - Skipped waiting for BMC\n");
/* This is an info so we don't want it to disable the
* device
*/
err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
}
}
if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) {
dev_err(hdev->dev,
"Device boot error - Serdes data from BMC not available\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) {
dev_err(hdev->dev,
"Device boot error - NIC F/W initialization failed\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) {
dev_err(hdev->dev,
"Device boot warning - security not ready\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) {
dev_err(hdev->dev, "Device boot error - security failure\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) {
dev_err(hdev->dev, "Device boot error - eFuse failure\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) {
dev_warn(hdev->dev,
"Device boot warning - Failed to load preboot primary image\n");
/* This is a warning so we don't want it to disable the
* device as we have a secondary preboot image
*/
err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL;
}
if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) {
dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_PLL_FAIL) {
dev_err(hdev->dev, "Device boot error - PLL failure\n");
err_exists = true;
}
if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
/* Ignore this bit, don't prevent driver loading */
dev_dbg(hdev->dev, "device unusable status is set\n");
err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
}
if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) {
dev_err(hdev->dev,
"Device boot error - unknown ERR0 error 0x%08x\n", err_val);
err_exists = true;
}
/* return error only if it's in the predefined mask */
if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
lower_32_bits(hdev->boot_error_status_mask)))
return true;
return false;
}
/* placeholder for ERR1 as no errors defined there yet */
static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
u32 sts_val)
{
/*
* keep this variable to preserve the logic of the function.
* this way it would require less modifications when error will be
* added to DEV_ERR1
*/
bool err_exists = false;
if (!(err_val & CPU_BOOT_ERR1_ENABLED))
return false;
if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
dev_err(hdev->dev,
"Device boot error - unknown ERR1 error 0x%08x\n",
err_val);
err_exists = true;
}
/* return error only if it's in the predefined mask */
if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
upper_32_bits(hdev->boot_error_status_mask)))
return true;
return false;
}
static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
u32 cpu_boot_dev_status1_reg)
{
u32 err_val, status_val;
bool err_exists = false;
/* Some of the firmware status codes are deprecated in newer f/w
* versions. In those versions, the errors are reported
* in different registers. Therefore, we need to check those
* registers and print the exact errors. Moreover, there
* may be multiple errors, so we need to report on each error
* separately. Some of the error codes might indicate a state
* that is not an error per-se, but it is an error in production
* environment
*/
err_val = RREG32(boot_err0_reg);
status_val = RREG32(cpu_boot_dev_status0_reg);
err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
err_val = RREG32(boot_err1_reg);
status_val = RREG32(cpu_boot_dev_status1_reg);
err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
if (err_exists)
return -EIO;
return 0;
}
int hl_fw_cpucp_info_get(struct hl_device *hdev,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct cpucp_packet pkt = {};
dma_addr_t cpucp_info_dma_addr;
void *cpucp_info_cpu_addr;
char *kernel_ver;
u64 result;
int rc;
cpucp_info_cpu_addr =
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
sizeof(struct cpucp_info),
&cpucp_info_dma_addr);
if (!cpucp_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP info packet\n");
return -ENOMEM;
}
memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP info pkt, error %d\n", rc);
goto out;
}
rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
if (rc) {
dev_err(hdev->dev, "Errors in device boot\n");
goto out;
}
memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
sizeof(prop->cpucp_info));
rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
if (rc) {
dev_err(hdev->dev,
"Failed to build hwmon channel info, error %d\n", rc);
rc = -EFAULT;
goto out;
}
kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
if (kernel_ver) {
dev_info(hdev->dev, "Linux version %s", kernel_ver);
kfree(kernel_ver);
}
/* assume EQ code doesn't need to check eqe index */
hdev->event_queue.check_eqe_index = false;
/* Read FW application security bits again */
if (hdev->asic_prop.fw_cpu_boot_dev_sts0_valid) {
hdev->asic_prop.fw_app_cpu_boot_dev_sts0 =
RREG32(sts_boot_dev_sts0_reg);
if (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
hdev->event_queue.check_eqe_index = true;
}
if (hdev->asic_prop.fw_cpu_boot_dev_sts1_valid)
hdev->asic_prop.fw_app_cpu_boot_dev_sts1 =
RREG32(sts_boot_dev_sts1_reg);
out:
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
sizeof(struct cpucp_info), cpucp_info_cpu_addr);
return rc;
}
static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
{
struct cpucp_array_data_packet *pkt;
size_t total_pkt_size, data_size;
u64 result;
int rc;
/* skip sending this info for unsupported ASICs */
if (!hdev->asic_funcs->get_msi_info)
return 0;
data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
/* total_pkt_size is casted to u16 later on */
if (total_pkt_size > USHRT_MAX) {
dev_err(hdev->dev, "CPUCP array data is too big\n");
return -EINVAL;
}
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
if (!pkt)
return -ENOMEM;
pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
memset((void *) &pkt->data, 0xFF, data_size);
hdev->asic_funcs->get_msi_info(pkt->data);
pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
total_pkt_size, 0, &result);
/*
* in case packet result is invalid it means that FW does not support
* this feature and will use default/hard coded MSI values. no reason
* to stop the boot
*/
if (rc && result == cpucp_packet_invalid)
rc = 0;
if (rc)
dev_err(hdev->dev, "failed to send CPUCP array data\n");
kfree(pkt);
return rc;
}
int hl_fw_cpucp_handshake(struct hl_device *hdev,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg)
{
int rc;
rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
sts_boot_dev_sts1_reg, boot_err0_reg,
boot_err1_reg);
if (rc)
return rc;
return hl_fw_send_msi_info_msg(hdev);
}
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
{
struct cpucp_packet pkt = {};
void *eeprom_info_cpu_addr;
dma_addr_t eeprom_info_dma_addr;
u64 result;
int rc;
eeprom_info_cpu_addr =
