summaryrefslogtreecommitdiff
path: root/drivers/memory/emif.c
blob: df0873694858e74b3fdeaa3066c33840cb2ec7dc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
/*
 * EMIF driver
 *
 * Copyright (C) 2012 Texas Instruments, Inc.
 *
 * Aneesh V <aneesh@ti.com>
 * Santosh Shilimkar <santosh.shilimkar@ti.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/platform_data/emif_plat.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <memory/jedec_ddr.h>
#include "emif.h"
#include "of_memory.h"

/**
 * struct emif_data - Per device static data for driver's use
 * @duplicate:			Whether the DDR devices attached to this EMIF
 *				instance are exactly same as that on EMIF1. In
 *				this case we can save some memory and processing
 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
 *				to this EMIF - read from MR4 register. If there
 *				are two devices attached to this EMIF, this
 *				value is the maximum of the two temperature
 *				levels.
 * @node:			node in the device list
 * @base:			base address of memory-mapped IO registers.
 * @dev:			device pointer.
 * @addressing			table with addressing information from the spec
 * @regs_cache:			An array of 'struct emif_regs' that stores
 *				calculated register values for different
 *				frequencies, to avoid re-calculating them on
 *				each DVFS transition.
 * @curr_regs:			The set of register values used in the last
 *				frequency change (i.e. corresponding to the
 *				frequency in effect at the moment)
 * @plat_data:			Pointer to saved platform data.
 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
 * @np_ddr:			Pointer to ddr device tree node
 */
struct emif_data {
	u8				duplicate;
	u8				temperature_level;
	u8				lpmode;
	struct list_head		node;
	unsigned long			irq_state;
	void __iomem			*base;
	struct device			*dev;
	const struct lpddr2_addressing	*addressing;
	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
	struct emif_regs		*curr_regs;
	struct emif_platform_data	*plat_data;
	struct dentry			*debugfs_root;
	struct device_node		*np_ddr;
};

static struct emif_data *emif1;
static spinlock_t	emif_lock;
static unsigned long	irq_state;
static u32		t_ck; /* DDR clock period in ps */
static LIST_HEAD(device_list);

#ifdef CONFIG_DEBUG_FS
static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
	struct emif_regs *regs)
{
	u32 type = emif->plat_data->device_info->type;
	u32 ip_rev = emif->plat_data->ip_rev;

	seq_printf(s, "EMIF register cache dump for %dMHz\n",
		regs->freq/1000000);

	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);

	if (ip_rev == EMIF_4D) {
		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
			regs->read_idle_ctrl_shdw_normal);
		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
			regs->read_idle_ctrl_shdw_volt_ramp);
	} else if (ip_rev == EMIF_4D5) {
		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
			regs->dll_calib_ctrl_shdw_normal);
		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
			regs->dll_calib_ctrl_shdw_volt_ramp);
	}

	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
			regs->ref_ctrl_shdw_derated);
		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
			regs->sdram_tim1_shdw_derated);
		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
			regs->sdram_tim3_shdw_derated);
	}
}

static int emif_regdump_show(struct seq_file *s, void *unused)
{
	struct emif_data	*emif	= s->private;
	struct emif_regs	**regs_cache;
	int			i;

	if (emif->duplicate)
		regs_cache = emif1->regs_cache;
	else
		regs_cache = emif->regs_cache;

	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
		do_emif_regdump_show(s, emif, regs_cache[i]);
		seq_printf(s, "\n");
	}

	return 0;
}

static int emif_regdump_open(struct inode *inode, struct file *file)
{
	return single_open(file, emif_regdump_show, inode->i_private);
}

static const struct file_operations emif_regdump_fops = {
	.open			= emif_regdump_open,
	.read			= seq_read,
	.release		= single_release,
};

static int emif_mr4_show(struct seq_file *s, void *unused)
{
	struct emif_data *emif = s->private;

	seq_printf(s, "MR4=%d\n", emif->temperature_level);
	return 0;
}

static int emif_mr4_open(struct inode *inode, struct file *file)
{
	return single_open(file, emif_mr4_show, inode->i_private);
}

static const struct file_operations emif_mr4_fops = {
	.open			= emif_mr4_open,
	.read			= seq_read,
	.release		= single_release,
};

static int __init_or_module emif_debugfs_init(struct emif_data *emif)
{
	struct dentry	*dentry;
	int		ret;

	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
	if (!dentry) {
		ret = -ENOMEM;
		goto err0;
	}
	emif->debugfs_root = dentry;

	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
			emif->debugfs_root, emif, &emif_regdump_fops);
	if (!dentry) {
		ret = -ENOMEM;
		goto err1;
	}

	dentry = debugfs_create_file("mr4", S_IRUGO,
			emif->debugfs_root, emif, &emif_mr4_fops);
	if (!dentry) {
		ret = -ENOMEM;
		goto err1;
	}

	return 0;
err1:
	debugfs_remove_recursive(emif->debugfs_root);
err0:
	return ret;
}

static void __exit emif_debugfs_exit(struct emif_data *emif)
{
	debugfs_remove_recursive(emif->debugfs_root);
	emif->debugfs_root = NULL;
}
#else
static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
{
	return 0;
}

static inline void __exit emif_debugfs_exit(struct emif_data *emif)
{
}
#endif

/*
 * Calculate the period of DDR clock from frequency value
 */
static void set_ddr_clk_period(u32 freq)
{
	/* Divide 10^12 by frequency to get period in ps */
	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
}