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
max_size, &eeprom_info_dma_addr);
if (!eeprom_info_cpu_addr) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
return -ENOMEM;
}
memset(eeprom_info_cpu_addr, 0, max_size);
pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
pkt.data_max_size = cpu_to_le32(max_size);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP EEPROM packet, error %d\n",
rc);
goto out;
}
/* result contains the actual size */
memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
out:
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size,
eeprom_info_cpu_addr);
return rc;
}
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
struct hl_info_pci_counters *counters)
{
struct cpucp_packet pkt = {};
u64 result;
int rc;
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
/* Fetch PCI rx counter */
pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
return rc;
}
counters->rx_throughput = result;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
/* Fetch PCI tx counter */
pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
return rc;
}
counters->tx_throughput = result;
/* Fetch PCI replay counter */
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
return rc;
}
counters->replay_cnt = (u32) result;
return rc;
}
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
{
struct cpucp_packet pkt = {};
u64 result;
int rc;
pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev,
"Failed to handle CpuCP total energy pkt, error %d\n",
rc);
return rc;
}
*total_energy = result;
return rc;
}
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
enum pll_index *pll_index)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u8 pll_byte, pll_bit_off;
bool dynamic_pll;
int fw_pll_idx;
dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_DYN_PLL_EN);
if (!dynamic_pll) {
/*
* in case we are working with legacy FW (each asic has unique
* PLL numbering) use the driver based index as they are
* aligned with fw legacy numbering
*/
*pll_index = input_pll_index;
return 0;
}
/* retrieve a FW compatible PLL index based on
* ASIC specific user request
*/
fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
if (fw_pll_idx < 0) {
dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
input_pll_index, fw_pll_idx);
return -EINVAL;
}
/* PLL map is a u8 array */
pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
pll_bit_off = fw_pll_idx & 0x7;
if (!(pll_byte & BIT(pll_bit_off))) {
dev_err(hdev->dev, "PLL index %d is not supported\n",
fw_pll_idx);
return -EINVAL;
}
*pll_index = fw_pll_idx;
return 0;
}
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
u16 *pll_freq_arr)
{
struct cpucp_packet pkt;
enum pll_index used_pll_idx;
u64 result;
int rc;
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
if (rc)
return rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc)
dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
return rc;
}
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
{
struct cpucp_packet pkt;
u64 result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
if (rc) {
dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
return rc;
}
*power = result;
return rc;
}
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
{
struct static_fw_load_mgr *static_loader =
&hdev->fw_loader.static_loader;
int rc;
if (hdev->asic_prop.dynamic_fw_load) {
rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
COMMS_RST_DEV, 0, false,
hdev->fw_loader.cpu_timeout);
if (rc)
dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n");
} else {
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
}
}
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
{
struct static_fw_load_mgr *static_loader =
&hdev->fw_loader.static_loader;
int rc;
if (hdev->device_cpu_is_halted)
return;
/* Stop device CPU to make sure nothing bad happens */
if (hdev->asic_prop.dynamic_fw_load) {
rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
COMMS_GOTO_WFE, 0, true,
hdev->fw_loader.cpu_timeout);
if (rc)
dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
} else {
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
msleep(static_loader->cpu_reset_wait_msec);
}
hdev->device_cpu_is_halted = true;
}
static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
{
/* Some of the status codes below are deprecated in newer f/w
* versions but we keep them here for backward compatibility
*/
switch (status) {
case CPU_BOOT_STATUS_NA:
dev_err(hdev->dev,
"Device boot progress - BTL did NOT run\n");
break;
case CPU_BOOT_STATUS_IN_WFE:
dev_err(hdev->dev,
"Device boot progress - Stuck inside WFE loop\n");
break;
case CPU_BOOT_STATUS_IN_BTL:
dev_err(hdev->dev,
"Device boot progress - Stuck in BTL\n");
break;
case CPU_BOOT_STATUS_IN_PREBOOT:
dev_err(hdev->dev,
"Device boot progress - Stuck in Preboot\n");
break;
case CPU_BOOT_STATUS_IN_SPL:
dev_err(hdev->dev,
"Device boot progress - Stuck in SPL\n");
break;
case CPU_BOOT_STATUS_IN_UBOOT:
dev_err(hdev->dev,
"Device boot progress - Stuck in u-boot\n");
break;
case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
dev_err(hdev->dev,
"Device boot progress - DRAM initialization failed\n");
break;
case CPU_BOOT_STATUS_UBOOT_NOT_READY:
dev_err(hdev->dev,
"Device boot progress - Cannot boot\n");
break;
case CPU_BOOT_STATUS_TS_INIT_FAIL:
dev_err(hdev->dev,
"Device boot progress - Thermal Sensor initialization failed\n");
break;
default:
dev_err(hdev->dev,
"Device boot progress - Invalid status code %d\n",
status);
break;
}
}
static int hl_fw_read_preboot_caps(struct hl_device *hdev,
u32 cpu_boot_status_reg,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg,
u32 boot_err0_reg, u32 boot_err1_reg,
u32 timeout)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u32 status, reg_val;
int rc;
/* Need to check two possible scenarios:
*
* CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
* the preboot is waiting for the boot fit
*
* All other status values - for older firmwares where the uboot was
* loaded from the FLASH
*/
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_IN_UBOOT) ||
(status == CPU_BOOT_STATUS_DRAM_RDY) ||
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
(status == CPU_BOOT_STATUS_SRAM_AVAIL) ||
(status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
FW_CPU_STATUS_POLL_INTERVAL_USEC,
timeout);
if (rc) {
dev_err(hdev->dev, "CPU boot ready status timeout\n");
detect_cpu_boot_status(hdev, status);
/* If we read all FF, then something is totally wrong, no point
* of reading specific errors
*/
if (status != -1)
fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
sts_boot_dev_sts0_reg,
sts_boot_dev_sts1_reg);
return -EIO;
}
/*
* the registers DEV_STS* contain FW capabilities/features.
* We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
* is set.
* In the first read of this register we store the value of this
* register ONLY if the register is enabled (which will be propagated
* to next stages) and also mark the register as valid.
* In case it is not enabled the stored value will be left 0- all
* caps/features are off
*/
reg_val = RREG32(sts_boot_dev_sts0_reg);
if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
prop->fw_cpu_boot_dev_sts0_valid = true;
prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
}
reg_val = RREG32(sts_boot_dev_sts1_reg);
if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
prop->fw_cpu_boot_dev_sts1_valid = true;
prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
}
prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
/* initialize FW loader once we know what load protocol is used */
hdev->asic_funcs->init_firmware_loader(hdev);
dev_dbg(hdev->dev, "Attempting %s FW load\n",
prop->dynamic_fw_load ? "dynamic" : "legacy");
return 0;
}
static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
enum hl_fw_component fwc)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
struct static_fw_load_mgr *static_loader;
char *dest, *boot_ver, *preboot_ver;
u32 ver_off, limit;
const char *name;
char btl_ver[32];
static_loader = &hdev->fw_loader.static_loader;
switch (fwc) {
case FW_COMP_BOOT_FIT:
ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
dest = prop->uboot_ver;
name = "Boot-fit";
limit = static_loader->boot_fit_version_max_off;
break;
case FW_COMP_PREBOOT:
ver_off = RREG32(static_loader->preboot_version_offset_reg);
dest = prop->preboot_ver;
name = "Preboot";
limit = static_loader->preboot_version_max_off;
break;
default:
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
return -EIO;
}
ver_off &= static_loader->sram_offset_mask;
if (ver_off < limit) {
memcpy_fromio(dest,
hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
VERSION_MAX_LEN);
} else {
dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
name, ver_off);
strscpy(dest, "unavailable", VERSION_MAX_LEN);
return -EIO;
}
if (fwc == FW_COMP_BOOT_FIT) {
boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
if (boot_ver) {
dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
kfree(boot_ver);
}
} else if (fwc == FW_COMP_PREBOOT) {
preboot_ver = strnstr(prop->preboot_ver, "Preboot",
VERSION_MAX_LEN);
if (preboot_ver && preboot_ver != prop->preboot_ver) {
strscpy(btl_ver, prop->preboot_ver,
min((int) (preboot_ver - prop->preboot_ver),
31));
dev_info(hdev->dev, "%s\n", btl_ver);
}
preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
if (preboot_ver) {
dev_info(hdev->dev, "preboot version %s\n",
preboot_ver);
kfree(preboot_ver);
}
}
return 0;
}
/**
* hl_fw_preboot_update_state - update internal data structures during
* handshake with preboot
*
*
* @hdev: pointer to the habanalabs device structure
*
* @return 0 on success, otherwise non-zero error code
*/
static void hl_fw_preboot_update_state(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
/* We read boot_dev_sts registers multiple times during boot:
* 1. preboot - a. Check whether the security status bits are valid
* b. Check whether fw security is enabled
* c. Check whether hard reset is done by preboot
* 2. boot cpu - a. Fetch boot cpu security status
* b. Check whether hard reset is done by boot cpu
* 3. FW application - a. Fetch fw application security status
* b. Check whether hard reset is done by fw app
*
* Preboot:
* Check security status bit (CPU_BOOT_DEV_STS0_ENABLED). If set, then-
* check security enabled bit (CPU_BOOT_DEV_STS0_SECURITY_EN)
* If set, then mark GIC controller to be disabled.