/*
 * Get bus width used by EMIF. Note that this may be different from the
 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 * may be connected to a given CS of EMIF. In this case bus width as far
 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 */
static u32 get_emif_bus_width(struct emif_data *emif)
{
	u32		width;
	void __iomem	*base = emif->base;

	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
			>> NARROW_MODE_SHIFT;
	width = width == 0 ? 32 : 16;

	return width;
}

/*
 * Get the CL from SDRAM_CONFIG register
 */
static u32 get_cl(struct emif_data *emif)
{
	u32		cl;
	void __iomem	*base = emif->base;

	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;

	return cl;
}

static void set_lpmode(struct emif_data *emif, u8 lpmode)
{
	u32 temp;
	void __iomem *base = emif->base;

	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
	temp &= ~LP_MODE_MASK;
	temp |= (lpmode << LP_MODE_SHIFT);
	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
}

static void do_freq_update(void)
{
	struct emif_data *emif;

	/*
	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
	 *
	 * i728 DESCRIPTION:
	 * The EMIF automatically puts the SDRAM into self-refresh mode
	 * after the EMIF has not performed accesses during
	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
	 * to 0x2. If during a small window the following three events
	 * occur:
	 * - The SR_TIMING counter expires
	 * - And frequency change is requested
	 * - And OCP access is requested
	 * Then it causes instable clock on the DDR interface.
	 *
	 * WORKAROUND
	 * To avoid the occurrence of the three events, the workaround
	 * is to disable the self-refresh when requesting a frequency
	 * change. Before requesting a frequency change the software must
	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
	 * frequency change has been done, the software can reprogram
	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
	 */
	list_for_each_entry(emif, &device_list, node) {
		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
	}

	/*
	 * TODO: Do FREQ_UPDATE here when an API
	 * is available for this as part of the new
	 * clock framework
	 */

	list_for_each_entry(emif, &device_list, node) {
		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
	}
}

/* Find addressing table entry based on the device's type and density */
static const struct lpddr2_addressing *get_addressing_table(
	const struct ddr_device_info *device_info)
{
	u32		index, type, density;

	type = device_info->type;
	density = device_info->density;

	switch (type) {
	case DDR_TYPE_LPDDR2_S4:
		index = density - 1;
		break;
	case DDR_TYPE_LPDDR2_S2:
		switch (density) {
		case DDR_DENSITY_1Gb:
		case DDR_DENSITY_2Gb:
			index = density + 3;
			break;
		default:
			index = density - 1;
		}
		break;
	default:
		return NULL;
	}

	return &lpddr2_jedec_addressing_table[index];
}

/*
 * Find the the right timing table from the array of timing
 * tables of the device using DDR clock frequency
 */
static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
		u32 freq)
{
	u32				i, min, max, freq_nearest;
	const struct lpddr2_timings	*timings = NULL;
	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
	struct				device *dev = emif->dev;

	/* Start with a very high frequency - 1GHz */
	freq_nearest = 1000000000;

	/*
	 * Find the timings table such that:
	 *  1. the frequency range covers the required frequency(safe) AND
	 *  2. the max_freq is closest to the required frequency(optimal)
	 */
	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
		max = timings_arr[i].max_freq;
		min = timings_arr[i].min_freq;
		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
			freq_nearest = max;
			timings = &timings_arr[i];
		}
	}

	if (!timings)
		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
			__func__, freq);

	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
		__func__, freq, freq_nearest);

	return timings;
}

static u32 get_sdram_ref_ctrl_shdw(u32 freq,
		const struct lpddr2_addressing *addressing)
{
	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;

	/* Scale down frequency and t_refi to avoid overflow */
	freq_khz = freq / 1000;
	t_refi = addressing->tREFI_ns / 100;

	/*
	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
	 * division by 10000 to account for change in units
	 */
	val = t_refi * freq_khz / 10000;
	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;

	return ref_ctrl_shdw;
}

static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing)
{
	u32 tim1 = 0, val = 0;

	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
	tim1 |= val << T_WTR_SHIFT;

	if (addressing->num_banks == B8)
		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
	else
		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
	tim1 |= (val - 1) << T_RRD_SHIFT;

	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
	tim1 |= val << T_RC_SHIFT;

	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
	tim1 |= (val - 1) << T_RAS_SHIFT;

	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
	tim1 |= val << T_WR_SHIFT;

	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
	tim1 |= val << T_RCD_SHIFT;

	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
	tim1 |= val << T_RP_SHIFT;

	return tim1;
}

static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing)
{
	u32 tim1 = 0, val = 0;

	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
	tim1 = val << T_WTR_SHIFT;

	/*
	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
	 * to tFAW for de-rating
	 */
	if (addressing->num_banks == B8) {
		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
	} else {
		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
		val = max(min_tck->tRRD, val) - 1;
	}
	tim1 |= val << T_RRD_SHIFT;

	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
	tim1 |= (val - 1) << T_RC_SHIFT;

	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
	val = max(min_tck->tRASmin, val) - 1;
	tim1 |= val << T_RAS_SHIFT;

	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
	tim1 |= val << T_WR_SHIFT;

	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
	tim1 |= (val - 1) << T_RCD_SHIFT;

	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
	tim1 |= (val - 1) << T_RP_SHIFT;

	return tim1;
}

static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing,
		u32 type)
{
	u32 tim2 = 0, val = 0;

	val = min_tck->tCKE - 1;
	tim2 |= val << T_CKE_SHIFT;

	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
	tim2 |= val << T_RTP_SHIFT;

	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
	tim2 |= val << T_XSNR_SHIFT;

	/* XSRD same as XSNR for LPDDR2 */
	tim2 |= val << T_XSRD_SHIFT;

	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
	tim2 |= val << T_XP_SHIFT;

	return tim2;
}

static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
		const struct lpddr2_min_tck *min_tck,
		const struct lpddr2_addressing *addressing,
		u32 type, u32 ip_rev, u32 derated)
{
	u32 tim3 = 0, val = 0, t_dqsck;

	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
	val = val > 0xF ? 0xF : val;
	tim3 |= val << T_RAS_MAX_SHIFT;

	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
	tim3 |= val << T_RFC_SHIFT;

	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
		timings->tDQSCK_max_derated : timings->tDQSCK_max;
	if (ip_rev == EMIF_4D5)
		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
	else
		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;

	tim3 |= val << T_TDQSCKMAX_SHIFT;

	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
	tim3 |= val << ZQ_ZQCS_SHIFT;

	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
	val = max(min_tck->tCKESR, val) - 1;
	tim3 |= val << T_CKESR_SHIFT;

	if (ip_rev == EMIF_4D5) {
		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;

		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
		tim3 |= val << T_PDLL_UL_SHIFT;
	}

	return tim3;
}

static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
		bool cs1_used, bool cal_resistors_per_cs)
{
	u32 zq = 0, val = 0;

	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
	zq |= val << ZQ_REFINTERVAL_SHIFT;

	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
	zq |= val << ZQ_ZQCL_MULT_SHIFT;

	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
	zq |= val << ZQ_ZQINIT_MULT_SHIFT;

	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;

	if (cal_resistors_per_cs)
		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
	else
		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;

	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */

	val = cs1_used ? 1 : 0;
	zq |= val << ZQ_CS1EN_SHIFT;

	return zq;
}

static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
		const struct emif_custom_configs *custom_configs, bool cs1_used,
		u32 sdram_io_width, u32 emif_bus_width)
{
	u32 alert = 0, interval, devcnt;

	if (custom_configs && (custom_configs->mask &
				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
		interval = custom_configs->temp_alert_poll_interval_ms;
	else
		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;

	interval *= 1000000;			/* Convert to ns */
	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
	alert |= (interval << TA_REFINTERVAL_SHIFT);

	/*
	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
	 * also to this form and subtract to get TA_DEVCNT, which is
	 * in log2(x) form.
	 */
	emif_bus_width = __fls(emif_bus_width) - 1;
	devcnt = emif_bus_width - sdram_io_width;
	alert |= devcnt << TA_DEVCNT_SHIFT;

	/* DEVWDT is in 'log2(x) - 3' form */
	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;

	alert |= 1 << TA_SFEXITEN_SHIFT;
	alert |= 1 << TA_CS0EN_SHIFT;
	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;

	return alert;
}

static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
{
	u32 idle = 0, val = 0;

	/*
	 * Maximum value in normal conditions and increased frequency
	 * when voltage is ramping
	 */
	if (volt_ramp)
		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
	else
		val = 0x1FF;

	/*
	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
	 */
	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;

	return idle;
}

static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
{
	u32 calib = 0, val = 0;

	if (volt_ramp == DDR_VOLTAGE_RAMPING)
		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
	else
		val = 0; /* Disabled when voltage is stable */

	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;

	return calib;
}

static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
	u32 freq, u8 RL)
{
	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;

	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
	phy |= val << READ_LATENCY_SHIFT_4D;

	if (freq <= 100000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
	else if (freq <= 200000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
	else
		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;

	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;

	return phy;
}

static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
{
	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;

	/*
	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
	 * half-delay is not needed else set half-delay
	 */
	if (freq >= 265000000 && freq < 267000000)
		half_delay = 0;
	else
		half_delay = 1;

	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);

	return phy;
}

static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
{
	u32 fifo_we_slave_ratio;

	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);

	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
		fifo_we_slave_ratio << 22;
}

static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
{
	u32 fifo_we_slave_ratio;

	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);

	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
}

static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
{
	u32 fifo_we_slave_ratio;

	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);

	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
		fifo_we_slave_ratio << 13;
}

static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
{
	u32 pwr_mgmt_ctrl	= 0, timeout;
	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;

	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;

	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
		lpmode		= cust_cfgs->lpmode;
		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
	}

	/* Timeout based on DDR frequency */
	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;