*/
prop->hard_reset_done_by_fw =
!!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
cpu_boot_dev_sts0);
dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
cpu_boot_dev_sts1);
dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
dev_dbg(hdev->dev, "firmware-level security is %s\n",
prop->fw_security_enabled ? "enabled" : "disabled");
dev_dbg(hdev->dev, "GIC controller is %s\n",
prop->gic_interrupts_enable ? "enabled" : "disabled");
}
static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
{
int rc;
rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
if (rc)
return rc;
return 0;
}
int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
u32 sts_boot_dev_sts0_reg,
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
u32 boot_err1_reg, u32 timeout)
{
int rc;
/* pldm was added for cases in which we use preboot on pldm and want
* to load boot fit, but we can't wait for preboot because it runs
* very slowly
*/
if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU) || hdev->pldm)
return 0;
/*
* In order to determine boot method (static VS dymanic) we need to
* read the boot caps register
*/
rc = hl_fw_read_preboot_caps(hdev, cpu_boot_status_reg,
sts_boot_dev_sts0_reg,
sts_boot_dev_sts1_reg, boot_err0_reg,
boot_err1_reg, timeout);
if (rc)
return rc;
hl_fw_preboot_update_state(hdev);
/* no need to read preboot status in dynamic load */
if (hdev->asic_prop.dynamic_fw_load)
return 0;
return hl_fw_static_read_preboot_status(hdev);
}
/* associate string with COMM status */
static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
[COMMS_STS_NOOP] = "NOOP",
[COMMS_STS_ACK] = "ACK",
[COMMS_STS_OK] = "OK",
[COMMS_STS_ERR] = "ERR",
[COMMS_STS_VALID_ERR] = "VALID_ERR",
[COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
};
/**
* hl_fw_dynamic_report_error_status - report error status
*
* @hdev: pointer to the habanalabs device structure
* @status: value of FW status register
* @expected_status: the expected status
*/
static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
u32 status,
enum comms_sts expected_status)
{
enum comms_sts comm_status =
FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
if (comm_status < COMMS_STS_INVLD_LAST)
dev_err(hdev->dev, "Device status %s, expected status: %s\n",
hl_dynamic_fw_status_str[comm_status],
hl_dynamic_fw_status_str[expected_status]);
else
dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
comm_status,
hl_dynamic_fw_status_str[expected_status]);
}
/**
* hl_fw_dynamic_send_cmd - send LKD to FW cmd
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @cmd: LKD to FW cmd code
* @size: size of next FW component to be loaded (0 if not necessary)
*
* LDK to FW exact command layout is defined at struct comms_command.
* note: the size argument is used only when the next FW component should be
* loaded, otherwise it shall be 0. the size is used by the FW in later
* protocol stages and when sending only indicating the amount of memory
* to be allocated by the FW to receive the next boot component.
*/
static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_cmd cmd, unsigned int size)
{
struct cpu_dyn_regs *dyn_regs;
u32 val;
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
}
/**
* hl_fw_dynamic_extract_fw_response - update the FW response
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @response: FW response
* @status: the status read from CPU status register
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
struct fw_response *response,
u32 status)
{
response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
COMMS_STATUS_OFFSET_ALIGN_SHIFT;
response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
if ((response->ram_type != COMMS_SRAM) &&
(response->ram_type != COMMS_DRAM)) {
dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
response->ram_type);
return -EIO;
}
return 0;
}
/**
* hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @expected_status: expected status to wait for
* @timeout: timeout for status wait
*
* @return 0 on success, otherwise non-zero error code
*
* waiting for status from FW include polling the FW status register until
* expected status is received or timeout occurs (whatever occurs first).
*/
static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_sts expected_status,
u32 timeout)
{
struct cpu_dyn_regs *dyn_regs;
u32 status;
int rc;
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
/* Wait for expected status */
rc = hl_poll_timeout(
hdev,
le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
status,
FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
FW_CPU_STATUS_POLL_INTERVAL_USEC,
timeout);
if (rc) {
hl_fw_dynamic_report_error_status(hdev, status,
expected_status);
return -EIO;
}
/*
* skip storing FW response for NOOP to preserve the actual desired
* FW status
*/
if (expected_status == COMMS_STS_NOOP)
return 0;
rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
&fw_loader->dynamic_loader.response,
status);
return rc;
}
/**
* hl_fw_dynamic_send_clear_cmd - send clear command to FW
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*
* after command cycle between LKD to FW CPU (i.e. LKD got an expected status
* from FW) we need to clear the CPU status register in order to avoid garbage
* between command cycles.
* This is done by sending clear command and polling the CPU to LKD status
* register to hold the status NOOP
*/
static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
fw_loader->cpu_timeout);
}
/**
* hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @cmd: LKD to FW cmd code
* @size: size of next FW component to be loaded (0 if not necessary)
* @wait_ok: if true also wait for OK response from FW
* @timeout: timeout for status wait
*
* @return 0 on success, otherwise non-zero error code
*
* brief:
* when sending protocol command we have the following steps:
* - send clear (clear command and verify clear status register)
* - send the actual protocol command
* - wait for ACK on the protocol command
* - send clear
* - send NOOP
* if, in addition, the specific protocol command should wait for OK then:
* - wait for OK
* - send clear
* - send NOOP
*
* NOTES:
* send clear: this is necessary in order to clear the status register to avoid
* leftovers between command
* NOOP command: necessary to avoid loop on the clear command by the FW
*/
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_cmd cmd, unsigned int size,
bool wait_ok, u32 timeout)
{
int rc;
/* first send clear command to clean former commands */
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
/* send the actual command */
hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
/* wait for ACK for the command */
rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
timeout);
if (rc)
return rc;
/* clear command to prepare for NOOP command */
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
if (rc)
return rc;
/* send the actual NOOP command */
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
if (!wait_ok)
return 0;
rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
timeout);
if (rc)
return rc;
/* clear command to prepare for NOOP command */
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
if (rc)
return rc;
/* send the actual NOOP command */
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
return 0;
}
/**
* hl_fw_compat_crc32 - CRC compatible with FW
*
* @data: pointer to the data
* @size: size of the data
*
* @return the CRC32 result
*
* NOTE: kernel's CRC32 differ's from standard CRC32 calculation.
* in order to be aligned we need to flip the bits of both the input
* initial CRC and kernel's CRC32 result.
* in addition both sides use initial CRC of 0,
*/
static u32 hl_fw_compat_crc32(u8 *data, size_t size)
{
return ~crc32_le(~((u32)0), data, size);
}
/**
* hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
* transfer (image or descriptor) between
* host and FW
*
* @hdev: pointer to the habanalabs device structure
* @addr: device address of memory transfer
* @size: memory transter size
* @region: PCI memory region
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
u64 addr, size_t size,
struct pci_mem_region *region)
{
u64 end_addr;
/* now make sure that the memory transfer is within region's bounds */
end_addr = addr + size;
if (end_addr >= region->region_base + region->region_size) {
dev_err(hdev->dev,
"dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
end_addr);
return -EIO;
}
/*
* now make sure memory transfer is within predefined BAR bounds.
* this is to make sure we do not need to set the bar (e.g. for DRAM
* memory transfers)
*/
if (end_addr >= region->region_base - region->offset_in_bar +
region->bar_size) {
dev_err(hdev->dev,
"FW image beyond PCI BAR bounds\n");
return -EIO;
}
return 0;
}
/**
* hl_fw_dynamic_validate_descriptor - validate FW descriptor
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @fw_desc: the descriptor form FW
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
struct lkd_fw_comms_desc *fw_desc)
{
struct pci_mem_region *region;
enum pci_region region_id;
size_t data_size;
u32 data_crc32;
u8 *data_ptr;
u64 addr;
int rc;
if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC) {
dev_err(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
fw_desc->header.magic);
return -EIO;
}
if (fw_desc->header.version != HL_COMMS_DESC_VER) {
dev_err(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
fw_desc->header.version);
return -EIO;
}
/*
* calc CRC32 of data without header.
* note that no alignment/stride address issues here as all structures
* are 64 bit padded
*/
data_size = sizeof(struct lkd_fw_comms_desc) -
sizeof(struct comms_desc_header);
data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
if (le16_to_cpu(fw_desc->header.size) != data_size) {
dev_err(hdev->dev,
"Invalid descriptor size 0x%x, expected size 0x%zx\n",
le16_to_cpu(fw_desc->header.size), data_size);
return -EIO;
}
data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
dev_err(hdev->dev,
"CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
data_crc32, fw_desc->header.crc32);
return -EIO;
}
/* find memory region to which to copy the image */
addr = le64_to_cpu(fw_desc->img_addr);
region_id = hl_get_pci_memory_region(hdev, addr);
if ((region_id != PCI_REGION_SRAM) &&
((region_id != PCI_REGION_DRAM))) {
dev_err(hdev->dev,
"Invalid region to copy FW image address=%llx\n", addr);
return -EIO;
}
region = &hdev->pci_mem_region[region_id];
/* store the region for the copy stage */
fw_loader->dynamic_loader.image_region = region;
/*
* here we know that the start address is valid, now make sure that the
* image is within region's bounds
*/
rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
fw_loader->dynamic_loader.fw_image_size,
region);
if (rc) {
dev_err(hdev->dev,
"invalid mem transfer request for FW image\n");
return rc;
}
return 0;
}
static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
struct fw_response *response,
struct pci_mem_region *region)
{
u64 device_addr;
int rc;
device_addr = region->region_base + response->ram_offset;
/*
* validate that the descriptor is within region's bounds
* Note that as the start address was supplied according to the RAM
* type- testing only the end address is enough
*/
rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
sizeof(struct lkd_fw_comms_desc),
region);
return rc;
}
/**
* hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct lkd_fw_comms_desc *fw_desc;
struct pci_mem_region *region;
struct fw_response *response;
enum pci_region region_id;
void __iomem *src;
int rc;
fw_desc = &fw_loader->dynamic_loader.comm_desc;
response = &fw_loader->dynamic_loader.response;
region_id = (response->ram_type == COMMS_SRAM) ?