	/* The value to be set in register is "log2(timeout) - 3" */
	if (timeout < 16) {
		timeout = 0;
	} else {
		timeout = __fls(timeout) - 3;
		if (timeout & (timeout - 1))
			timeout++;
	}

	switch (lpmode) {
	case EMIF_LP_MODE_CLOCK_STOP:
		pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
					SR_TIM_MASK | PD_TIM_MASK;
		break;
	case EMIF_LP_MODE_SELF_REFRESH:
		/* Workaround for errata i735 */
		if (timeout < 6)
			timeout = 6;

		pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
					CS_TIM_MASK | PD_TIM_MASK;
		break;
	case EMIF_LP_MODE_PWR_DN:
		pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
					CS_TIM_MASK | SR_TIM_MASK;
		break;
	case EMIF_LP_MODE_DISABLE:
	default:
		pwr_mgmt_ctrl = CS_TIM_MASK |
					PD_TIM_MASK | SR_TIM_MASK;
	}

	/* No CS_TIM in EMIF_4D5 */
	if (ip_rev == EMIF_4D5)
		pwr_mgmt_ctrl &= ~CS_TIM_MASK;

	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;

	return pwr_mgmt_ctrl;
}

/*
 * Get the temperature level of the EMIF instance:
 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 * level. If there are two parts attached(one on each CS), then the temperature
 * level for the EMIF instance is the higher of the two temperatures.
 */
static void get_temperature_level(struct emif_data *emif)
{
	u32		temp, temperature_level;
	void __iomem	*base;

	base = emif->base;

	/* Read mode register 4 */
	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
				MR4_SDRAM_REF_RATE_SHIFT;

	if (emif->plat_data->device_info->cs1_used) {
		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
				>> MR4_SDRAM_REF_RATE_SHIFT;
		temperature_level = max(temp, temperature_level);
	}

	/* treat everything less than nominal(3) in MR4 as nominal */
	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
		temperature_level = SDRAM_TEMP_NOMINAL;

	/* if we get reserved value in MR4 persist with the existing value */
	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
		emif->temperature_level = temperature_level;
}

/*
 * Program EMIF shadow registers that are not dependent on temperature
 * or voltage
 */
static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
{
	void __iomem	*base = emif->base;

	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);

	/* Settings specific for EMIF4D5 */
	if (emif->plat_data->ip_rev != EMIF_4D5)
		return;
	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
}

/*
 * When voltage ramps dll calibration and forced read idle should
 * happen more often
 */
static void setup_volt_sensitive_regs(struct emif_data *emif,
		struct emif_regs *regs, u32 volt_state)
{
	u32		calib_ctrl;
	void __iomem	*base = emif->base;

	/*
	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
	 * a union). So, the below code takes care of both cases
	 */
	if (volt_state == DDR_VOLTAGE_RAMPING)
		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
	else
		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;

	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
}

/*
 * setup_temperature_sensitive_regs() - set the timings for temperature
 * sensitive registers. This happens once at initialisation time based
 * on the temperature at boot time and subsequently based on the temperature
 * alert interrupt. Temperature alert can happen when the temperature
 * increases or drops. So this function can have the effect of either
 * derating the timings or going back to nominal values.
 */
static void setup_temperature_sensitive_regs(struct emif_data *emif,
		struct emif_regs *regs)
{
	u32		tim1, tim3, ref_ctrl, type;
	void __iomem	*base = emif->base;
	u32		temperature;

	type = emif->plat_data->device_info->type;

	tim1 = regs->sdram_tim1_shdw;
	tim3 = regs->sdram_tim3_shdw;
	ref_ctrl = regs->ref_ctrl_shdw;

	/* No de-rating for non-lpddr2 devices */
	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
		goto out;

	temperature = emif->temperature_level;
	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
		ref_ctrl = regs->ref_ctrl_shdw_derated;
	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
		tim1 = regs->sdram_tim1_shdw_derated;
		tim3 = regs->sdram_tim3_shdw_derated;
		ref_ctrl = regs->ref_ctrl_shdw_derated;
	}

out:
	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
}

static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
{
	u32		old_temp_level;
	irqreturn_t	ret = IRQ_HANDLED;

	spin_lock_irqsave(&emif_lock, irq_state);
	old_temp_level = emif->temperature_level;
	get_temperature_level(emif);

	if (unlikely(emif->temperature_level == old_temp_level)) {
		goto out;
	} else if (!emif->curr_regs) {
		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
		goto out;
	}

	if (emif->temperature_level < old_temp_level ||
		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
		/*
		 * Temperature coming down - defer handling to thread OR
		 * Temperature far too high - do kernel_power_off() from
		 * thread context
		 */
		ret = IRQ_WAKE_THREAD;
	} else {
		/* Temperature is going up - handle immediately */
		setup_temperature_sensitive_regs(emif, emif->curr_regs);
		do_freq_update();
	}

out:
	spin_unlock_irqrestore(&emif_lock, irq_state);
	return ret;
}

static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
{
	u32			interrupts;
	struct emif_data	*emif = dev_id;
	void __iomem		*base = emif->base;
	struct device		*dev = emif->dev;
	irqreturn_t		ret = IRQ_HANDLED;

	/* Save the status and clear it */
	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);

	/*
	 * Handle temperature alert
	 * Temperature alert should be same for all ports
	 * So, it's enough to process it only for one of the ports
	 */
	if (interrupts & TA_SYS_MASK)
		ret = handle_temp_alert(base, emif);

	if (interrupts & ERR_SYS_MASK)
		dev_err(dev, "Access error from SYS port - %x\n", interrupts);