PCI_REGION_SRAM : PCI_REGION_DRAM;
region = &hdev->pci_mem_region[region_id];
rc = hl_fw_dynamic_validate_response(hdev, response, region);
if (rc) {
dev_err(hdev->dev,
"invalid mem transfer request for FW descriptor\n");
return rc;
}
/* extract address copy the descriptor from */
src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
response->ram_offset;
memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc);
}
/**
* hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @next_image_size: size to allocate for next FW component
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
size_t next_image_size)
{
int rc;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
next_image_size, true,
fw_loader->cpu_timeout);
if (rc)
return rc;
return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
}
/**
* hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
*
* @hdev: pointer to the habanalabs device structure
* @fwc: the firmware component
* @fw_version: fw component's version string
*/
static void hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
enum hl_fw_component fwc,
const char *fw_version)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
char *preboot_ver, *boot_ver;
char btl_ver[32];
switch (fwc) {
case FW_COMP_BOOT_FIT:
strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
if (boot_ver) {
dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
kfree(boot_ver);
}
break;
case FW_COMP_PREBOOT:
strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
preboot_ver = strnstr(prop->preboot_ver, "Preboot",
VERSION_MAX_LEN);
if (preboot_ver && preboot_ver != prop->preboot_ver) {
strscpy(btl_ver, prop->preboot_ver,
min((int) (preboot_ver - prop->preboot_ver),
31));
dev_info(hdev->dev, "%s\n", btl_ver);
}
preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
if (preboot_ver) {
dev_info(hdev->dev, "preboot version %s\n",
preboot_ver);
kfree(preboot_ver);
}
break;
default:
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
return;
}
}
/**
* hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
*
* @hdev: pointer to the habanalabs device structure
* @fw: fw descriptor
* @fw_loader: managing structure for loading device's FW
*/
static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
const struct firmware *fw,
struct fw_load_mgr *fw_loader)
{
struct lkd_fw_comms_desc *fw_desc;
struct pci_mem_region *region;
void __iomem *dest;
u64 addr;
int rc;
fw_desc = &fw_loader->dynamic_loader.comm_desc;
addr = le64_to_cpu(fw_desc->img_addr);
/* find memory region to which to copy the image */
region = fw_loader->dynamic_loader.image_region;
dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
(addr - region->region_base);
rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
fw_loader->boot_fit_img.src_off,
fw_loader->boot_fit_img.copy_size);
return rc;
}
/**
* hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
*
* @hdev: pointer to the habanalabs device structure
* @msg: message
* @fw_loader: managing structure for loading device's FW
*/
static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
{
struct lkd_fw_comms_desc *fw_desc;
struct pci_mem_region *region;
void __iomem *dest;
u64 addr;
int rc;
fw_desc = &fw_loader->dynamic_loader.comm_desc;
addr = le64_to_cpu(fw_desc->img_addr);
/* find memory region to which to copy the image */
region = fw_loader->dynamic_loader.image_region;
dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
(addr - region->region_base);
rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
return rc;
}
/**
* hl_fw_boot_fit_update_state - update internal data structures after boot-fit
* is loaded
*
* @hdev: pointer to the habanalabs device structure
* @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
* @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
*
* @return 0 on success, otherwise non-zero error code
*/
static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
u32 cpu_boot_dev_sts0_reg,
u32 cpu_boot_dev_sts1_reg)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
/* Clear reset status since we need to read it again from boot CPU */
prop->hard_reset_done_by_fw = false;
/* Read boot_cpu status bits */
if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
prop->fw_bootfit_cpu_boot_dev_sts0 =
RREG32(cpu_boot_dev_sts0_reg);
if (prop->fw_bootfit_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_FW_HARD_RST_EN)
prop->hard_reset_done_by_fw = true;
dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
prop->fw_bootfit_cpu_boot_dev_sts0);
}
if (prop->fw_cpu_boot_dev_sts1_valid) {
prop->fw_bootfit_cpu_boot_dev_sts1 =
RREG32(cpu_boot_dev_sts1_reg);
dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
prop->fw_bootfit_cpu_boot_dev_sts1);
}
dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
}
static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
{
struct cpu_dyn_regs *dyn_regs =
&hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
/* Check whether all 3 interrupt interfaces are set, if not use a
* single interface
*/
if (!hdev->asic_prop.gic_interrupts_enable &&
!(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_irq_ctrl;
dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_irq_ctrl;
dev_warn(hdev->dev,
"Using a single interrupt interface towards cpucp");
}
}
/**
* hl_fw_dynamic_load_image - load FW image using dynamic protocol
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @load_fwc: the FW component to be loaded
* @img_ld_timeout: image load timeout
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_load_image(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum hl_fw_component load_fwc,
u32 img_ld_timeout)
{
enum hl_fw_component cur_fwc;
const struct firmware *fw;
char *fw_name;
int rc = 0;
/*
* when loading image we have one of 2 scenarios:
* 1. current FW component is preboot and we want to load boot-fit
* 2. current FW component is boot-fit and we want to load linux
*/
if (load_fwc == FW_COMP_BOOT_FIT) {
cur_fwc = FW_COMP_PREBOOT;
fw_name = fw_loader->boot_fit_img.image_name;
} else {
cur_fwc = FW_COMP_BOOT_FIT;
fw_name = fw_loader->linux_img.image_name;
}
/* request FW in order to communicate to FW the size to be allocated */
rc = hl_request_fw(hdev, &fw, fw_name);
if (rc)
return rc;
/* store the image size for future validation */
fw_loader->dynamic_loader.fw_image_size = fw->size;
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
if (rc)
goto release_fw;
/* read preboot version */
hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
/* update state according to boot stage */
if (cur_fwc == FW_COMP_BOOT_FIT) {
struct cpu_dyn_regs *dyn_regs;
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
hl_fw_boot_fit_update_state(hdev,
le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
}
/* copy boot fit to space allocated by FW */
rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
if (rc)
goto release_fw;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
0, true,
fw_loader->cpu_timeout);
if (rc)
goto release_fw;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
0, false,
img_ld_timeout);
release_fw:
hl_release_firmware(fw);
return rc;
}
static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct dynamic_fw_load_mgr *dyn_loader;
u32 status;
int rc;
dyn_loader = &fw_loader->dynamic_loader;
/* Make sure CPU boot-loader is running */
rc = hl_poll_timeout(
hdev,
le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
status,
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
(status == CPU_BOOT_STATUS_READY_TO_BOOT),
FW_CPU_STATUS_POLL_INTERVAL_USEC,
dyn_loader->wait_for_bl_timeout);
if (rc) {
dev_err(hdev->dev, "failed to wait for boot\n");
return rc;
}
dev_dbg(hdev->dev, "uboot status = %d\n", status);
return 0;
}
static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct dynamic_fw_load_mgr *dyn_loader;
u32 status;
int rc;
dyn_loader = &fw_loader->dynamic_loader;
/* Make sure CPU boot-loader is running */
rc = hl_poll_timeout(
hdev,
le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
status,
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
FW_CPU_STATUS_POLL_INTERVAL_USEC,
fw_loader->cpu_timeout);
if (rc) {
dev_err(hdev->dev, "failed to wait for Linux\n");
return rc;
}
dev_dbg(hdev->dev, "Boot status = %d\n", status);
return 0;
}
/**
* hl_fw_linux_update_state - update internal data structures after Linux
* is loaded.
* Note: Linux initialization is comprised mainly
* of two stages - loading kernel (SRAM_AVAIL)
* & loading ARMCP.
* Therefore reading boot device status in any of
* these stages might result in different values.
*
* @hdev: pointer to the habanalabs device structure
* @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
* @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
*
* @return 0 on success, otherwise non-zero error code
*/
static void hl_fw_linux_update_state(struct hl_device *hdev,
u32 cpu_boot_dev_sts0_reg,
u32 cpu_boot_dev_sts1_reg)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
hdev->fw_loader.linux_loaded = true;
/* Clear reset status since we need to read again from app */
prop->hard_reset_done_by_fw = false;
/* Read FW application security bits */
if (prop->fw_cpu_boot_dev_sts0_valid) {
prop->fw_app_cpu_boot_dev_sts0 =
RREG32(cpu_boot_dev_sts0_reg);
if (prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_FW_HARD_RST_EN)
prop->hard_reset_done_by_fw = true;
if (prop->fw_app_cpu_boot_dev_sts0 &
CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
prop->gic_interrupts_enable = false;
dev_dbg(hdev->dev,
"Firmware application CPU status0 %#x\n",
prop->fw_app_cpu_boot_dev_sts0);
dev_dbg(hdev->dev, "GIC controller is %s\n",
prop->gic_interrupts_enable ?
"enabled" : "disabled");
}
if (prop->fw_cpu_boot_dev_sts1_valid) {
prop->fw_app_cpu_boot_dev_sts1 =
RREG32(cpu_boot_dev_sts1_reg);
dev_dbg(hdev->dev,
"Firmware application CPU status1 %#x\n",
prop->fw_app_cpu_boot_dev_sts1);
}
dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
dev_info(hdev->dev, "Successfully loaded firmware to device\n");
}
/**
* hl_fw_dynamic_report_reset_cause - send a COMMS message with the cause
* of the newly triggered hard reset
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
* @reset_cause: enumerated cause for the recent hard reset
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_dynamic_report_reset_cause(struct hl_device *hdev,
struct fw_load_mgr *fw_loader,
enum comms_reset_cause reset_cause)
{
struct lkd_msg_comms msg;
int rc;
memset(&msg, 0, sizeof(msg));
/* create message to be sent */
msg.header.type = HL_COMMS_RESET_CAUSE_TYPE;
msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header));
msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
msg.reset_cause = reset_cause;
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
sizeof(struct lkd_msg_comms));
if (rc)
return rc;
/* copy message to space allocated by FW */
rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader);
if (rc)
return rc;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
0, true,
fw_loader->cpu_timeout);
if (rc)
return rc;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
0, true,
fw_loader->cpu_timeout);
if (rc)
return rc;
return 0;
}
/**
* hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*
* brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
* the communication is done using registers:
* - LKD command register
* - FW status register
* the protocol is race free. this goal is achieved by splitting the requests
* and response to known synchronization points between the LKD and the FW.
* each response to LKD request is known and bound to a predefined timeout.
* in case of timeout expiration without the desired status from FW- the
* protocol (and hence the boot) will fail.