	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
		/* Save the status and clear it */
		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);

		if (interrupts & ERR_LL_MASK)
			dev_err(dev, "Access error from LL port - %x\n",
				interrupts);
	}

	return ret;
}

static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
{
	struct emif_data	*emif = dev_id;

	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
		kernel_power_off();
		return IRQ_HANDLED;
	}

	spin_lock_irqsave(&emif_lock, irq_state);

	if (emif->curr_regs) {
		setup_temperature_sensitive_regs(emif, emif->curr_regs);
		do_freq_update();
	} else {
		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
	}

	spin_unlock_irqrestore(&emif_lock, irq_state);

	return IRQ_HANDLED;
}

static void clear_all_interrupts(struct emif_data *emif)
{
	void __iomem	*base = emif->base;

	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
			base + EMIF_LL_OCP_INTERRUPT_STATUS);
}

static void disable_and_clear_all_interrupts(struct emif_data *emif)
{
	void __iomem		*base = emif->base;

	/* Disable all interrupts */
	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);

	/* Clear all interrupts */
	clear_all_interrupts(emif);
}

static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
{
	u32		interrupts, type;
	void __iomem	*base = emif->base;

	type = emif->plat_data->device_info->type;

	clear_all_interrupts(emif);

	/* Enable interrupts for SYS interface */
	interrupts = EN_ERR_SYS_MASK;
	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
		interrupts |= EN_TA_SYS_MASK;
	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);

	/* Enable interrupts for LL interface */
	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
		/* TA need not be enabled for LL */
		interrupts = EN_ERR_LL_MASK;
		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
	}

	/* setup IRQ handlers */
	return devm_request_threaded_irq(emif->dev, irq,
				    emif_interrupt_handler,
				    emif_threaded_isr,
				    0, dev_name(emif->dev),
				    emif);

}

static void __init_or_module emif_onetime_settings(struct emif_data *emif)
{
	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
	void __iomem			*base = emif->base;
	const struct lpddr2_addressing	*addressing;
	const struct ddr_device_info	*device_info;

	device_info = emif->plat_data->device_info;
	addressing = get_addressing_table(device_info);

	/*
	 * Init power management settings
	 * We don't know the frequency yet. Use a high frequency
	 * value for a conservative timeout setting
	 */
	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
			emif->plat_data->ip_rev);
	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);

	/* Init ZQ calibration settings */
	zq = get_zq_config_reg(addressing, device_info->cs1_used,
		device_info->cal_resistors_per_cs);
	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);

	/* Check temperature level temperature level*/
	get_temperature_level(emif);
	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");

	/* Init temperature polling */
	temp_alert_cfg = get_temp_alert_config(addressing,
		emif->plat_data->custom_configs, device_info->cs1_used,
		device_info->io_width, get_emif_bus_width(emif));
	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);

	/*
	 * Program external PHY control registers that are not frequency
	 * dependent
	 */
	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
		return;
	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
}

static void get_default_timings(struct emif_data *emif)
{
	struct emif_platform_data *pd = emif->plat_data;

	pd->timings		= lpddr2_jedec_timings;
	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);

	dev_warn(emif->dev, "%s: using default timings\n", __func__);
}

static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
		u32 ip_rev, struct device *dev)
{
	int valid;

	valid = (type == DDR_TYPE_LPDDR2_S4 ||
			type == DDR_TYPE_LPDDR2_S2)
		&& (density >= DDR_DENSITY_64Mb
			&& density <= DDR_DENSITY_8Gb)
		&& (io_width >= DDR_IO_WIDTH_8
			&& io_width <= DDR_IO_WIDTH_32);

	/* Combinations of EMIF and PHY revisions that we support today */
	switch (ip_rev) {
	case EMIF_4D:
		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
		break;
	case EMIF_4D5:
		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
		break;
	default:
		valid = 0;
	}

	if (!valid)
		dev_err(dev, "%s: invalid DDR details\n", __func__);
	return valid;
}

static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
		struct device *dev)
{
	int valid = 1;

	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
		valid = cust_cfgs->lpmode_freq_threshold &&
			cust_cfgs->lpmode_timeout_performance &&
			cust_cfgs->lpmode_timeout_power;

	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;

	if (!valid)
		dev_warn(dev, "%s: invalid custom configs\n", __func__);

	return valid;
}

#if defined(CONFIG_OF)
static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
		struct emif_data *emif)
{
	struct emif_custom_configs	*cust_cfgs = NULL;
	int				len;
	const int			*lpmode, *poll_intvl;

	lpmode = of_get_property(np_emif, "low-power-mode", &len);
	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);

	if (lpmode || poll_intvl)
		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
			GFP_KERNEL);

	if (!cust_cfgs)
		return;

	if (lpmode) {
		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
		cust_cfgs->lpmode = *lpmode;
		of_property_read_u32(np_emif,
				"low-power-mode-timeout-performance",
				&cust_cfgs->lpmode_timeout_performance);
		of_property_read_u32(np_emif,
				"low-power-mode-timeout-power",
				&cust_cfgs->lpmode_timeout_power);
		of_property_read_u32(np_emif,
				"low-power-mode-freq-threshold",
				&cust_cfgs->lpmode_freq_threshold);
	}

	if (poll_intvl) {
		cust_cfgs->mask |=
				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
		cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
	}

	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
		devm_kfree(emif->dev, cust_cfgs);
		return;
	}

	emif->plat_data->custom_configs = cust_cfgs;
}

static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
		struct device_node *np_ddr,
		struct ddr_device_info *dev_info)
{
	u32 density = 0, io_width = 0;
	int len;

	if (of_find_property(np_emif, "cs1-used", &len))
		dev_info->cs1_used = true;

	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
		dev_info->cal_resistors_per_cs = true;

	if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
		dev_info->type = DDR_TYPE_LPDDR2_S4;
	else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
		dev_info->type = DDR_TYPE_LPDDR2_S2;

	of_property_read_u32(np_ddr, "density", &density);
	of_property_read_u32(np_ddr, "io-width", &io_width);

	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
	if (density & (density - 1))
		dev_info->density = 0;
	else
		dev_info->density = __fls(density) - 5;

	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
	if (io_width & (io_width - 1))
		dev_info->io_width = 0;
	else
		dev_info->io_width = __fls(io_width) - 1;
}

static struct emif_data * __init_or_module of_get_memory_device_details(
		struct device_node *np_emif, struct device *dev)
{
	struct emif_data		*emif = NULL;
	struct ddr_device_info		*dev_info = NULL;
	struct emif_platform_data	*pd = NULL;
	struct device_node		*np_ddr;
	int				len;

	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
	if (!np_ddr)
		goto error;
	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);

	if (!emif || !pd || !dev_info) {
		dev_err(dev, "%s: Out of memory!!\n",
			__func__);
		goto error;
	}

	emif->plat_data		= pd;
	pd->device_info		= dev_info;
	emif->dev		= dev;
	emif->np_ddr		= np_ddr;
	emif->temperature_level	= SDRAM_TEMP_NOMINAL;

	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
		emif->plat_data->ip_rev = EMIF_4D;
	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
		emif->plat_data->ip_rev = EMIF_4D5;

	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);

	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;

	of_get_ddr_info(np_emif, np_ddr, dev_info);
	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
			emif->dev)) {
		dev_err(dev, "%s: invalid device data!!\n", __func__);
		goto error;
	}
	/*
	 * For EMIF instances other than EMIF1 see if the devices connected
	 * are exactly same as on EMIF1(which is typically the case). If so,
	 * mark it as a duplicate of EMIF1. This will save some memory and
	 * computation.
	 */
	if (emif1 && emif1->np_ddr == np_ddr) {
		emif->duplicate = true;
		goto out;
	} else if (emif1) {
		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
			__func__);
	}

	of_get_custom_configs(np_emif, emif);
	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
					emif->plat_data->device_info->type,
					&emif->plat_data->timings_arr_size);

	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
	goto out;

error:
	return NULL;
out:
	return emif;
}

#else

static struct emif_data * __init_or_module of_get_memory_device_details(
		struct device_node *np_emif, struct device *dev)
{
	return NULL;
}
#endif

static struct emif_data *__init_or_module get_device_details(
		struct platform_device *pdev)
{
	u32				size;
	struct emif_data		*emif = NULL;
	struct ddr_device_info		*dev_info;
	struct emif_custom_configs	*cust_cfgs;
	struct emif_platform_data	*pd;
	struct device			*dev;
	void				*temp;

	pd = pdev->dev.platform_data;
	dev = &pdev->dev;

	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
			pd->device_info->density, pd->device_info->io_width,
			pd->phy_type, pd->ip_rev, dev))) {
		dev_err(dev, "%s: invalid device data\n", __func__);
		goto error;
	}

	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);

	if (!emif || !pd || !dev_info) {
		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
		goto error;
	}

	memcpy(temp, pd, sizeof(*pd));
	pd = temp;
	memcpy(dev_info, pd->device_info, sizeof(*dev_info));

	pd->device_info		= dev_info;
	emif->plat_data		= pd;
	emif->dev		= dev;
	emif->temperature_level	= SDRAM_TEMP_NOMINAL;

	/*
	 * For EMIF instances other than EMIF1 see if the devices connected
	 * are exactly same as on EMIF1(which is typically the case). If so,
	 * mark it as a duplicate of EMIF1 and skip copying timings data.
	 * This will save some memory and some computation later.
	 */
	emif->duplicate = emif1 && (memcmp(dev_info,
		emif1->plat_data->device_info,
		sizeof(struct ddr_device_info)) == 0);

	if (emif->duplicate) {
		pd->timings = NULL;
		pd->min_tck = NULL;
		goto out;
	} else if (emif1) {
		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
			__func__);
	}

	/*
	 * Copy custom configs - ignore allocation error, if any, as
	 * custom_configs is not very critical
	 */
	cust_cfgs = pd->custom_configs;
	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
		if (temp)
			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
		else
			dev_warn(dev, "%s:%d: allocation error\n", __func__,
				__LINE__);
		pd->custom_configs = temp;
	}