*/
static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
struct cpu_dyn_regs *dyn_regs;
int rc;
dev_info(hdev->dev,
"Loading firmware to device, may take some time...\n");
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
0, true,
fw_loader->cpu_timeout);
if (rc)
goto protocol_err;
if (hdev->curr_reset_cause) {
rc = hl_fw_dynamic_report_reset_cause(hdev, fw_loader,
hdev->curr_reset_cause);
if (rc)
goto protocol_err;
/* Clear current reset cause */
hdev->curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
}
if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0);
if (rc)
goto protocol_err;
/* read preboot version */
hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
return 0;
}
/* load boot fit to FW */
rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
fw_loader->boot_fit_timeout);
if (rc) {
dev_err(hdev->dev, "failed to load boot fit\n");
goto protocol_err;
}
rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
if (rc)
goto protocol_err;
/* Enable DRAM scrambling before Linux boot and after successful
* UBoot
*/
hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
if (!(hdev->fw_components & FW_TYPE_LINUX)) {
dev_info(hdev->dev, "Skip loading Linux F/W\n");
return 0;
}
if (fw_loader->skip_bmc) {
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
COMMS_SKIP_BMC, 0,
true,
fw_loader->cpu_timeout);
if (rc) {
dev_err(hdev->dev, "failed to load boot fit\n");
goto protocol_err;
}
}
/* load Linux image to FW */
rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
fw_loader->cpu_timeout);
if (rc) {
dev_err(hdev->dev, "failed to load Linux\n");
goto protocol_err;
}
rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
if (rc)
goto protocol_err;
hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
hl_fw_dynamic_update_linux_interrupt_if(hdev);
return 0;
protocol_err:
fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
le32_to_cpu(dyn_regs->cpu_boot_err1),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
return rc;
}
/**
* hl_fw_static_init_cpu - initialize the device CPU using static protocol
*
* @hdev: pointer to the habanalabs device structure
* @fw_loader: managing structure for loading device's FW
*
* @return 0 on success, otherwise non-zero error code
*/
static int hl_fw_static_init_cpu(struct hl_device *hdev,
struct fw_load_mgr *fw_loader)
{
u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
struct static_fw_load_mgr *static_loader;
u32 cpu_boot_status_reg;
int rc;
if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
return 0;
/* init common loader parameters */
cpu_timeout = fw_loader->cpu_timeout;
/* init static loader parameters */
static_loader = &fw_loader->static_loader;
cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
cpu_timeout / USEC_PER_SEC);
/* Wait for boot FIT request */
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
FW_CPU_STATUS_POLL_INTERVAL_USEC,
fw_loader->boot_fit_timeout);
if (rc) {
dev_dbg(hdev->dev,
"No boot fit request received, resuming boot\n");
} else {
rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
if (rc)
goto out;
/* Clear device CPU message status */
WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
/* Signal device CPU that boot loader is ready */
WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
/* Poll for CPU device ack */
rc = hl_poll_timeout(
hdev,
cpu_msg_status_reg,
status,
status == CPU_MSG_OK,
FW_CPU_STATUS_POLL_INTERVAL_USEC,
fw_loader->boot_fit_timeout);
if (rc) {
dev_err(hdev->dev,
"Timeout waiting for boot fit load ack\n");
goto out;
}
/* Clear message */
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
}
/* Make sure CPU boot-loader is running */
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_DRAM_RDY) ||
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
FW_CPU_STATUS_POLL_INTERVAL_USEC,
cpu_timeout);
dev_dbg(hdev->dev, "uboot status = %d\n", status);
/* Read U-Boot version now in case we will later fail */
hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
/* update state according to boot stage */
hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
if (rc) {
detect_cpu_boot_status(hdev, status);
rc = -EIO;
goto out;
}
/* Enable DRAM scrambling before Linux boot and after successful
* UBoot
*/
hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
if (!(hdev->fw_components & FW_TYPE_LINUX)) {
dev_info(hdev->dev, "Skip loading Linux F/W\n");
rc = 0;
goto out;
}
if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
rc = 0;
goto out;
}
dev_info(hdev->dev,
"Loading firmware to device, may take some time...\n");
rc = hdev->asic_funcs->load_firmware_to_device(hdev);
if (rc)
goto out;
if (fw_loader->skip_bmc) {
WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
FW_CPU_STATUS_POLL_INTERVAL_USEC,
cpu_timeout);
if (rc) {
dev_err(hdev->dev,
"Failed to get ACK on skipping BMC, %d\n",
status);
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
rc = -EIO;
goto out;
}
}
WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
rc = hl_poll_timeout(
hdev,
cpu_boot_status_reg,
status,
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
FW_CPU_STATUS_POLL_INTERVAL_USEC,
cpu_timeout);
/* Clear message */
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
if (rc) {
if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
dev_err(hdev->dev,
"Device reports FIT image is corrupted\n");
else
dev_err(hdev->dev,
"Failed to load firmware to device, %d\n",
status);
rc = -EIO;
goto out;
}
rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
fw_loader->static_loader.boot_err1_reg,
cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
if (rc)
return rc;
hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
return 0;
out:
fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
fw_loader->static_loader.boot_err1_reg,
cpu_boot_dev_status0_reg,
cpu_boot_dev_status1_reg);
return rc;
}
/**
* hl_fw_init_cpu - initialize the device CPU
*
* @hdev: pointer to the habanalabs device structure
*
* @return 0 on success, otherwise non-zero error code
*
* perform necessary initializations for device's CPU. takes into account if
* init protocol is static or dynamic.
*/
int hl_fw_init_cpu(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
return prop->dynamic_fw_load ?
hl_fw_dynamic_init_cpu(hdev, fw_loader) :
hl_fw_static_init_cpu(hdev, fw_loader);
}
|