	/*
	 * Copy timings and min-tck values from platform data. If it is not
	 * available or if memory allocation fails, use JEDEC defaults
	 */
	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
	if (pd->timings) {
		temp = devm_kzalloc(dev, size, GFP_KERNEL);
		if (temp) {
			memcpy(temp, pd->timings, sizeof(*pd->timings));
			pd->timings = temp;
		} else {
			dev_warn(dev, "%s:%d: allocation error\n", __func__,
				__LINE__);
			get_default_timings(emif);
		}
	} else {
		get_default_timings(emif);
	}

	if (pd->min_tck) {
		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
		if (temp) {
			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
			pd->min_tck = temp;
		} else {
			dev_warn(dev, "%s:%d: allocation error\n", __func__,
				__LINE__);
			pd->min_tck = &lpddr2_jedec_min_tck;
		}
	} else {
		pd->min_tck = &lpddr2_jedec_min_tck;
	}

out:
	return emif;

error:
	return NULL;
}

static int __init_or_module emif_probe(struct platform_device *pdev)
{
	struct emif_data	*emif;
	struct resource		*res;
	int			irq;

	if (pdev->dev.of_node)
		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
	else
		emif = get_device_details(pdev);

	if (!emif) {
		pr_err("%s: error getting device data\n", __func__);
		goto error;
	}

	list_add(&emif->node, &device_list);
	emif->addressing = get_addressing_table(emif->plat_data->device_info);

	/* Save pointers to each other in emif and device structures */
	emif->dev = &pdev->dev;
	platform_set_drvdata(pdev, emif);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(emif->dev, "%s: error getting memory resource\n",
			__func__);
		goto error;
	}

	emif->base = devm_ioremap_resource(emif->dev, res);
	if (IS_ERR(emif->base))
		goto error;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
			__func__, irq);
		goto error;
	}

	emif_onetime_settings(emif);
	emif_debugfs_init(emif);
	disable_and_clear_all_interrupts(emif);
	setup_interrupts(emif, irq);

	/* One-time actions taken on probing the first device */
	if (!emif1) {
		emif1 = emif;
		spin_lock_init(&emif_lock);

		/*
		 * TODO: register notifiers for frequency and voltage
		 * change here once the respective frameworks are
		 * available
		 */
	}

	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
		__func__, emif->base, irq);

	return 0;
error:
	return -ENODEV;
}

static int __exit emif_remove(struct platform_device *pdev)
{
	struct emif_data *emif = platform_get_drvdata(pdev);

	emif_debugfs_exit(emif);

	return 0;
}

static void emif_shutdown(struct platform_device *pdev)
{
	struct emif_data	*emif = platform_get_drvdata(pdev);

	disable_and_clear_all_interrupts(emif);
}

static int get_emif_reg_values(struct emif_data *emif, u32 freq,
		struct emif_regs *regs)
{
	u32				cs1_used, ip_rev, phy_type;
	u32				cl, type;
	const struct lpddr2_timings	*timings;
	const struct lpddr2_min_tck	*min_tck;
	const struct ddr_device_info	*device_info;
	const struct lpddr2_addressing	*addressing;
	struct emif_data		*emif_for_calc;
	struct device			*dev;
	const struct emif_custom_configs *custom_configs;

	dev = emif->dev;
	/*
	 * If the devices on this EMIF instance is duplicate of EMIF1,
	 * use EMIF1 details for the calculation
	 */
	emif_for_calc	= emif->duplicate ? emif1 : emif;
	timings		= get_timings_table(emif_for_calc, freq);
	addressing	= emif_for_calc->addressing;
	if (!timings || !addressing) {
		dev_err(dev, "%s: not enough data available for %dHz",
			__func__, freq);
		return -1;
	}

	device_info	= emif_for_calc->plat_data->device_info;
	type		= device_info->type;
	cs1_used	= device_info->cs1_used;
	ip_rev		= emif_for_calc->plat_data->ip_rev;
	phy_type	= emif_for_calc->plat_data->phy_type;

	min_tck		= emif_for_calc->plat_data->min_tck;
	custom_configs	= emif_for_calc->plat_data->custom_configs;

	set_ddr_clk_period(freq);

	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
			addressing);
	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
			addressing, type);
	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);

	cl = get_cl(emif);

	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
			timings, freq, cl);
	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
	} else {
		return -1;
	}

	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
	regs->pwr_mgmt_ctrl_shdw =
		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);

	if (ip_rev & EMIF_4D) {
		regs->read_idle_ctrl_shdw_normal =
			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);

		regs->read_idle_ctrl_shdw_volt_ramp =
			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
	} else if (ip_rev & EMIF_4D5) {
		regs->dll_calib_ctrl_shdw_normal =
			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);

		regs->dll_calib_ctrl_shdw_volt_ramp =
			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
	}

	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
			addressing);

		regs->sdram_tim1_shdw_derated =
			get_sdram_tim_1_shdw_derated(timings, min_tck,
				addressing);

		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
			min_tck, addressing, type, ip_rev,
			EMIF_DERATED_TIMINGS);
	}

	regs->freq = freq;

	return 0;
}

/*
 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
 * given frequency(freq):
 *
 * As an optimisation, every EMIF instance other than EMIF1 shares the
 * register cache with EMIF1 if the devices connected on this instance
 * are same as that on EMIF1(indicated by the duplicate flag)
 *
 * If we do not have an entry corresponding to the frequency given, we
 * allocate a new entry and calculate the values
 *
 * Upon finding the right reg dump, save it in curr_regs. It can be
 * directly used for thermal de-rating and voltage ramping changes.
 */
static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
{
	int			i;
	struct emif_regs	**regs_cache;
	struct emif_regs	*regs = NULL;
	struct device		*dev;

	dev = emif->dev;
	if (emif->curr_regs && emif->curr_regs->freq == freq) {
		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
		return emif->curr_regs;
	}

	if (emif->duplicate)
		regs_cache = emif1->regs_cache;
	else
		regs_cache = emif->regs_cache;

	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
		if (regs_cache[i]->freq == freq) {
			regs = regs_cache[i];
			dev_dbg(dev,
				"%s: reg dump found in reg cache for %u Hz\n",
				__func__, freq);
			break;
		}
	}

	/*
	 * If we don't have an entry for this frequency in the cache create one
	 * and calculate the values
	 */
	if (!regs) {
		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
		if (!regs)
			return NULL;

		if (get_emif_reg_values(emif, freq, regs)) {
			devm_kfree(emif->dev, regs);
			return NULL;
		}

		/*
		 * Now look for an un-used entry in the cache and save the
		 * newly created struct. If there are no free entries
		 * over-write the last entry
		 */
		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
			;

		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
				__func__);
			i = EMIF_MAX_NUM_FREQUENCIES - 1;
			devm_kfree(emif->dev, regs_cache[i]);
		}
		regs_cache[i] = regs;
	}

	return regs;
}

static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
{
	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
		volt_state);

	if (!emif->curr_regs) {
		dev_err(emif->dev,
			"%s: volt-notify before registers are ready: %d\n",
			__func__, volt_state);
		return;
	}

	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
}

/*
 * TODO: voltage notify handling should be hooked up to
 * regulator framework as soon as the necessary support
 * is available in mainline kernel. This function is un-used
 * right now.
 */
static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
{
	struct emif_data *emif;

	spin_lock_irqsave(&emif_lock, irq_state);

	list_for_each_entry(emif, &device_list, node)
		do_volt_notify_handling(emif, volt_state);
	do_freq_update();

	spin_unlock_irqrestore(&emif_lock, irq_state);
}

static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
{
	struct emif_regs *regs;

	regs = get_regs(emif, new_freq);
	if (!regs)
		return;

	emif->curr_regs = regs;

	/*
	 * Update the shadow registers:
	 * Temperature and voltage-ramp sensitive settings are also configured
	 * in terms of DDR cycles. So, we need to update them too when there
	 * is a freq change
	 */
	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
		__func__, new_freq);
	setup_registers(emif, regs);
	setup_temperature_sensitive_regs(emif, regs);
	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);

	/*
	 * Part of workaround for errata i728. See do_freq_update()
	 * for more details
	 */
	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
}

/*
 * TODO: frequency notify handling should be hooked up to
 * clock framework as soon as the necessary support is
 * available in mainline kernel. This function is un-used
 * right now.
 */
static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
{
	struct emif_data *emif;

	/*
	 * NOTE: we are taking the spin-lock here and releases it
	 * only in post-notifier. This doesn't look good and
	 * Sparse complains about it, but this seems to be
	 * un-avoidable. We need to lock a sequence of events
	 * that is split between EMIF and clock framework.
	 *
	 * 1. EMIF driver updates EMIF timings in shadow registers in the
	 *    frequency pre-notify callback from clock framework
	 * 2. clock framework sets up the registers for the new frequency
	 * 3. clock framework initiates a hw-sequence that updates
	 *    the frequency EMIF timings synchronously.
	 *
	 * All these 3 steps should be performed as an atomic operation
	 * vis-a-vis similar sequence in the EMIF interrupt handler
	 * for temperature events. Otherwise, there could be race
	 * conditions that could result in incorrect EMIF timings for
	 * a given frequency
	 */
	spin_lock_irqsave(&emif_lock, irq_state);

	list_for_each_entry(emif, &device_list, node)
		do_freq_pre_notify_handling(emif, new_freq);
}

static void do_freq_post_notify_handling(struct emif_data *emif)
{
	/*
	 * Part of workaround for errata i728. See do_freq_update()
	 * for more details
	 */
	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
}

/*
 * TODO: frequency notify handling should be hooked up to
 * clock framework as soon as the necessary support is
 * available in mainline kernel. This function is un-used
 * right now.
 */
static void __attribute__((unused)) freq_post_notify_handling(void)
{
	struct emif_data *emif;

	list_for_each_entry(emif, &device_list, node)
		do_freq_post_notify_handling(emif);

	/*
	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
	 * for more details
	 */
	spin_unlock_irqrestore(&emif_lock, irq_state);
}

#if defined(CONFIG_OF)
static const struct of_device_id emif_of_match[] = {
		{ .compatible = "ti,emif-4d" },
		{ .compatible = "ti,emif-4d5" },
		{},
};
MODULE_DEVICE_TABLE(of, emif_of_match);
#endif

static struct platform_driver emif_driver = {
	.remove		= __exit_p(emif_remove),
	.shutdown	= emif_shutdown,
	.driver = {
		.name = "emif",
		.of_match_table = of_match_ptr(emif_of_match),
	},
};

static int __init_or_module emif_register(void)
{
	return platform_driver_probe(&emif_driver, emif_probe);
}

static void __exit emif_unregister(void)
{
	platform_driver_unregister(&emif_driver);
}

module_init(emif_register);
module_exit(emif_unregister);
MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:emif");
MODULE_AUTHOR("Texas Instruments Inc");